Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 194
Filter
1.
Angew Chem Int Ed Engl ; : e202413827, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39243223

ABSTRACT

Smart materials enabling emission intensity or wavelength tuning by light stimulus attract attention in numerous cutting-edge fields. However, due to the generally dense molecular stacking against photoresponsivity in solid states, especially in crystals, developing rapidly phototunable solid-state luminescent systems remains challenging. Herein, we propose a new luminophore that serves as both a photoresponsive unit and a luminescent group, while possessing enhanced conformational freedom to provide a solution. Namely, photoexcitation-induced molecular conformational change of an ionized persulfurated arene based on weak intermolecular aliphatic C-H···π interaction was employed. On these basis, rapidly enhanced phosphorescence upon irradiation can be observed in a series of phase states, like solution state, crystal, and amorphous state, especially with a high photoresponsive rate of 0.033 s-1 in crystal state that is superior to the relevant reported cases. Moreover, a rapidly phototunable afterglow effect is achieved by extending this molecule into some polymer-based doping systems, endowing the system with unique dynamic imaging and fast photopatterning capabilities. Such a single-luminophore molecular engineering and the underlying mechanism have implications for building different condensed functional materials, principally for those with stimuli responses in solid states.

2.
Chem Asian J ; : e202400965, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39253774

ABSTRACT

Room temperature phosphorescent (RTP) probes have significant advantages in the field of cellular imaging, as their long lifetimes can prevent interference from the spontaneous fluorescence of organisms. Persulfurated arenes are a typical RTP molecular parent nucleus. However, most of the applied research on them is concentrated in anti-counterfeiting, and relatively few are applied in bioimaging. The molecular structure and structure-property relationship of them applied in bioimaging are still in the exploration stage. In this work, we have designed and synthesized a series of RTP probes with long alkyl chains, all of which can be targeted to mitochondria with good water solubility for mitochondria-targeted imaging. Further, we investigated the effect of alkyl chains on the luminescence properties of these probes, and found that the moderate length of alkyl chains can realize the enhancement of phosphorescence intensity. We believe this finding is of guiding significance for the design of molecular structures in the field of RTP probes.

3.
Chem Sci ; 15(31): 12569-12579, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39118609

ABSTRACT

Due to the general incompleteness of photochemical reactions, the photostationary structure in traditional photo-controlled host-guest self-assembly transfer is usually disordered or irregular. This fact readily affects the photoregulation or improvement of related material properties. Herein, a photoexcitation-induced aggregation molecule, hydroxyl hexa(thioaryl)benzene (HB), was grafted into ß-cyclodextrin to form a host-guest system. Upon irradiation, the excited state conformational change of HB can drive an order-to-order phase transition of the system, enabling the transfer of the initial linear nanostructure to a photostationary worm-like nanostructure with orderliness and crystallinity capability. Along with the photoexcitation-controlled phase transition, an afterglow effect was obtained from the films prepared by doping the host-guest system into poly(vinyl alcohol). The afterglow effect had a superior water resistance, which successfully overcame the general sensitivity of doped materials with the afterglow effect to water vapor. These results are expected to provide new insights for pushing forward chemical self-assembly from the light perspective, towards materials with superior and stable properties under light treatment.

4.
Eur J Drug Metab Pharmacokinet ; 49(5): 619-629, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38990427

ABSTRACT

BACKGROUND AND OBJECTIVE: Ciclopirox is a widely used antifungal drug, redisposition of which has drawn increasing attentions due to multiple promising activities. The drug undergoes extensive glucuronidation, which acts as a major obstacle in the ongoing novel application and still remains poorly understood. The current study aims to phenotype ciclopirox glucuronidation pathway and as well to decipher the related species differences. METHODS: Ciclopirox glucuronidation was investigated in liver microsomes from humans (HLM) and various experimental animals. Assays with recombinant uridine diphosphate glucuronosyltransferases (UGTs), enzyme kinetic analyses and selective inhibitors were used to determine the role of individual UGTs in ciclopirox glucuronidation. RESULTS: HLM is highly active in ciclopirox glucuronidation with Michaelis-Menten constant (Km), maximum velocity (Vmax), and intrinsic clearance (CLint) values of 139 µM, 7.89 nmol/min/mg, and 56 µL/min/mg, respectively. UGT1A9 displays by far the highest activity, whereas several other isoforms (UGT1A6, UGT1A7, and UGT1A8) catalyze formation of traced glucuronides. Further kinetic analysis demonstrates that UGT1A9 has a closed Km value (167 µM) to HLM. UGT1A9 selective inhibitor (magnolol) can potently inhibit ciclopirox glucuronidation in HLM with the IC50 value of 0.12 µM. The reaction displays remarkable differences across liver microsomes from mice, rats, cynomolgus monkey, minipig, and beagle dog, with the CLint values in the range of 26-369 µL/min/mg. In addition, ciclopirox glucuronidation activities of experimental animals' liver microsomes were less sensitive to magnolol than that of HLM. CONCLUSIONS: Ciclopirox glucuronidation displays remarkable species differences with UGT1A9 as a dominant contributor in humans. It is suggested that the pharmacological or toxicological effects of ciclopirox may be UGT1A9 and species dependent.


Subject(s)
Antifungal Agents , Ciclopirox , Glucuronides , Glucuronosyltransferase , Microsomes, Liver , Microsomes, Liver/metabolism , Ciclopirox/metabolism , Animals , Humans , Glucuronosyltransferase/metabolism , Glucuronosyltransferase/antagonists & inhibitors , Swine , Glucuronides/metabolism , Rats , Mice , Dogs , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Male , Species Specificity , Macaca fascicularis , Kinetics , Rats, Sprague-Dawley
5.
Phytopathology ; 114(9): 2071-2083, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38916927

ABSTRACT

Valsa pyri, the causal agent of pear canker disease, typically induces cankers on the bark of infected trees and even leads to tree mortality. Secondary metabolites produced by pathogenic fungi play a crucial role in the pathogenic process. In this study, secondary metabolic regulator VpLaeA was identified in V. pyri. VpLaeA was found to strongly affect the pathogenicity, fruiting body formation, and toxicity of secondary metabolites of V. pyri. Additionally, VpLaeA was found to be required for the response of V. pyri to some abiotic stresses. Transcriptome data analysis revealed that many of differentially expressed genes were involved in the secondary metabolite biosynthesis. Among them, about one third of secondary metabolite biosynthesis core genes were regulated by VpLaeA at different periods. Seven differentially expressed secondary metabolite biosynthesis core genes (VpPKS9, VpPKS10, VpPKS33, VpNRPS6, VpNRPS7, VpNRPS16, and VpNRPS17) were selected for knockout. Two modular polyketide synthase genes (VpPKS10 and VpPKS33) that were closely related to the virulence of V. pyri from the above seven genes were identified. Notably, VpPKS10 and VpPKS33 also affected the production of fruiting body of V. pyri but did not participate in the resistance of V. pyri to abiotic stresses. Overall, this study demonstrates the multifaceted biological functions of VpLaeA in V. pyri and identifies two toxicity-associated polyketide synthase genes in Valsa species fungi for the first time.


Subject(s)
Plant Diseases , Polyketide Synthases , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Virulence/genetics , Plant Diseases/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Pyrus/microbiology , Secondary Metabolism/genetics , Ascomycota/pathogenicity , Ascomycota/genetics
6.
Eur Phys J E Soft Matter ; 47(6): 38, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829470

ABSTRACT

In the field of biomimetics, the tiny riblet structures inspired by shark skin have been extensively studied for their drag reduction properties in turbulent flows. Here, we show that the ridged surface texture of another swimming creature in the ocean, i.e., the scallops, also has some friction drag reduction effect. In this study, we investigated the potential drag reduction effects of scallop shell textures using computational fluid dynamics simulations. Specifically, we constructed a conceptual model featuring an undulating surface pattern on a conical shell geometry that mimics scallop. Simulations modeled turbulent fluid flows over the model inserted at different orientations relative to the flow direction. The results demonstrate appreciable friction drag reduction generated by the ribbed hierarchical structures encasing the scallop, while partial pressure drag reduction exhibits dependence on alignment of scallop to the predominant flow direction. Theoretical mechanisms based on classic drag reduction theory in turbulence was established to explain the drag reduction phenomena. Given the analogous working environments of scallops and seafaring vessels, these findings may shed light on the biomimetic design of surface textures to enhance maritime engineering applications. Besides, this work elucidates an additional evolutionary example of fluid drag reduction, expanding the biological repertoire of swimming species.

7.
Chem Commun (Camb) ; 60(46): 5936-5939, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38757721

ABSTRACT

We develop a new type of heterostructure nanocomposite made of reduced graphene oxide-boron carbon nitride nanosheets (rGO-BCN) by B-C covalent bonds. The rGO-BCN nanocomposite delivers a large specific surface and excellent electrochemical properties, and is then constructed into flexible fabric-based high-performance supercapacitor electrodes based on the microfluidic electrospinning technology.

8.
Nanoscale ; 16(25): 12007-12012, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38805180

ABSTRACT

Polyvinyl alcohol (PVA) fiber materials have gained immense recognition due to their good biocompatibility and wide applications. However, methods allowing the synergistic enhancement of mechanical strength and toughness of PVA fibers still remain a key challenge. To this end, we developed covalently cross-linked ultrastrong SiO2-loaded polyvinyl alcohol fibers via a microfluidic spinning chemistry strategy. The thermal stretching and annealing processes not only promote the ordered arrangement of molecules, but also facilitate the ring opening reaction and increase crystallinity. Thus, the resulting fiber has a high tensile strength of 866 MPa, a specific toughness of 288 J g-1 and a tensile strain of 80%. This work provides a covalent cross-linking reinforcement method to prepare ultrastrong composite fibers assisted by microfluidic spinning chemistry and thermal stretching, which would lead to the fabrication of mechanically strong fiber materials through a simple pathway.

9.
Adv Mater ; 36(29): e2401145, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692574

ABSTRACT

Photopyroptosis is an emerging research branch of photodynamic therapy (PDT), whereas there remains a lack of molecular structural principles to fabricate photosensitizers for triggering a highly efficient pyroptosis. Herein, a general and rational structural design principle to implement this hypothesis, is proposed. The principle relies on the clamping of cationic moieties (e.g., pyridinium, imidazolium) onto one photosensitive core to facilitate a considerable mitochondrial targeting (both of the inner and the outer membranes) of the molecules, thus maximizing the photogenerated reactive oxygen species (ROS) at the specific site to trigger the gasdermin E-mediated pyroptosis. Through this design, the pyroptotic trigger can be achieved in a minimum of 10 s of irradiation with a substantially low light dosage (0.4 J cm⁻2), compared to relevant work reported (up to 60 J cm⁻2). Moreover, immunotherapy with high tumor inhibition efficiency is realized by applying the synthetic molecules alone. This structural paradigm is valuable for deepening the understanding of PDT (especially the mitochondrial-targeted PDT) from the perspective of pyroptosis, toward the future development of the state-of-the-art form of PDT.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Pyroptosis , Reactive Oxygen Species , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Pyroptosis/drug effects , Humans , Reactive Oxygen Species/metabolism , Animals , Mice , Cell Line, Tumor , Mitochondria/metabolism , Mitochondria/drug effects , Light
10.
Adv Mater ; 36(30): e2404888, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38738587

ABSTRACT

Confining luminophores into modified hydrophilic matrices or polymers is a straightforward and widely used approach for afterglow bioimaging. However, the afterglow quantum yield and lifetime of the related material remain unsatisfactory, severely limiting the using effect especially for deep-tissue time-resolved imaging. This fact largely stems from the dilemma between material biocompatibility and the quenching effect of water environment. Herein an in situ metathesis promoted doping strategy is presented, namely, mixing ≈10-3 weight ratio of organic-emitter multicarboxylates with inorganic salt reactants, followed by metathesis reactions to prepare a series of hydrophilic but water-insoluble organic-inorganic doping afterglow materials. This strategy leads to the formation of edible long-afterglow photoluminescent materials with superior biocompatibility and excellent bioimaging effect. The phosphorescence quantum yield of the materials can reach dozens of percent (the highest case: 66.24%), together with the photoluminescent lifetime lasting for coupes of seconds. Specifically, a long-afterglow barium meal formed by coronene salt emitter and BaSO4 matrix is applied into animal experiments by gavage, and bright stomach afterglow imaging is observed by instruments or mobile phone after ceasing the photoexcitation with deep tissue penetration. This strategy allows a flexible dosage of the materials during bioimaging, facilitating the development of real-time probing and theranostic technology.


Subject(s)
Biocompatible Materials , Animals , Mice , Biocompatible Materials/chemistry , Luminescent Agents/chemistry , Humans , Optical Imaging
11.
Int J Pharm ; 655: 124032, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38521374

ABSTRACT

Ferroptosis inhibits tumor growth by iron-dependently accumulating lipid peroxides (LPO) to a lethal extent, which can result from iron overload and glutathione peroxidase 4 (GPX4) inactivation. In this study, we developed biodegradable zwitterionic polymer-cloaked atorvastatin (ATV)-loaded ferric metal-organic frameworks (Fe-MOFs) for cancer treatment. Fe-MOFs served as nanoplatforms to co-deliver ferrous ions and ATV to cancer cells; the zwitterionic polymer membrane extended the circulation time of the nanoparticles and increased their accumulation at tumor sites. In cancer cells, the structure of the Fe-MOFs collapsed in the presence of glutathione (GSH), leading to the depletion of GSH and the release of ATV and Fe2+. The released ATV decreased mevalonate biosynthesis and GSH, resulting in GPX4 attenuation. A large number of reactive oxygen species were generated by the Fe2+-triggered Fenton reaction. This synergistic effect ultimately contributed to a lethal accumulation of LPO, causing cancer cell death. The findings both in vitro and in vivo suggested that this ferroptosis-inducing nanoplatform exhibited enhanced anticancer efficacy and preferable biocompatibility, which could provide a feasible strategy for anticancer therapy.


Subject(s)
Ferroptosis , Metal-Organic Frameworks , Neoplasms , Humans , Polymers , Atorvastatin , Glutathione , Iron , Lipid Peroxides , Neoplasms/drug therapy , Cell Line, Tumor
12.
ACS Appl Mater Interfaces ; 16(7): 8228-8237, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38343190

ABSTRACT

Designing a novel biomaterial for wound healing is based on biocompatibility and excellent mechanical strength. In this study, bioactive glass (BG) and zeolitic imidazolate framework-8 (ZIF-8) have been incorporated into poly(ε-caprolactone)/poly(vinyl alcohol) (PCL/PVA) composite skin scaffolds via microfluidic electrospinning. Interestingly, the addition of ZIF-8 further strengthens the BG stability and demonstrates better antibacterial effects. Utilizing the slow release of Zn, Ca, and Si ions, it also significantly promotes growth factor expression and skin regeneration. In addition, it is further demonstrated by in vitro and in vivo studies that the prepared composite skin scaffolds possess excellent biocompatibility, antibacterial capabilities, and mechanical properties. The prepared BG/ZIF-8-loaded scaffold possesses high tensile strength (26 MPa) and excellent antibacterial properties (achieves 89.64 and 78.8% inhibition of E. coli and S. aureus, respectively), and cell viability increased by 51.2%. More importantly, the wound shrinkage of the BG/ZIF-8-loaded scaffold is better than that of an unloaded scaffold, and the shrinkage rates of PCL/PVA@BG/ZIF-8(1 wt %) group is 95% with 2.2 mm granulation growth thickness within 12 days. Thus, the composite skin scaffold loaded with BG/ZIF-8 prepared by microfluidic electrospinning provides a new perspective for accelerating wound healing and is a potential novel therapeutic strategy for efficient wound healing.


Subject(s)
Escherichia coli , Staphylococcus aureus , Polyesters/pharmacology , Wound Healing , Anti-Bacterial Agents/pharmacology , Tissue Scaffolds
13.
Angew Chem Int Ed Engl ; 63(10): e202318159, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38189634

ABSTRACT

Molecular emitters with multi-emissive properties are in high demand in numerous fields, while these properties basically depend on specific molecular conformation and packing. For amorphous systems, special molecular arrangement is unnecessary, but it remains challenging to achieve such luminescent behaviors. Herein, we present a general strategy that takes advantage of molecular rigidity and S1 -T1 energy gap balance for emitter design, which enables fluorescence-phosphorescence dual-emission properties in various solid forms, whether crystalline or amorphous. Subsequently, the amorphism of the emitters based polymethyl methacrylate films endowed an in situ regulation of the dual-emissive characteristics. With the ratiometric regulation of phosphorescence by external stimuli and stable fluorescence as internal reference, highly controllable luminescent color tuning (yellow to blue including white emission) was achieved. There properties together with a persistent luminous behavior is of benefit for an irreplaceable set of optical information combination, featuring an ultrahigh-security anti-counterfeiting ability. Our research introduces a concept of eliminating the crystal-form and molecular-conformational dependence of complex luminescent properties through emitter molecular design. This has profound implications for the development of functional materials.

14.
Adv Healthc Mater ; 13(1): e2301726, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37670419

ABSTRACT

Core-shell structured nanocarriers have come into the scientific spotlight in recent years due to their intriguing properties and wide applications in materials chemistry, biology, and biomedicine. Tailored core-shell structures to achieve desired performance have emerged as a research frontier in the development of smart drug delivery system. However, systematic reviews on the design and loading/release mechanisms of stimulus-responsive core-shell structured nanocarriers are uncommon. This review starts with the categories of core-shell structured nanocarriers with different means of drug payload, and then highlights the controlled release mechanism realized through stimulus-response processes triggered under different environments. Finally, some multifaceted perspectives on the design of core-shell structured materials as drug carriers are addressed. This work aims to provide new enlightenments and prospects in the drug delivery field for further developing advanced and smart nanocarriers.


Subject(s)
Drug Delivery Systems , Nanoparticles , Drug Carriers/chemistry , Nanoparticles/chemistry
15.
Macromol Rapid Commun ; 45(3): e2300538, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37877956

ABSTRACT

The continuous advancement of luminescent materials has placed increasingly stringent requirements on dynamic color-tunable ultralong room-temperature phosphorescence (URTP) materials that can respond to external stimuli. Nevertheless, endowing URTP materials with stimuli-response-induced dynamic color tuning is a challenging task. This study introduces a carbon dots (CDs)@LiCl-polyacrylamide (PAM) polymer system that switches from URTP to fluorescence under humidity stimuli, accompanied by a transition from rigidity to flexibility. The obtained rigid CDs@LiCl-PAM exhibits ultralong green phosphorescence with a lifetime of 560 ms in the initial state. After absorbing moisture, it becomes flexible and its phosphorescence switches off. Moreover, the emission of the CDs@LiCl-PAM film depends on the excitation wavelength. This property can potentially used in multicolored luminescence applications and displays. Moreover, multicolor luminescent patterns can be constructed in situ using the water-absorption ability of the obtained thin film and the Förster resonance energy-transfer strategy. The proposed strategy is expected to promote the interdisciplinary development of intelligent information encryption, anti-counterfeiting, and smart flexible display materials.


Subject(s)
Acrylic Resins , Smart Materials , Humidity , Temperature , Carbon
16.
J Am Chem Soc ; 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37907829

ABSTRACT

Polymer dots (PDs) have raised considerable research interest due to their advantages of designable nanostructures, high biocompatibility, versatile photoluminescent properties, and recyclability as nanophase. However, there remains a lack of in situ, real-time, and noncontact methods for synthesizing PDs. Here we report a rational strategy to synthesize PDs through a well-designed single-component precursor (an asymmetrical donor-acceptor-donor' molecular structure) by photoirradiation at ambient temperature. In contrast to thermal processes that normally lack atomic economy, our method is mild and successive, based on an aggregation-promoted sulfonimidization triggered by photoinduced delocalized intrinsic radical cations for polymerization, followed by photooxidation for termination with structural shaping to form PDs. This synthetic approach excludes any external additives, rendering a conversion rate of the precursor exceeding 99%. The prepared PDs, as a single entity, can realize the integration of nanocore luminescence and precursor-transferred luminescence, showing 41.5% of the total absolute luminescence quantum efficiency, which is higher than most reported PD cases. Based on these photoluminescent properties, together with the superior biocompatibility, a unique membrane microenvironmental biodetection could be exemplified. This strategy with programming control of the single precursor can serve as a significant step toward polymer nanomanufacturing with remote control, high-efficiency, precision, and real-time operability.

17.
Nat Commun ; 14(1): 7027, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37919277

ABSTRACT

The past decade has witnessed rapid progress in deep learning for molecular design, owing to the availability of invertible and invariant representations for molecules such as simplified molecular-input line-entry system (SMILES), which has powered cheminformatics since the late 1980s. However, the design of elemental components and their structural arrangement in solid-state materials to achieve certain desired properties is still a long-standing challenge in physics, chemistry and biology. This is primarily due to, unlike molecular inverse design, the lack of an invertible crystal representation that satisfies translational, rotational, and permutational invariances. To address this issue, we have developed a simplified line-input crystal-encoding system (SLICES), which is a string-based crystal representation that satisfies both invertibility and invariances. The reconstruction routine of SLICES successfully reconstructed 94.95% of over 40,000 structurally and chemically diverse crystal structures, showcasing an unprecedented invertibility. Furthermore, by only encoding compositional and topological data, SLICES guarantees invariances. We demonstrate the application of SLICES in the inverse design of direct narrow-gap semiconductors for optoelectronic applications. As a string-based, invertible, and invariant crystal representation, SLICES shows promise as a useful tool for in silico materials discovery.

18.
Chem Soc Rev ; 52(21): 7389-7460, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37743823

ABSTRACT

Photothermal regulation concerning solar harvesting and repelling has recently attracted significant interest due to the fast-growing research focus in the areas of solar heating for evaporation, photocatalysis, motion, and electricity generation, as well as passive cooling for cooling textiles and smart buildings. The parallel development of photothermal regulation strategies through both material and system designs has further improved the overall solar utilization efficiency for heating/cooling. In this review, we will review the latest progress in photothermal regulation, including solar heating and passive cooling, and their manipulating strategies. The underlying mechanisms and criteria of highly efficient photothermal regulation in terms of optical absorption/reflection, thermal conversion, transfer, and emission properties corresponding to the extensive catalog of nanostructured materials are discussed. The rational material and structural designs with spectral selectivity for improving the photothermal regulation performance are then highlighted. We finally present the recent significant developments of applications of photothermal regulation in clean energy and environmental areas and give a brief perspective on the current challenges and future development of controlled solar energy utilization.

19.
ChemSusChem ; 16(24): e202300545, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37624778

ABSTRACT

The advancement of electron transport layer (ETL)-free perovskite solar cells (PSCs) is crucial for the commercialization of PSCs. At present, the slow electron extraction and significant carrier recombination, related to the energy-level alignment at the FTO/perovskite interface, restrict the performance of ETL-free PSCs. The facile modification of bottom electrodes is pivotal for tackling these issues and stimulating the photovoltaic potential of perovskite. Herein, a cost-competitive and neoteric 1-hydroxyethyl-3-methylimidazolium chloride, [HOEtMIM]Cl, ionic liquid is employed to modify the surface of rigid and flexible electrodes, and thus enable an energetically well-aligned interface with perovskite layer via the electric dipole effects. The resulting barrier-free FTO/perovskite contact can tremendously ameliorate the electron extraction and collection, with mitigated nonradiative interfacial carrier recombination loss. Additionally, the lone pair on the nitrogen of the imidazole group passivates the surface defects of perovskite layers, and the chloride anion plays a role in the crystallinity improvement of perovskite. Leveraged by the [HOEtMIM]Cl modification, the resulting ETL-free rigid and flexible devices deliver an outstanding power conversion efficiency of 19.60 % and 15.57 %, along with the ameliorated hysteresis and long-term tenability. This finding highlights the drastic potential of the engineered [HOEtMIM]Cl in manufacturing stable and high-performance ETL-free PSCs for their scaled-up production.

20.
Front Nutr ; 10: 1156029, 2023.
Article in English | MEDLINE | ID: mdl-37485393

ABSTRACT

Introduction: Intrauterine malnutrition impairs embryo kidney development and leads to kidney disease and hypertension in adulthood, yet the underlying mechanism remains unclear. Methods: With a maternal protein restriction (MPR) rat model, we investigated the critical ciliogenesis factors and ß-catenin pathway in FGR fetal kidneys and analyzed the impact of aberrant primary cilia on renal tubular epithelium. Results: The data showed decreased nephron number and renal tubular dysgenesis in FGR fetus. FGR fetus showed deregulated expression of ciliogenesis factors including upregulation of IFT88 and downregulation of DYNLT1, accompanied with cilia elongation in renal tubular epithelial cells. Wnt7b, the key ligand for Wnt/ß-catenin signaling, was downregulated and nuclear translocation of ß-catenin was decreased. The proapoptotic protein was upregulated. In vitro study with HK-2 cells showed that overexpression of IFT88 lengthened the cilia, inhibited ß-catenin signaling. Besides, IFT88 overexpression suppressed cell proliferation, activated autophagy, and induced cell apoptosis. Inhibition of autophagy partly restored the cilia length and cell viability. Likewise, knockdown of DYNLT1 led to cilia elongation, suppressed cell proliferation, and promoted apoptosis in HK-2 cell. However, the cilia elongation induced by DYNLT1 knockdown was not autophagy-dependent, but associated with reactive oxygen species (ROS) accumulation. Discussion: We elucidated that intrauterine protein malnutrition led to deregulation of ciliogenesis factors and cilia elongation in renal tubular epithelial, inhibited ß-catenin signaling, and induced cell apoptosis and ultimately, compromised kidney development.

SELECTION OF CITATIONS
SEARCH DETAIL