Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.721
Filter
1.
Neural Regen Res ; 20(2): 402-415, 2025 Feb 01.
Article in English | MEDLINE | ID: mdl-38819044

ABSTRACT

With an increase in global aging, the number of people affected by cerebrovascular diseases is also increasing, and the incidence of vascular dementia-closely related to cerebrovascular risk-is increasing at an epidemic rate. However, few therapeutic options exist that can markedly improve the cognitive impairment and prognosis of vascular dementia patients. Similarly in Alzheimer's disease and other neurological disorders, synaptic dysfunction is recognized as the main reason for cognitive decline. Nitric oxide is one of the ubiquitous gaseous cellular messengers involved in multiple physiological and pathological processes of the central nervous system. Recently, nitric oxide has been implicated in regulating synaptic plasticity and plays an important role in the pathogenesis of vascular dementia. This review introduces in detail the emerging role of nitric oxide in physiological and pathological states of vascular dementia and summarizes the diverse effects of nitric oxide on different aspects of synaptic dysfunction, neuroinflammation, oxidative stress, and blood-brain barrier dysfunction that underlie the progress of vascular dementia. Additionally, we propose that targeting the nitric oxide-sGC-cGMP pathway using certain specific approaches may provide a novel therapeutic strategy for vascular dementia.

2.
Neural Regen Res ; 20(1): 277-290, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-38767492

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202501000-00035/figure1/v/2024-05-14T021156Z/r/image-tiff Our previous study found that rat bone marrow-derived neural crest cells (acting as Schwann cell progenitors) have the potential to promote long-distance nerve repair. Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication. Nevertheless, the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear. To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves, we collected conditioned culture medium from hypoxia-pretreated neural crest cells, and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation. The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells. We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells. Subsequently, to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons, we used a microfluidic axonal dissociation model of sensory neurons in vitro, and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons, which was greatly dependent on loaded miR-21-5p. Finally, we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb, as well as muscle tissue morphology of the hind limbs, were obviously restored. These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p. miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome. This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves, and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.

3.
Neural Regen Res ; 20(6): 1665-1680, 2025 Jun 01.
Article in English | MEDLINE | ID: mdl-39104097

ABSTRACT

Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a slow process, partly due to the difficulty of delivering drugs effectively. Nanoparticles, with their targeted delivery capabilities, biocompatibility, and enhanced bioavailability over conventional drugs, are garnering attention for spinal cord injury treatment. This review explores the current mechanisms and shortcomings of existing treatments, highlighting the benefits and progress of nanoparticle-based approaches. We detail nanoparticle delivery methods for spinal cord injury, including local and intravenous injections, oral delivery, and biomaterial-assisted implantation, alongside strategies such as drug loading and surface modification. The discussion extends to how nanoparticles aid in reducing oxidative stress, dampening inflammation, fostering neural regeneration, and promoting angiogenesis. We summarize the use of various types of nanoparticles for treating spinal cord injuries, including metallic, polymeric, protein-based, inorganic non-metallic, and lipid nanoparticles. We also discuss the challenges faced, such as biosafety, effectiveness in humans, precise dosage control, standardization of production and characterization, immune responses, and targeted delivery in vivo. Additionally, we explore future directions, such as improving biosafety, standardizing manufacturing and characterization processes, and advancing human trials. Nanoparticles have shown considerable progress in targeted delivery and enhancing treatment efficacy for spinal cord injuries, presenting significant potential for clinical use and drug development.

4.
Food Funct ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140384

ABSTRACT

Resveratrol is a non-flavonoid polyphenolic compound with numerous functional properties, such as anticancer, anti-inflammation, anti-oxidation, anti-obesity and more. However, resveratrol's poor solubility within aqueous media and low stability usually lead to compromised bioavailability, ultimately limiting its uptake and applications. Nanodelivery technologies have been studied intensively due to their potential in effectively improving resveratrol properties, thereby providing promising solutions for enhancing the bioavailability of resveratrol. Thus, this article aimed to review the recent advances of resveratrol nanodelivery systems, specifically on the types of nanodelivery systems, the corresponding preparation principles, advantages, as well as potential limitations associated. Meanwhile, studies have also found that coupled with nanodelivery systems, the functional properties of resveratrol could trigger apoptosis in cancer cells and inflammatory cells through various signaling pathways. Therefore, this article will also lead into discussions on the application aspects of resveratrol nanodelivery systems, emphasizing toward the fields of biomedical and food sciences. Potential pitfalls of resveratrol nanodelivery systems, such as issues with toxicity and target release, as well as outlooks regarding resveratrol nanodelivery systems are included in the Conclusion section, in the hope to provide insights for relevant future research.

5.
Front Microbiol ; 15: 1443119, 2024.
Article in English | MEDLINE | ID: mdl-39135875

ABSTRACT

Porcine circovirus 4 (PCV4) was first identified in 2019, categorized within the genus Circovirus in the family Circoviridae. To date, the virus has not been isolated from clinical samples. Meanwhile, many aspects of the biology and pathogenic mechanisms of PCV4 infection remain unknown. In this study, PCV4 was successfully rescued from an infectious clone. We utilized a PCV4 virus stock derived from this infectious clone to intranasally inoculate 4-week-old specific-pathogen-free piglets to evaluate PCV4 pathogenesis. The rescued PCV4 was capable of replicating in both PK-15 cells and piglets, with the virus detectable in nearly all collected samples from the challenge groups. Pathological lesions and PCV4-specific antigens were observed in various tissues and organs, including the lungs, kidneys, lymph nodes, spleen, and liver, in the inoculated piglets. Additionally, the levels of pro-inflammatory cytokines in the serum of the PCV4-inoculated group were significantly elevated compared to the control group, indicating that the induced inflammatory response may contribute to tissue damage associated with PCV4 infection. These findings offer new insights into the pathogenesis and inflammatory responses associated with PCV4-related diseases.

6.
Ageing Res Rev ; : 102452, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39127445

ABSTRACT

Lactate, a byproduct of glycolysis, was considered as a metabolic waste until identified by studies on the Warburg effect. Increasing evidence elucidates that lactate functions as energy fuel, signaling molecule, and donor for protein lactylation. Altered lactate utilization is a common metabolic feature of the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. This review offers an overview of lactate metabolism from the perspective of production, transportation and clearance, and the role of lactate in neurodegenerative progression, as well as a summary of protein lactylation and the signaling function of lactate in neurodegenerative diseases. Besides, this review delves into the dual roles of changed lactate metabolism during neurodegeneration and explores prospective therapeutic methods targeting lactate. We propose that elucidating the correlation between lactate and neurodegeneration is pivotal for exploring innovative therapeutic interventions for neurodegenerative diseases.

7.
Ann Surg Oncol ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39128976

ABSTRACT

BACKGROUND: Laparoscopic segment 7 resection has been a technically challenging procedure (Li et al. in J Gastrointest Surg 23:1084-1085, 2019). We introduce a dorsal approach with in situ split for laparoscopic segment 7 resection. PATIENT AND METHODS: The patient was a 26-year-old male diagnosed with hepatic focal nodular hyperplasia located in segment 7. The lesion, measuring approximately 6.7 cm × 5.7 cm, was close to the right caudate lobe. Firstly, the segment 7 pedicle was exposed through the Rouviere's groove combined with caudate lobe-first approach, followed by clipping to confirm demarcation. Peripheral parenchymal transection at the dorsal side started and the intersegmental vein between segments 6 and 7 was found. Dissection of this vein towards its root proceeded preferentially at the dorsal side. Then the segment 7 pedicle was cut off, followed by parenchymal transection toward the cranial side to find the trunk of the compressed right hepatic vein (RHV). It was further dissociated from the trunk to periphery, exposing and cutting off its branches draining segment 7. The remaining parenchyma at the cranioventral side was subsequently separated along the exposed RHV. Finally, the resection of segment 7 was accomplished by dividing the right perihepatic ligaments. RESULTS: The operative time was 395 min with the estimated blood loss of 500 ml. The patient did not receive perioperative blood transfusion. The patient was discharged on tenth postoperative day following suture removal without experiencing any postoperative bleeding, hepatic failure, or other complications. CONCLUSION: Dorsal approach combined with in situ split for laparoscopic segment 7 resection is feasible and has certain advantages (Cao et al. in Surg Endosc 35:174-181, 2021; Liu et al. in Surg Oncol 38:101575, 2021; Yang et al. in Surg Endosc 37:1334-1341, 2023). Further investigations are required due to some limitations.

8.
Article in English | MEDLINE | ID: mdl-39132713

ABSTRACT

Metal-organic frameworks (MOFs) are composite crystalline materials created through the coordination of metal ions and organic ligands. MOFs have attracted extensive attention in the biomedical field based on the advantages of internal porosity, customizable porosity, and facile surface modification. This review examines the utilization of MOFs in drug delivery systems, focusing on the research progress from the aspects of coloading drug systems, intelligent responsive carriers, biological macromolecule stabilizers, self-driving micro/nanomotors, and multifunctional living carriers. In addition, the current challenges the research faces are also discussed. The review aims to provide a reference for the further application of MOFs as advanced drug delivery systems.

9.
Food Res Int ; 192: 114778, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147466

ABSTRACT

Fermentation can transform bioactive compounds in food and improve their biological activity. This study aims to explore the transformation of polyphenols in mulberry juice and the improvement of its anti-aging effect. The results demonstrated that Lactobacillus plantarum SC-5 transformed anthocyanin in mulberry juice into more phenolic acids, especially improved 2-hydroxy-3-(4-hydroxyphenyl) propanoic acid from 4.16 ± 0.06 to 10.07 ± 0.03. In the D-gal-induced mouse model, fermented mulberry juice significantly raised the abundance of Bifidobacteriaceae (303.7 %) and Lactobacillaceae (237.2 %) and Short-chain fatty acids (SCFAs) in intestine, further reducing the level of oxidative stress (12.3 %). Meanwhile, the expression of Sirtuin 1 (SIRT1) and Brain-derived neurotrophic factor (BDNF) increased, which protected the integrity of hippocampal tissue. Morris water maze results approved that fermented mulberry juice improved cognitive ability in aging mice (30.3 %). This study provides theoretical support for the view that fermentation is an effective means of developing functional foods.


Subject(s)
Fermentation , Hydroxybenzoates , Lactobacillus plantarum , Morus , Polyphenols , Animals , Morus/chemistry , Polyphenols/pharmacology , Lactobacillus plantarum/metabolism , Hydroxybenzoates/pharmacology , Mice , Male , Fruit and Vegetable Juices , Aging/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Gastrointestinal Microbiome/drug effects , Anthocyanins/pharmacology , Oxidative Stress/drug effects , Fatty Acids, Volatile/metabolism , Sirtuin 1
10.
Int J Biol Macromol ; 277(Pt 4): 134419, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39097060

ABSTRACT

In this study, a carboxymethylated Anemarrhena asphodeloides polysaccharide (CM-AARP) with an molecular weight (Mw) of 7.8 × 104 Da was obtained. CM-AARP was composed of four monosaccharides including d-mannose, d-glucose, d-galactose, and l-arabinose. Nuclear magnetic resonance (NMR) spectra revealed that the skeleton of CM-AARP was identical to that of AARP. Compared with AARP, CM-AARP had a superior inhibition effect on the gelatinization of wheat starch (WS) under the same condition. The addition of CM-AARP and AARP at 12 % enhanced the gelatinization temperature (60.47 ± 1.30 °C) of WS to 73.88 ± 0.49 °C and 69.75 ± 0.52 °C, respectively. CM-AARP could maintain the crystal structure of WS during gelatinization, the relative crystallinity with the 12 % CM-AARP addition was determined as 29.18 % ± 1.49 %, exceeding that of pure WS at 21.96 % ± 0.66 %. Moreover, CM-AARP influenced the rheological behavior of the gelatinized WS by reducing the viscosity and improving the fluidity. The results suggested that CM-AARP played an essential role in starch gelatinization and was a potential stabilizer in the starch-based food industry.

11.
Heliyon ; 10(13): e33432, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39040396

ABSTRACT

In recent years, the epidemiological profile of Getah virus (GETV) has become increasingly serious, posing a huge threat to animal and public health in China. GETV can cause multi-species infection, including horses, pigs, rats, cattle, kangaroos, reptiles and birds. However, there were few reports on the efficiency of the virus entering the host via routes of different systems. In the present study, a GETV strain (SC201807) was obtained from a piglet's blood in 2018 in Sichuan, China. First, we established a quantitative real-time polymerase chain reaction (qRT-PCR) SYBR assay specific to GETV. Then, we evaluated the infection efficiency of different routes using mouse animal model. 108 male mice were randomly divided into four groups as follows: intramuscular, intraoral and intranasal infection routes, and negative control. All mice in the experimental group were inoculated with 4 × 102.85 TCID50 GETV virus. Tissue tropism experiments show that GETV has a wide range of tissue distribution, and intramuscular infection is the first to infect all tissues of the body, and suggest that oral infection may be a new GETV transmission route. Histopathological examination results showed that intramuscular injection of GETV mainly caused different degrees of pathological damage to the tissues, and could rapidly induce a large amount of inflammatory regulatory factors such as IL-6 and TNF-α. Our data may help us to evaluate the risk of transmission of Porcine Getah virus and provide an experimental basis for the prevention and control of Porcine Getah virus.

12.
Front Neurol ; 15: 1382534, 2024.
Article in English | MEDLINE | ID: mdl-39036637

ABSTRACT

Primary familial brain calcification (PFBC), also known as Fahr's disease, is a central nervous system calcium deposition disorder with symmetrical basal ganglia calcification. Most PFBC cases are caused by SLC20A2 gene variant. We report a Chinese female patient with PFBC and dopamine-responsive parkinsonism who had motor fluctuations and dyskinesia and recovered effectively after symptomatic medication adjustment. A novel heterozygous missense variant was found by whole-exome sequencing and proven harmful by family validation and genetic analysis. This example expands the phenotype of SLC20A2-associated PFBC patients and shows the clinical efficacy of dopaminergic replacement treatment.

13.
J Asian Nat Prod Res ; : 1-28, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958647

ABSTRACT

The SwissTargetPrediction was employed to predict the potential drug targets of the active component of Si-Miao-Yong-An decoction (SMYAD). The therapeutic targets for HF were searched in the Genecard database, and Cytoscape3.9.1 software was used to construct the "drug-component-target-disease network" diagram. In addition, the String platform was used to construct Protein-Protein Interaction (PPI) network, and the DAVID database was used for GO and KEGG analysis. AutoDockTools-1.5.6 software was used for molecular docking verification. Network pharmacology studies have shown that AKT 1, ALB, and CASP 3 are the key targets of action of SMYAD against heart failure. The active compounds are quercetin and kaempferol.

14.
Aging Ment Health ; : 1-13, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946249

ABSTRACT

OBJECTIVES: To systematically evaluate the effects of telehealth interventions on the caregiver burden and mental health of caregivers for people with dementia (PWD). METHOD: Relevant randomized controlled trials (RCTs) of telehealth interventions on caregivers were extracted from nine electronic databases (PubMed, The Cochrane Library, Web of Science, Embase, CINAHL, SinoMed, CNKI, WanFang, and VIP). The retrieval time was from inception to 26 July 2023. RESULTS: Twenty-two articles with 2132 subjects were included in the final analysis. The meta-analysis demonstrated that telehealth interventions exerted a significant effect in reducing caregiver burden (SMD: -0.14, 95 % CI: -0.25, -0.02, p = 0.02), depression (SMD = -0.17; 95%CI: -0.27, -0.07, p < 0.001) and stress (SMD = -0.20, 95%CI: -0.37, -0.04, p = 0.01). However, no statistically significant effect was observed on anxiety (SMD = -0.12, 95%CI: -0.27, 0.03, p = 0.12). Moreover, subgroup analysis showed that tailored interventions were associated with more evident reductions in depression (SMD = -0.26; 95%CI: -0.40, -0.13, p < 0.001) than standardized interventions (SMD = -0.08; 95%CI: -0.22, 0.06, p = 0.25). In addition, telehealth was effective in relieving depression in Internet-based (SMD = -0.17, 95%CI: -0.30, -0.03, p = 0.01) and Telephone-based group (SMD = -0.18, 95%CI: -0.34, -0.02, p = 0.03), while there was no significant difference in the Internet and Telephone-based group (SMD = -0.18, 95%CI: -0.54, 0.18, p = 0.32). CONCLUSION: Telehealth could effectively reduce the burden and relieve the depression and stress of caregivers of PWD, while its effect on anxiety requires further research. Overall, telehealth has potential benefits in dementia care.

15.
CNS Neurosci Ther ; 30(7): e14820, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38948947

ABSTRACT

AIMS: To investigate the alterations of the optic nerve and visual cortex in dysthyroid optic neuropathy (DON), a subgroup of thyroid eye disease (TED). METHODS: Multiple orbital imaging biomarkers related to optic nerve compression and the amplitude of low-frequency fluctuations (ALFF) of the brain were obtained from 47 patients with DON, 56 TED patients without DON (nDON), and 37 healthy controls (HC). Correlation analyses and diagnostic tests were implemented. RESULTS: Compared with HC, the nDON group showed alterations in orbital imaging biomarkers related to optic nerve compression in posterior segments, as well as ALFF of the right inferior temporal gyrus and left fusiform gyrus. DON differed from nDON group mainly in the modified muscle index of the posterior segment of optic nerve, and ALFF of orbital part of right superior frontal gyrus, right hippocampus, and right superior temporal gyrus. Orbital and brain imaging biomarkers were significantly correlated with each other. Diagnostic models attained an area under a curve of 0.80 for the detection of DON. CONCLUSION: The combined orbital and brain imaging study revealed alterations of the visual pathway in patients with TED and DON as well as provided diagnostic value. The initiation of alterations in the visual cortex in TED may precede the onset of DON.


Subject(s)
Graves Ophthalmopathy , Magnetic Resonance Imaging , Optic Nerve Diseases , Visual Cortex , Humans , Male , Female , Middle Aged , Graves Ophthalmopathy/diagnostic imaging , Graves Ophthalmopathy/complications , Visual Cortex/diagnostic imaging , Adult , Magnetic Resonance Imaging/methods , Optic Nerve Diseases/diagnostic imaging , Orbit/diagnostic imaging , Optic Nerve/diagnostic imaging , Aged
16.
Crit Rev Food Sci Nutr ; : 1-15, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950560

ABSTRACT

In cereals, the protein body and protein matrix are usually two morphological protein structures. However, processing treatments can affect protein structures, change protein bodies into the matrix, or induce a change in the matrix structure; therefore, the processing-induced matrix was listed as the third morphological structure of the protein. Previous research on the effect of proteins was mainly based on protein content and composition, but these studies arrived at different conclusions. Studying the effect of protein morphological structures on sensorial property and starch digestion can provide a theoretical basis for selecting cultivars with high sensorial property and help produce low-glycemic index foods for people with diabetes, controlling their postprandial blood sugar. This study aimed to review the distribution and structure of protein bodies, protein matrices, and processing-induced matrices, as well as their influence on cereal sensorial property and starch digestion. Therefore, we determined the protein morphological structures in different cereal cultivars and summarized its impact. Protein bodies mainly have steric stabilization effects on starch gelatinization, whereas the protein matrix serves as a physical barrier surrounding the starch to inhibit water absorption and α-amylase. Processing can change protein morphological structures, enabling protein bodies to act as a physical matrix barrier.

17.
Animals (Basel) ; 14(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38998118

ABSTRACT

The selection of proper reference genes is vital for ensuring precise quantitative real-time PCR (qPCR) assays. This study evaluates the stability of the expression of nine candidate reference genes in different tissues and during testicular development in H. labeo. The results show that eef1a is recommended as a reference gene for qPCR analysis in tissues and during testicular development. Furthermore, we evaluated the optimal number of reference genes needed when calculating gene expression levels using the geomean method, revealing that two reference genes are sufficient. Specifically, eef1a and rps27 are recommended for analysis of gene expression in tissues, whereas eef1a and actb are advised for evaluating gene expression during testicular development. In addition, we examined the expression pattern of kifc1, a kinesin involved in the reshaping of spermatids. We detected peak expression levels of kifc1 in testes, with its expression initially increasing before decreasing throughout testicular development. The highest expression of kifc1 was observed in stage IV testes, the active period of spermiogenesis, suggesting a possible role for kifc1 in the regulation of the reshaping of spermatids and hence testicular development. This study represents the first investigation of reference genes for H. labeo, providing a foundation for studying gene expression patterns and investigating gene expression regulation during testicular development.

18.
Anal Chim Acta ; 1318: 342918, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39067912

ABSTRACT

Pseudorabies viruses (PRV) pose a major threat to the global pig industry and public health. Rapid, intuitive, affordable, and accurate diagnostic testing is critical for controlling and eradicating infectious diseases. In this study, a portable detection platform based on RPA-CRISPR/EsCas13d was developed. The platform exhibits high sensitivity (1 copy/µL), good specificity, and no cross-reactivity with common pathogens. The platform uses rapid preamplification technology to provide visualization results (lateral flow assays or visual fluorescence) within 1 h. Fifty pig samples (including tissues, oral fluids, and serum) were tested using this platform and real-time quantitative polymerase chain reaction (qPCR), showing 34.0 % (17 of 50) PRV positivity with the portable CRISPR/EsCas13d dual-readout platform, consistent with the qPCR results. These results highlight the stability, sensitivity, efficiency, and low equipment requirements of the portable platform. Additionally, a novel point-of-care test is being developed for clinical use in remote rural and resource-limited areas, which could be a prospective measure for monitoring the progression of pseudorabies and other infectious diseases worldwide.


Subject(s)
CRISPR-Cas Systems , Herpesvirus 1, Suid , Herpesvirus 1, Suid/genetics , Herpesvirus 1, Suid/isolation & purification , Animals , Swine , CRISPR-Cas Systems/genetics , Pseudorabies/diagnosis , Pseudorabies/virology , Swine Diseases/virology , Swine Diseases/diagnosis
19.
Medicine (Baltimore) ; 103(30): e39086, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058847

ABSTRACT

RATIONALE: Severe congenital neutropenia (SCN) is a rare and heterogeneous genetic disease. By describing the diagnosis and treatment of a child with SCN and periodontitis, this case provides a reference for the oral health management of a child with SCN and periodontitis. PATIENT CONCERNS: We describe a boy with clinical manifestations of oral bleeding, neutropenia, recurrent fever, and other recurrent infections. The absolute neutrophil count (ANC) was <0.50 × 109/L most of the time. Morphological examination of bone marrow cells showed active granulocyte hyperplasia and dysmaturation. DIAGNOSES: According to the clinical manifestations, hematological examination and gene detection results, the child was diagnosed as SCN with chronic periodontitis. INTERVENTIONS: Periodontal treatment was performed after informed consent was obtained from the child guardian. These included supragingival and subgingival cleaning, hydrogen peroxide and saline irrigation, placement of iodoglycerin in the gingival sulcus, and oral hygiene instruction. Hematopoietic stem cell transplantation (HSCT) was performed later. OUTCOMES: One month after initial periodontal treatment, oral hygiene was well maintained and gingival swelling had subsided. Probing depth (PD) index on periodontal probing and bleeding was significantly reduced. However, there was no significant change in blood routine and other indicators before and after periodontal treatment. CONCLUSION: Once SCN is diagnosed, individualized treatment plans can be developed according to the characteristics of the disease and its impact on oral health, which can effectively control the interaction between SCN and periodontal disease and reduce the occurrence of serious infection.


Subject(s)
Congenital Bone Marrow Failure Syndromes , Neutropenia , Humans , Male , Neutropenia/congenital , Neutropenia/therapy , Neutropenia/diagnosis , Congenital Bone Marrow Failure Syndromes/complications , Congenital Bone Marrow Failure Syndromes/diagnosis , Child , Oral Health , Chronic Periodontitis/therapy , Chronic Periodontitis/complications , Chronic Periodontitis/diagnosis , Oral Hygiene , Hematopoietic Stem Cell Transplantation/methods , Periodontitis/therapy , Periodontitis/complications
20.
Biomed Pharmacother ; 177: 117038, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39002441

ABSTRACT

INTRODUCTION: Dexmedetomidine (DEX), a highly selective α2-adrenergic receptor agonist, is widely used for sedation and anesthesia in patients undergoing hepatectomy. However, the effect of DEX on autophagic flux and liver regeneration remains unclear. OBJECTIVES: This study aimed to determine the role of DEX in hepatocyte autophagic flux and liver regeneration after PHx. METHODS: In mice, DEX was intraperitoneally injected 5 min before and 6 h after PHx. In vitro, DEX was co-incubated with culture medium for 24 h. Autophagic flux was detected by LC3-II and SQSTM1 expression levels in primary mouse hepatocytes and the proportion of red puncta in AML-12 cells transfected with FUGW-PK-hLC3 plasmid. Liver regeneration was assessed by cyclinD1 expression, Edu incorporation, H&E staining, ki67 immunostaining and liver/body ratios. Bafilomycin A1, si-GSK3ß and Flag-tagged GSK3ß, α2-ADR antagonist, GSK3ß inhibitor, AKT inhibitor were used to identify the role of GSK3ß in DEX-mediated autophagic flux and hepatocyte proliferation. RESULTS: Pre- and post-operative DEX treatment promoted liver regeneration after PHx, showing 12 h earlier than in DEX-untreated mice, accompanied by facilitated autophagic flux, which was completely abolished by bafilomycin A1 or α2-ADR antagonist. The suppression of GSK3ß activity by SB216763 and si-GSK3ß enhanced the effect of DEX on autophagic flux and liver regeneration, which was abolished by AKT inhibitor. CONCLUSION: Pre- and post-operative administration of DEX facilitates autophagic flux, leading to enhanced liver regeneration after partial hepatectomy through suppression of GSK3ß activity in an α2-ADR-dependent manner.


Subject(s)
Autophagy , Dexmedetomidine , Glycogen Synthase Kinase 3 beta , Hepatectomy , Hepatocytes , Liver Regeneration , Mice, Inbred C57BL , Animals , Dexmedetomidine/pharmacology , Liver Regeneration/drug effects , Autophagy/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , Mice , Male , Hepatocytes/drug effects , Hepatocytes/metabolism , Cell Proliferation/drug effects , Adrenergic alpha-2 Receptor Agonists/pharmacology , Liver/drug effects , Proto-Oncogene Proteins c-akt/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL