Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 914
1.
J Colloid Interface Sci ; 673: 9-18, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38870666

Hydrogen peroxide (H2O2) emerges as a viable oxidant for fuel cells, necessitating the development of an efficient and cost-effective electrocatalyst for the hydrogen peroxide reduction reaction (HPRR). In this study, we synthesized a self-supporting, highly active HPRR electrocatalyst comprising two morphologically distinct components: CeO2-NiCo2O4 nanowires and CeO2-NiCo2O4 metal organic framework derivatives, via a two-step hydrothermal process followed by air calcination. X-ray diffraction and transmission electron microscopy analysis confirmed the presence of CeO2 and NiCo2O4, revealing the amalgamated interface between them. CeO2 exhibits multifunctionality in regulating the surface electronic configuration of NiCo2O4, fostering synergistic connections, and introducing oxygen deficiencies to enhance the catalytic efficacy in HPRR. Electrochemical measurements demonstrate a reduction current density of 789.9 mA·cm-2 at -0.8 V vs. Ag/AgCl. The assembly of direct borohydride-hydrogen peroxide fuel cell (DBHPFC) exhibits a peak power density of 45.2 mW·cm-2, demonstrating durable stability over a continuous operation period of 120 h. This investigation providing evidence that the fabrication of heterostructured catalysts based on CeO2 for HPRR is a viable approach for the development of high-efficiency electrocatalysts in fuel cell technology.

2.
Water Res ; 259: 121836, 2024 May 24.
Article En | MEDLINE | ID: mdl-38838484

Gaining insight into the impact of reservoir regulation on algal blooms is essential for comprehending the dynamic changes and response mechanisms in the reservoir ecosystem. In this study, we conducted a comprehensive field investigation linking physiochemical parameters, and phytoplankton community to different water regimes in the Three Gorges Reservoir. Our aim was to explore the effects of reservoir regulation on the extinction of cyanobacterial blooms. The results showed that during the four regulatory events, the water levels decreased by 2.02-4.33 m, and the average water velocity increased 68 % compared to before. The average total phosphorus and total nitrogen concentrations reduced by up to 20 %, and the cyanobacterial biomass correspondingly declined dramatically, between 66.94 % and 75.17 %. As the change of water level decline increasing, there was a significant increase of algal diversity and a notable decrease of algal cell density. Additionally, a shift in the dominant phytoplankton community from Cyanobacteria to Chlorophyceae was observed. Our analysis indicated that water level fluctuations had a pronounced effect on cyanobacterial extinction, with hydrodynamic changes resulting in a reduction of cyanobacterial biomass. This research underlined the potential for employing hydrodynamic management as a viable strategy to mitigate the adverse ecological impacts of cyanobacterial blooms, providing a solution for reservoir's eco-environmental management.

3.
BMC Surg ; 24(1): 177, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38844909

OBJECTIVE: The objective of this study is to evaluate and compare the surgical outcomes and complications of Percutaneous Endoscopic Lumbar Decompression (PELD) and traditional revision surgery in treating symptomatic Adjacent Segment Degeneration (ASD). This comparison aims to delineate the advantages and disadvantages of these methods, assisting spine surgeons in making informed surgical decisions. METHODS: 66 patients with symptomatic ASD who failed conservative treatment for more than 1 month and received repeated lumbar surgery were retrospectively collected in the study from January 2015 to November 2018, with the average age of 65.86 ± 11.04 years old. According to the type of surgery they received, all the patients were divided in 2 groups, including 32 patients replaced the prior rod in Group A and 34 patients received PELD at the adjacent level in Group B. Patients were followed up routinely and received clinical and radiological evaluation at 3, 6, 12 months and yearly postoperatively. Complications and hospital costs were recorded through chart reviews. RESULTS: The majority of patients experienced positive surgical outcomes. However, three cases encountered complications. Notably, Group B patients demonstrated superior pain relief and improved postoperative functional scores throughout the follow-up period, alongside reduced hospital costs (P < 0.05). Additionally, significant reductions in average operative time, blood loss, and hospital stay were observed in Group B (P < 0.05). Notwithstanding these benefits, three patients in Group B experienced disc re-herniation and underwent subsequent revision surgeries. CONCLUSIONS: While PELD offers several advantages over traditional revision surgery, such as reduced operative time, blood loss, and hospital stay, it also presents a higher likelihood of requiring subsequent revision surgeries. Future studies involving a larger cohort and extended follow-up periods are essential to fully assess the relative benefits and drawbacks of these surgical approaches for ASD.


Decompression, Surgical , Endoscopy , Lumbar Vertebrae , Reoperation , Humans , Male , Female , Lumbar Vertebrae/surgery , Decompression, Surgical/methods , Reoperation/statistics & numerical data , Retrospective Studies , Aged , Middle Aged , Endoscopy/methods , Treatment Outcome , Intervertebral Disc Degeneration/surgery , Postoperative Complications/epidemiology , Postoperative Complications/etiology
4.
Article En | MEDLINE | ID: mdl-38848462

INTRODUCTION: Patients who leave against medical advice (AMA) face increased risks of negative health outcomes, presenting a challenge for healthcare systems. This study examines demographic and hospital course factors associated with patients leaving AMA after an upper extremity (UE) orthopaedic procedure. METHODS: We analyzed 262,912 patients who underwent UE orthopaedic procedures between 2011 and 2020, using the Healthcare Cost and Utilization Project database. We then compared demographic and hospital course factors between patients who left AMA and those who did not leave AMA. RESULTS: Of 262,912 UE orthopaedic patients, 0.45% (1,173) left AMA. Those more likely to leave AMA were aged 30 to 49 (OR, 5.953, P < 0.001), Black (OR, 1.708, P < 0.001), had Medicaid (OR, 3.436, P < 0.001), and were in the 1st to 25th income percentile (OR, 1.657, P < 0.001). Female patients were less likely to leave AMA than male patients (OR, 0.647, P < 0.001). Patients leaving AMA had longer stays (3.626 versus 2.363 days, P < 0.001) and longer recovery times (2.733 versus 1.977, P < 0.001). CONCLUSION: We found that male, Black, younger than 49 years old, Medicaid-insured, and lowest income quartile patients are more likely to leave AMA after UE orthopaedic treatment.


Orthopedic Procedures , Upper Extremity , Humans , Male , Female , Middle Aged , Upper Extremity/surgery , Adult , Risk Factors , United States , Aged , Medicaid , Sex Factors , Length of Stay , Young Adult , Treatment Refusal
5.
Heliyon ; 10(11): e31968, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38868008

Objectives: The lymphotactin receptor X-C motif chemokine receptor 1 (XCR1) is an essential member of the chemokine receptor family and is related to tumor development and progression. Nevertheless, further investigation is required to explore its expression patterns, prognostic values, and functions related to target or immune therapies in patients with hepatocellular carcinoma (HCC). Materials and methods: The differential expression patterns of XCR1 and its prognostic influences were performed through The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. Subsequently, immunohistochemistry (IHC) staining and univariate and multivariate Cox regressions were performed to validate the prognostic values in different subgroups. Furthermore, the potential roles of XCR1 in predicting target and immune therapeutic responses were also investigated. Results: Increased expression level of XCR1 was associated with favorable overall survival (OS) and recurrence-free survival (RFS). Subgroup analysis revealed that a high expression level of XCR1 or positive immune cell proportion score (iCPS) were associated with favorable OS in the HCC patients with favorable tumor characteristics. In addition, the enhanced XCR1 expression was associated with the tumor environment scores, immune cell infiltration levels, and the expression levels of immune checkpoint genes. Further analysis revealed that improved expression of XCR1 was linked to better OS and RFS in HCC patients who received sorafenib. Conclusion: This study identified that XCR1 is a valuable prognostic biomarker in the HCC population, especially in those with favorable tumor characteristics. The combination of iCPS status and BCLC status has a synergistic effect on stratifying patients' OS and RFS. Further analyses showed that XCR1 has the potential ability to predict treatment responses to sorafenib and immune-based therapies.

6.
J Colloid Interface Sci ; 670: 647-657, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38781655

Ti3C2Tx MXene demonstrates excellent potential as an anode material for sodium-ion capacitors. However, the narrow interlayer spacing and self-stacking phenomenon limit its applicability. In this study, we demonstrate an easy two-step method involving freezing and crumpling of MXene nanosheets to improve their Na-ion storage via the addition of ammonium ions (referred to as FCM nanosheets). Flat MXene particles aggregate and undergo folding in an alkaline solution. Ammonium ions can penetrate the gaps between MXene nanosheets, expanding interlayer spaces and inducing the formation of folds. Compared to MXene nanosheets, FCM nanosheets exhibit improved ion transfer kinetics and additional high capacity owing to the intercalated ammonium ions. The manufactured FCM anode exhibits remarkable electrochemical properties, including a high specific capacity of 313 mAhg-1 and stability over 15,000 cycles.

7.
J Colloid Interface Sci ; 669: 126-136, 2024 Sep.
Article En | MEDLINE | ID: mdl-38713952

The shuttle effect and sluggish redox kinetics of polysulfides have hindered the development of lithium-sulfur batteries (LSBs) as premier energy storage devices. To address these issues, a high-entropy metal phosphide (NiCoMnFeCrP) was synthesized using the sol-gel method. NiCoMnFeCrP, with its rich metal species, exhibits strong synergistic effects and provides numerous catalytic active sites for the conversion of polysulfides. These active sites, possessing significant polarity, can bond with polysulfides. In situ ultraviolet-visible were conducted to monitor the dynamic changes in species and concentrations of polysulfides, validating the ability of NiCoMnFeCrP to facilitate the conversion of polysulfides. The batteries with the NiCoMnFeCrP catalyst as functional separators exhibited minimal capacity decay rates of 0.04 % and 0.23 % after 100 cycles at 0 °C and 60 °C, respectively. This indicates that the NiCoMnFeCrP catalyst possesses good thermal stability. Meanwhile, its area capacity can reach 4.78 mAh cm-2 at a high sulfur load of 4.54 mg cm-2. In conclusion, NiCoMnFeCrP achieves the objective of mitigating the shuttle effect and accelerating the kinetics of the redox reaction, thereby facilitating the commercialization of LSBs.

8.
J Colloid Interface Sci ; 669: 886-895, 2024 Sep.
Article En | MEDLINE | ID: mdl-38749227

Zinc metal anodes in aqueous electrolytes commonly face challenges such as dendrite growth and undesirable side reactions, limiting their application in the field of aqueous zinc-ion batteries (AZIBs) for energy storage. Drawing inspiration from industrial practices involving molybdenum salt solutions for metal modification, a polyoxometalate solution was formulated as a passivation solution for zinc anodes (referred to as MO solution). The formed passivation layer, referred to as the MO layer, exhibited a uniform and protective nature with a thickness of approximately 10 µm. The experimental results demonstrated that this passivation layer effectively suppressed side reactions at the zinc anode interface, as evidenced by lower corrosion current density for MO-Zn anodes. Additionally, the newly plated Zn was uniformly deposited atop the MO layer, ensuring coating integrity and inhibiting dendrite growth. As a result, under more demanding conditions such as a larger current of 8 mA cm-2, the MO-Zn anode displayed an extended cycle life exceeding 420 h in a symmetric battery, with an overpotential as low as 98 mV. This performance significantly outperformed that of commercially available pure Zn foils (with a cycle life of 60 h and an overpotential of 192 mV). Notably, a self-made Na-doped V2O5 served as the cathode (referred to as NaVO), forming the MO-Zn//NaVO full battery. Even under high current test conditions of 2 A/g, the specific capacity of the MO-Zn//NaVO full battery remained substantial at 152.83 mAh/g after 1000 cycles. Furthermore, pouch batteries assembled with NaVO//MO-Zn successfully illuminated small bulbs. This study offers a viable optimization strategy for AZIB anodes and demonstrates the potential of using polyoxometalate solution for etching zinc anodes to inhibit dendrite growth and interfacial corrosion of zinc metal anodes.

9.
Transl Oncol ; 45: 101972, 2024 Jul.
Article En | MEDLINE | ID: mdl-38705053

BACKGROUND: Accumulating evidence has shown that circular RNAs (circRNAs) are involved in gastric cancer (GC) tumorigenesis. However, specific functional circRNAs in GC remain to be discovered, and their underlying mechanisms remain to be elucidated. METHODS: CircRNAs that were differentially expressed between GC tissues and controls were analyzed using a circRNA microarray dataset. The expression of circVDAC3 in GC was determined using quantitative real-time PCR (qRT-PCR), and the structural features of circVDAC3 were validated. Cell function assays and animal experiments were conducted to explore the effects of circVDAC3 on GC. Finally, bioinformatics analysis, fluorescent in situ hybridization, and dual luciferase assays were used to analyze the downstream mechanisms of circVDAC3. RESULTS: Our results showed that circVDAC3 was downregulated in GC and inhibited the proliferation and metastasis of GC cells. Mechanistically, circVDAC3 acts as a competing endogenous RNA (ceRNA) of miR-592 and deregulates the repression of EIF4E3 by miR-592. EIF4E3 is downregulated in GC and overexpression of miR-592 or knockdown of EIF4E3 in circVDAC3-overexpressing cells weakens the anticancer effect of circVDAC3. CONCLUSION: Our study provides evidence that circVDAC3 affects the growth and metastasis of GC cells via the circVDAC3/miR-592/EIF4E3 axis. Our findings offer valuable insights into the mechanisms underlying GC tumorigenesis and suggest novel therapeutic strategies.

10.
Adv Mater ; : e2314341, 2024 May 23.
Article En | MEDLINE | ID: mdl-38779891

Organic-inorganic metal-halide perovskites have received great attention for photovoltaic (PV) applications owing to their superior optoelectronic properties and the unprecedented performance development. For single-junction PV devices, although lead (Pb)-based perovskite solar cells have achieved 26.1% efficiency, the mixed tin-lead (Sn-Pb) perovskites offer more ideal bandgap tuning capability to enable an even higher performance. The Sn-Pb perovskite (with a bandgap tuned to ≈1.2 eV) is also attractive as the bottom subcell for a tandem configuration to further surpass the Shockley-Queisser radiative limit for the single-junction devices. The performance of the all-perovskite tandem solar cells has gained rapid development and achieved a certified efficiency up to 29.1%. In this article, the properties and recent development of state-of-the-art mixed Sn-Pb perovskites and their application in single-junction and all-perovskite tandem solar cells are reviewed. Recent advances in various approaches covering additives, solvents, interfaces, and perovskite growth are highlighted. The authors also provide the perspective and outlook on the challenges and strategies for further development of mixed Sn-Pb perovskites in both efficiency and stability for PV applications.

11.
Proc Natl Acad Sci U S A ; 121(23): e2308811121, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38805274

Climate change will likely shift plant and microbial distributions, creating geographic mismatches between plant hosts and essential microbial symbionts (e.g., ectomycorrhizal fungi, EMF). The loss of historical interactions, or the gain of novel associations, can have important consequences for biodiversity, ecosystem processes, and plant migration potential, yet few analyses exist that measure where mycorrhizal symbioses could be lost or gained across landscapes. Here, we examine climate change impacts on tree-EMF codistributions at the continent scale. We built species distribution models for 400 EMF species and 50 tree species, integrating fungal sequencing data from North American forest ecosystems with tree species occurrence records and long-term forest inventory data. Our results show the following: 1) tree and EMF climate suitability to shift toward higher latitudes; 2) climate shifts increase the size of shared tree-EMF habitat overall, but 35% of tree-EMF pairs are at risk of declining habitat overlap; 3) climate mismatches between trees and EMF are projected to be greater at northern vs. southern boundaries; and 4) tree migration lag is correlated with lower richness of climatically suitable EMF partners. This work represents a concentrated effort to quantify the spatial extent and location of tree-EMF climate envelope mismatches. Our findings also support a biotic mechanism partially explaining the failure of northward tree species migrations with climate change: reduced diversity of co-occurring and climate-compatible EMF symbionts at higher latitudes. We highlight the conservation implications for identifying areas where tree and EMF responses to climate change may be highly divergent.


Climate Change , Mycorrhizae , Symbiosis , Trees , Mycorrhizae/physiology , Trees/microbiology , North America , Forests , Biodiversity , Ecosystem
12.
Science ; 384(6698): 878-884, 2024 May 24.
Article En | MEDLINE | ID: mdl-38781395

Mechanical failure and chemical degradation of device heterointerfaces can strongly influence the long-term stability of perovskite solar cells (PSCs) under thermal cycling and damp heat conditions. We report chirality-mediated interfaces based on R-/S-methylbenzyl-ammonium between the perovskite absorber and electron-transport layer to create an elastic yet strong heterointerface with increased mechanical reliability. This interface harnesses enantiomer-controlled entropy to enhance tolerance to thermal cycling-induced fatigue and material degradation, and a heterochiral arrangement of organic cations leads to closer packing of benzene rings, which enhances chemical stability and charge transfer. The encapsulated PSCs showed retentions of 92% of power-conversion efficiency under a thermal cycling test (-40°C to 85°C; 200 cycles over 1200 hours) and 92% under a damp heat test (85% relative humidity; 85°C; 600 hours).

13.
Small ; : e2311207, 2024 May 15.
Article En | MEDLINE | ID: mdl-38751193

Janus structure plays a crucial role in achieving chemically driven nanomotors with exceptional motion performance. However, Janus-structured chemically driven nanomotors with magnetic responsiveness are commonly fabricated by sputtering metal films. In the study, a self-assembly technique is employed to asymmetrically modify the surfaces of magnetic silica (SiO2@Fe3O4) nanoparticles with platinum nanoparticles, resulting in the formation of this kind nanomotors. Compared to platinum film, platinum nanoparticles exhibit a larger surface area and a higher catalytic activity. Hence, the nanomotors demonstrate improved diffusion capabilities at a significantly lower concentration (0.05%) of hydrogen peroxide (H2O2). Meanwhile, exosomes have gained attention as a potential tool for the efficient delivery of biological therapeutic drugs due to their biocompatibility. However, the clinical applications of exosomes are limited by their restricted tropism. The previously obtained nanomotors are utilized to deliver exosomes, greatly enhancing its targetability. The drug doxorubicin (DOX) is subsequently encapsulated within exosomes, acting as a representative drug model. Under the conditions of H2O2 concentration at the tumor site, the exosomes exhibited a significantly enhanced rate of entry into the breast cancer cells. The utilization of the nanomotors for exosomes presents a novel approach in the development of hybrid chemically and magnetically responsive nanomotors.

14.
Environ Toxicol ; 39(7): 4035-4046, 2024 Jul.
Article En | MEDLINE | ID: mdl-38642004

OBJECTIVE: Non-small cell lung cancer (NSCLC) is a prevailing LC characterized by poor outcomes. AlkB homolog 5 (ALKBH5) functions as a tumor suppressor in several cancers. This study delved into the role of ALKBH5 in NSCLC development. METHODS: TCGA database predicted ALKBH5 expression in NSCLC patients. ALKBH5 levels in NSCLC and human bronchial epithelial cells were determined. pcDNA3.1-ALKBH5/NC, pcDNA3.1-SLC7A11/NC, and ferrostatin-1 were used to explore the interactions among ALKBH5, SLC7A11, and ferroptosis. SLC7A11 mRNA and its protein levels were measured by RT-qPCR and Western blot. Cell viability, apoptosis, migration, and invasion were assessed by CCK-8, flow cytometry, and Transwell. Total N6-methyladenosine (m6A) quantification and its enrichment on SLC7A11 mRNA were determined, followed by the observation of Ki67, ALKBH5 and SLC7A11-positive cell numbers. Glutathione (GSH), lipid reactive oxygen species (lipid-ROS), malondialdehyde (MDA), and iron ion contents were determined. Animal experiments further analyzed the role of ALKBH5 in tumor development and glutathione peroxidase 4 (GPX4) expression. RESULTS: Bioinformatics analysis revealed the lowly-expressed ALKBH5 in LC patients. ALKBH5 was downregulated in NSCLC cells and its upregulation repressed proliferation activity, invasion, and migration, and facilitated apoptosis. ALKBH5 upregulation decreased GSH, increased lipid-ROS, MDA, and iron ion contents, and downregulated SLC7A11 by reducing m6A modification. SLC7A11 upregulation partly annulled the effect of ALKBH5 overexpression on cell ferroptosis and malignant behaviors. In vivo assays elucidated the suppression of ALKBH5 upregulation on tumor development and GPX4 levels. CONCLUSION: ALKBH5 upregulation downregulates SLC7A11 transcription by decreasing m6A modification, thus promoting NSCLC cell ferroptosis and ultimately repressing NSCLC progression.


AlkB Homolog 5, RNA Demethylase , Amino Acid Transport System y+ , Carcinoma, Non-Small-Cell Lung , Ferroptosis , Lung Neoplasms , Ferroptosis/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , AlkB Homolog 5, RNA Demethylase/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Animals , Cell Line, Tumor , Demethylation , Mice, Nude , Mice , Male , Mice, Inbred BALB C , Gene Expression Regulation, Neoplastic , Cell Proliferation , Adenosine/analogs & derivatives , Adenosine/metabolism
15.
Chem Commun (Camb) ; 60(38): 5030-5033, 2024 May 07.
Article En | MEDLINE | ID: mdl-38630296

We report a flash Joule heating method for the rapid preparation of graphene-like materials. The L-GHS exhibited a uniform diameter of 200 nm and an ideal specific surface area of 670 m2 g-1. Meanwhile, the specific capacity of L-GHS remained at 942 mA h g-1 after 600 cycles (1 A g-1), which shows excellent electrochemical performance.

16.
Article En | MEDLINE | ID: mdl-38687598

CONTEXT: The relationship between the consumption of different beverages and the risk of microvascular complications in individuals with type 2 diabetes (T2D) is unclear. OBJECTIVE: To investigate the association of individual beverage consumption, including artificially sweetened beverages (ASBs), sugar-sweetened beverages (SSBs), tea, coffee, natural juice, and yogurt, with the risk of microvascular complications in adults with T2D. METHODS: This cohort study included 6676 participants with T2D who were free of macrovascular and microvascular complications at baseline in the UK Biobank. Cox proportional hazard models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS: During a median follow-up of 11.7 years, 1116 cases of composite microvascular complications were documented. After multivariable adjustment, a linear dose-response relationship was demonstrated between the consumption of ASBs and SSBs and the risk of microvascular complications. Compared with nonconsumers, those who consumed ≥2.0 units/day of ASBs and SSBs had an HR (95% CI) of 1.44 (1.18-1.75) and 1.32 (1.00-1.76) for composite microvascular complications, respectively. In addition, higher tea consumption was associated with a lower risk of diabetic retinopathy, with an HR (95% CI) of 0.72 (0.57-0.92) for whom consuming ≥4.0 units/day. There was no significant association between individual beverage consumption and the risk of diabetic neuropathy. No significant association was observed between the consumption of coffee, natural juice, or yogurt and the risks of microvascular complications. Moreover, substituting half units/day of ASBs or SSBs with tea or coffee was associated with a 16% to 28% lower risk of microvascular complications. CONCLUSION: Higher consumption of ASBs and SSBs was linearly associated with an increased risk of microvascular complications in adults with T2D.

17.
Spine J ; 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643949

BACKGROUND CONTEXT: Coccydynia is pain in the coccyx that typically occurs idiopathically or from trauma. Most forms are self-limiting. However, if symptoms persist, non-surgical treatment options can include offloading, NSAIDs, physical therapy, and steroid injections. If all treatment options fail, a growing body of evidence supports a coccygectomy for symptomatic relief. The standard approach for a coccygectomy involves a midline incision cephalad to the anus along the gluteal cleft. Historically, this method has had high rates of infection. PURPOSE: To improve healing and decrease infection rate, we propose the paramedian approach to a coccygectomy. This approach has the benefit of distancing the surgical site from the anus, diminishing the crevice effect of the incision, and increasing the dermal and subdermal thickness for improved surgical closure. STUDY DESIGN/SETTING: We present a case series study of 41 patients who underwent the paramedian approach coccygectomy using a 4 to 6 cm incision, approximately 0.5 to 1.5 cm lateral to the midline, for coccyx removal. These patients were evaluated postoperatively to determine infection rate and various outcome measures. PATIENT SAMPLE: Forty-one patients suffering from refractory coccydynia had a coccygectomy via the paramedian approach between 2011 and 2022 by the senior author. OUTCOME MEASURES: Outcome measures included self-reported measures (Oswestry Disability Index (ODI), Visual Analogue Scale (VAS) pain scale and satisfaction with procedure), physiologic measures (presence of infection and treatment provided) and functional measures (return to vocation/avocation) METHODS: Data was compiled and transferred to Microsoft Excel and analyzed. Two-tailed T-tests were used to compare the patient improvement in VAS and ODI as appropriate for statistical analysis. RESULTS: The patients' average age was 45.8 years. Patients' average body mass index was 27.9, with 71% of patients overweight or obese. A total of 68% of patients were female. Trauma was the most common precipitating factor (75.6%). Five patients presented with postoperative complications (12.1%), one requiring an incision and drainage, and four others were treated with antibiotics for wound erythema. Postoperative evaluations showed continual improvement, with the most significant improvement reported greater than 1-year postoperatively. The Visual Analogue Scale for pain dropped from 7.5 to 2.3 (p<.001), and the Oswestry Disability Index improved from 30.1 to 9.6 (p<.001). A total of 86.7% of patients reported either a good or excellent result. CONCLUSION: Coccygectomies via the midline approach have a variable infection rate, likely due to proximity of the incision to the anus and due to the crevice effect of the gluteal cleft in terms of aeration. These contributing factors are overcome in the paramedian approach, making it an effective option for treating refractory coccydynia that is non-responsive to conservative management.

18.
Leuk Res ; 141: 107451, 2024 Jun.
Article En | MEDLINE | ID: mdl-38663164

BACKGROUND: Circular RNAs (circRNAs) are associated with development and progression of multiple myeloma (MM). However, the role and mechanism of circ_0005615 in MM have not been elucidated. METHODS: Circ_0005615 was determined by GEO database. quantitative RT-PCR was performed to confirm the expression of circ_0005615 in peripheral blood of MM patients and MM cells. The roles of circ_0005615 in MM were analyzed using CCK8, transwell invasion, cell apoptosis and tumor xenograft experiments. Bioinformatics tools, RIP and RNA pull down assays were conducted to explore the downstream of circ_0005615. Furthermore, the mechanism was investigated by quantitative RT-PCR, western blot, dot blot and meRIP-PCR assays. RESULTS: Circ_0005615 was upregulated in MM. Overexpression of circ_0005615 promoted cell viability and invasion, and suppressed apoptosis in vitro, which were opposite when circ_0005615 was knockdowned. Mechanistically, EIF4A3, a RNA-binding protein (RBP), could directly bind to circ_0005615 and ALKBH5, where ALKBH5 could directly combine with MAP3K4, forming a circ_0005615- EIF4A3-ALKBH5-MAP3K4 module. Furthermore, circ_0005615 overexpression increased m6A methylation of MAP3K4 by inhibiting ALKBH5, leading to decreased MAP3K4. Further functional experiments indicated that ALKBH5 overexpression weakened the promoting roles of circ_0005615 overexpression in MAP3K4 m6A methylation and tumor progression in MM. The above functions and mechanism were also verified in vivo. CONCLUSIONS: Elevated circ_0005615 decreased MAP3K4 mediated by ALKBH5 through interacting with EIF4A3, thereby accelerating MM progression. Circ_0005615 might be a promising biomarker and target of MM.


AlkB Homolog 5, RNA Demethylase , Disease Progression , Multiple Myeloma , RNA, Circular , Humans , RNA, Circular/genetics , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Multiple Myeloma/metabolism , AlkB Homolog 5, RNA Demethylase/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , Mice , Animals , Apoptosis , Gene Expression Regulation, Neoplastic , Eukaryotic Initiation Factor-3/metabolism , Eukaryotic Initiation Factor-3/genetics , Mice, Nude , Cell Proliferation , Xenograft Model Antitumor Assays , Adenosine/metabolism , Adenosine/analogs & derivatives , Cell Line, Tumor , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Eukaryotic Initiation Factor-4A , DEAD-box RNA Helicases
19.
EClinicalMedicine ; 71: 102585, 2024 May.
Article En | MEDLINE | ID: mdl-38638401

Background: Anlotinib is a new type of tyrosine kinase inhibitor that targets vascular endothelial growth factor receptors 1/2/3, platelet-derived growth factor receptors α/ß, and fibroblast growth factor receptors 1-4 and c-Kit, with a broad spectrum of inhibitory effects on tumor angiogenesis and growth. It has been proven effective in HER2-negative metastatic breast cancer, but its efficacy in early-stage triple-negative breast cancer (TNBC) is unknown. This phase 2 study aims to evaluate the efficacy and safety of adding anlotinib to neoadjuvant chemotherapy in patients with TNBC. Methods: Patients with clinical stage II/III TNBC were treated with 5 cycles of anlotinib (12 mg, d1-14, q3w) plus 6 cycles of taxanes (docetaxel 75 mg/m2 ,d1, q3w or nab-paclitaxel 125 mg/m2, d1 and d8, q3w) and lobaplatin (30 mg/m2, d1, q3w), followed by surgery. The primary endpoint was pathological complete response (pCR; ypT0/is ypN0) and the secondary endpoints include breast pCR (bpCR), axillary pCR (apCR), residual cancer burden (RCB), objective response rate (ORR), survival, and safety. Exploratory endpoints were efficacy biomarkers based on Fudan University Shanghai Cancer Center Immunohistochemical (FUSCC IHC) classification for TNBC and next-generation sequencing (NGS) of DNA from tumor tissue and blood samples of patients with 425-gene panel. This trial is registered with www.chictr.org.cn (ChiCTR2100043027). Findings: From Jan 2021 to Aug 2022, 48 patients were assessed and 45 were enrolled. All patients received at least one dose of study treatment and underwent surgery. The median age was 48.5 years (SD: 8.7), 71% were nodal involved, and 20% had stage III. In the intention-to-treat population, 26 out of 45 patients achieved pCR (57.8%; 90% CI, 44.5%-70.3%), and 39 achieved residual cancer burden class 0-I (86.7%; 95% CI, 73.2%-94.9%). The bpCR and apCR rate were 64.4% (29/45) and 71.9% (23/32), respectively. No recurrence or metastasis occurred during the short-term follow-up. Based on the FUSCC IHC-based subtypes, the pCR rates were 68.8% (11/16) for immunomodulatory subtype, 58.3% (7/12) for basal-like immune-suppressed subtype and 33.3% (4/12) for luminal androgen receptor subtype, respectively. NGS revealed that the pCR were 77% (10/13) and 50% (14/28) in MYC-amplified and wild-type patients, respectively, and 78% (7/9) and 53% (17/32) in gBRCA1/2-mutated and wild-type patients, respectively. The median follow-up time of the study was 14.9 months (95% CI: 13.5-16.3 months). There was no disease progression or death during neoadjuvant therapy. No deaths occurred during postoperative follow-up. In the safety population (N = 45), Grade 3 or 4 treatment emergent adverse events occurred in 29 patients (64%), and the most common events were neutropenia (38%), leukopenia (27%), thrombocytopenia (25%), anemia (13%), and hypertension (13%), respectively. Interpretation: The addition of anlotinib to neoadjuvant chemotherapy showed manageable toxicity and encouraging antitumor activity for patients with clinical stage II/III TNBC. Funding: Chongqing Talents Project, Chongqing Key Project of Technology Innovation and Application Development and Chongqing Outstanding Youth Natural Science Foundation.

20.
Huan Jing Ke Xue ; 45(5): 2715-2726, 2024 May 08.
Article Zh | MEDLINE | ID: mdl-38629535

Riparian zones are typical fragile and sensitive ecological areas. Fluctuations in water level are the main factor affecting the soil environment in these zones, and vegetation restoration is considered an important means of soil conservation there. However, the interactive effects of water level fluctuations and vegetation restoration on the soil microbial community structure in the reservoir riparian zone remain unclear. Therefore, we selected abandoned grassland and artificial forestland at different water level elevations as research objects in the riparian zone of the Three Gorges Reservoir. We used 16S rRNA high-throughput sequencing technology to explore the composition and diversity of soil prokaryotic microbial communities and investigated the main environmental factors driving the soil microbial community structure. The results showed that the α diversity of soil prokaryotes was the highest at the low water level of the riparian zone. The Pielou_e index, Shannon index, and Simpson index at the 163 m elevation were significantly higher than those at the 168 m elevation, and the Chao1 index and Shannon index were significantly higher than those at the 173 m elevation. However, no significant difference was found in the soil microbial community α diversity between abandoned grassland and artificial forestland. At the same time, water level fluctuations and vegetation restoration had significant effects on the community composition of soil prokaryotic microorganisms, and there were significant differences in biomarker categories in different study sites. Notably, the effects of vegetation restoration types on the soil prokaryotic microbial community structure were stronger than that of water level fluctuations. In addition, the results of hierarchical segmentation showed that soil pH was the main driving factor for the change in soil prokaryotic microbial community structure in the Three Gorges Reservoir. These results deepen our understanding of the variations in microbial community structure in the reservoir riparian zone and provide scientific reference for the restoration and reconstruction of the riparian zone ecosystem.


Microbiota , Soil , Soil/chemistry , Ecosystem , Water , RNA, Ribosomal, 16S , Forests , Soil Microbiology
...