Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37721520

ABSTRACT

Pecan (Carya illinoinensis) is an important economic forest crops widely cultivated in China. From June to September in both 2021 and 2022, severe leaf disease resembling anthracnose was observed in 6.6-ha pecan orchard in Jintan (31°42'23.84″ N, 119°21'22.90″ E), Jiangsu Province. The disease severity was about 15 to 25% with 5 to 12% incidence on 100 surveyed trees of the orchard in 2022. Symptoms initially appeared as small gray-bark sunken lesions, which gradually developed to big sunken lesions with brown edges and irregular-shaped. Small fragments (4 × 4 mm) from the necrotic borders of infected leaves were surfaced sterilized, plated on potato dextrose agar (PDA) and then incubated in darkness at 25°C for 3 days. Pure cultures were obtained by monosporic isolation. Twenty-one isolates with similar characteristics were obtained from the infected leaves (isolation frequency about 90%). The upper side of colonies on the PDA plates was milky, and the reverse side was pale yellow at the center and pale white at the margin. After 10 days of growth on the PDA medium, these isolates produced spores separately. . Through electron microscopic observation, conidia were smooth walled, hyaline, aseptate, guttulate, cylindrical with rounded ends with 15 to 20.5 × 5.3 to 6.7 µm (mean 18.5 × 5.8 µm, n = 50) in size. These morphological characteristics were similar to those of the species of Colletotrichumspp (Weir et al. 2012, Fu et al. 2019). To further identify the isolates, the regions of internal transcribed spacer (ITS), actin (ACT), calmodulin (CAL), chitin synthase (CHSI), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and beta-tubulin 2 (TUB2) loci of the three representative isolates (JSJT-1, JSJT-2, and JSJT-3) were amplified and sequenced with the primer pairs ITS-1F/ITS-4, ACT-512F/ACT-783R, CL1/CL2A, CHS-79F/CHS-345R, GDF/GDR and T1/T2 primers, respectively (Weir et al. 2012). Sequences of them were deposited in GenBank under nos. OR214960 to OR214962 (ITS), OR228543 to OR228545 (ACT),OR228546 to OR228548 (CAL), OR228549 to OR228551 (CHSI), OR228552 to OR228554 (GAPDH), and OR228555 to OR228557 (TUB2). Multilocus phylogenetic analysis revealed that the three isolates and C. aenigma were clustered in the same clade. Based on the results of morphological and molecular analysis, these isolates were identified as C. aenigma. The pathogenicity of three isolates was tested on leaves of pecan seedlings. Suspensions of conidia were obtained by scraping the surface of a 10-day-old sporulated petri dish PDA cultures into sterile water. Suspensions were adjusted to a density of 2 × 106 conidia/ml with a hemocytometer.The conidial suspension of each isolate was sprayed evenly on the surface of leaves from three healthy pecan seedlings. Sterilized distilled water was used for negative controls. The pathogenicity experiment was repeated three times. Finally, all inoculated plants were kept in a light-incubator at 28°C under 100% relative humidity and 12 h photoperiod. Two weeks after inoculation, the inoculated plants developed symptoms similar to those of the original diseased plants, while controls remained asymptomatic. C. aenigma were re-isolated from from inoculated leaves. C. aenigma has been reported as the causal agent of anthracnose on several economically important plants, such as grape ( Kim et al. 2021), tree peonies (Wang et al.2023), chili (Diao et al. 2017), and pear (Fu et al. 2019), but this is the first report of C. aenigma causing anthracnose on pecan in China. Identification of C. aenigma as a pathogen of pecan is important for implementing control management strategies for pecan disease. References: Diao, Y. Z., et al. 2017. Persoonia. 38:20. Fu, M., et al. 2019. Persoonia. 42:1. Kim, J. S., et al. 2021. Plant Dis. 105:2729. Weir, B. S., et al. 2012. Stud. Mycol.. 73:115. Wang, Y. L., et al. 2023. Plant Dis. 107(4):1242. The author(s) declare no conflict of interest. Keywords: Colletotrichum aenigma, Anthracnose, Carya illinoinensis, Pathogenicity.

2.
Plant Dis ; 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37642550

ABSTRACT

Pecan (Carya illinoinensis) is one of the important economic forest crops widely cultivated in Jiangsu Provinces, China. From August to September in both 2021 and 2022, a foliar blight was observed in 7-ha and 6-ha pecan orchards in Changzhou (31°58'9.6″ N, 119°48'33.84″ E), and Jurong (31°52'15.46″ N, 119°9'24.62″ E), Jiangsu Province. The disease severity was about 32% with 8% incidence on 120 surveyed trees of the two orchards. Typical symptoms were lesions with a dark-brown color, which later became brown. We collected eighteen pecan leaves with typical symptoms in the surveyed pecan orchards and took them back to the laboratory for identification. Small fragments (approximately 9 mm2) from the necrotic borders of infected leaves were surfaced sterilized, plated on potato dextrose agar (PDA) and then incubated in darkness at 25°C. Pure cultures were obtained by single-spore culture. Thirty-three isolates with similar characteristics were obtained from the infected leaves (isolation frequency 85%), and the colonies surface on PDA was ochreous with patchs of olivaceous-yellow and sparse aerial mycelium. Observing from the back of the plate, the colonies were cream-yellow. Two types of single-cell conidia were produced on PDA. Alpha-conidia were 7.4 (range, 5.9 to 8.8) × 2.1 (range, 1.6 to 2.8) µm (n = 100), aseptate, smooth, fusiform, straight and tapering towards both ends. Beta-conidia were 25.1 (range, 19.1 to 36.2) × 1.3 (range, 1.0 to 2) µm (n = 100), filiform, hyaline, aseptate and curved at one end. The morphological features of these isolates agreed with those of Diaporthe sp. (Gomes et al. 2013; Gao et al. 2017). To further identify the isolates, the regions of internal transcribed spacer (ITS, OR214967 to OR214969), calmodulin (CAL, OR228558 to OR228560), translation elongation factor 1-α (EF1a, OR228561 to OR228563), histone H3 (HIS, OR228564 to OR228566), and beta-tubulin 2 (TUB2, OR228567 to OR228569) were amplified and sequenced from genomic DNA for the three representative isolates (LSM1, LSM2 and LSM3), respectively (Gomes et al. 2013). Multilocus phylogenetic analysis revealed that the three isolates and D. pseudophoenicicola were clustered in the same clade. Based on the results of morphological and molecular analysis, these isolates were identified as D. pseudophoenicicola. The pathogenicity of three isolates were tested on leaves of pecan seedlings. The conidial suspension (1 × 105 conidia/ml) of each isolate was sprayed evenly on the surface of leaves of three healthy seedlings. Sterilized distilled water was used for negative controls. Finally, all inoculated plants were kept in a greenhouse at 28°C under 100% relative humidity. Two weeks after inoculation, the inoculated plants developed symptoms similar to those of the original diseased plants, while controls remained asymptomatic. D. pseudophoenicicola were re-isolated from from inoculated plants. The pathogenicity experiment was repeated three times. Previously, D. pseudophoenicicola has been reported to cause stem-end browning disease in ripe mango (Takushi et al. 2016; Xu et al 2022). To our knowledge, this is the first report of D. pseudophoenicicola causing leaf blight on pecan . This study provides important information for developing effective pecan disease management practices.

3.
Plant Dis ; 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36471465

ABSTRACT

Pecan (Carya illinoinensis) is one of the important economic forest crops which has been widely cultivated in Anhui and Jiangsu Provinces, China. Since 2019, symptoms resembling anthracnose disease had been observed in 5-ha and 6.6-ha pecan orchards in Quanjiao ( 32°5'7.08″ N, 118°16'2.91″ E), Anhui Province, and Jintan (31°42'23.84″ N, 119°21'22.90″ E), Jiangsu Province. The disease severity was about 20 to 30% with 5 to 15% (about 500 trees) incidence. In May, symptoms of leaf initially appeared as small dark lesions, which gradually developed to irregular-shaped, sunken lesions (Figure S1, A). From August to October, similar symptoms were also observed on the fruits. Infected fruits appeared irregularly, dark and depressed necrotic lesions on which orange spore masses could be occasionally observed (Figure S1, B). As the disease progressed, the necrotic lesions gradually expanded and merged, resulting in abscission of the fruits. Small fragments (4 × 4 mm) from the necrotic borders of infected fruits or leaves were surfaced sterilized, plated on potato dextrose agar (PDA) and then incubated in darkness at 25°C for 3 days. Pure cultures were obtained from individual conidia by recovering single spores. On the PDA plate, the colonies surface was white and cottony. Observing from the back of the plate, the colonies were pale yellow at the centre and pale white at the margin (Figure S1, E). Spores were produced over PDA plates after 7 days growth. Conidia were hyaline, smooth walls, aseptate, guttulate, cylindrical with rounded ends with 14.8 to 17.5 × 3.3 to 4.7 µm (mean 16.5 × 4.1µm, n = 50) in size (Figure S1, F). These morphological characteristics were similar to those of the species of Colletotrichum siamense (Prihastuti et al. 2009; Weir et al. 2012; Fu et al. 2019). Thirty-two isolates Colletotrichum sp. were obtained from the infected leaves and fruits (isolation frequency about 80%). To further identify the isolates, the regions of internal transcribed spacer (ITS), calmodulin (CAL), actin (ACT), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), chitin synthase (CHSI), and beta-tubulin 2 (TUB2) were amplified and sequenced from genomic DNA for the four representative isolates (JS1 and AH1 from infected fruits; JS2 and AH2 from infected leaves), respectively (Weir et al. 2012). Sequences of them were deposited in GenBank under nos. OP389224 to OP389227 (ITS), OP413765 to OP413768 (CAL), OP413761 to OP413764 (ACT), OP413773 to OP413776 (GAPDH), OP413769 to OP413772 (CHSI), and OP413777 to OP413780 (TUB2). Blast analysis showed these sequences shared high identity with C. siamense (100% with ITS, CAL, CHSI, and TUB2; 98.94% with ACT; 98.19% with GAPDH). Multilocus phylogenetic analysis revealed that the four isolates and C. siamense were clustered in the same clade (Figure S2). Based on the results of morphological and molecular analysis, these isolates were identified as C. siamense. The pathogenicity of four isolates was tested on two-year-old container-grown pecan seedlings, which were grown in the nursery. The conidial suspension with a concentration of 5 × 106 conidia/ml was sprayed evenly on the surface of leaves of a healthy seedling, and each isolate inoculated three pecan seedlings. The pathogenicity experiment was repeated three times. For negative controls, pecan seedlings were sprayed with sterilized distilled water. Finally, all inoculated plants were kept in a greenhouse at 25°C under a 16 h/8 h photoperiod and 70% relative humidity. Three weeks after inoculation, the inoculated plants showed symptoms similar to those of the original diseased plants (Figure S1, C), while controls remained asymptomatic (Figure S1, D). Cultures were re-isolated from the infected leaves and were identified as C. siamense by both morphological characteristics and DNA sequence analysis. Previously, C. nymphaeae, C. siamense, C. fructicola and C. viniferum have been reported to cause anthracnose of Pecan worldwide (Zhang et al. 2019; Oh et al. 2021; Poletto et al. 2019; Zhao et al. 2022 ). To our knowledge, this is the first report of C. siamense causing anthracnose on pecan in China. The identification of this pathogen will facilitate the development of strategies for managing the disease in China. References: Oh, J. Y., et al. 2021. Plant disease. 105(10):3296. Poletto, T., et al. 2019. Plant disease. 103(12):3277. Prihastuti, H., et al. 2009. Fungal Divers. 39:89. Fu, M., et al. 2019. Persoonia-Molecular Phylogeny and Evolution of Fungi. 42(1):1-35. Weir, B. S., et al. 2012. Studies in Mycology. 73:115. Zhao, et al. 2022, Acta Phytopathologica Sinica, doi:10.13926/j.cnki.apps.000648 Zhang, Y. B., et al. 2019. Plant disease. 103(6):1432. The author(s) declare no conflict of interest. Keywords: Colletotrichum siamense, Anthracnose, Carya illinoinensis, Pathogenicity †Indicates the corresponding author. Y. Q. Zhao; zhaoyuqiang123@126.com.

4.
Plant Dis ; 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36306441

ABSTRACT

Pecan (Carya illinoinensis) is a world-famous nut tree that is widely cultivated in China, especially in Jiangsu Province (Zhang et al. 2015). In April 2022, cankers on trunks were recorded in pecan (cv. Pawnee) fields located in Taizhou (32°27'58″ N, 120°0'49″ E), Jiangsu. Cankers on the trunks resulted in wilt of the plants. Usually, the color of infected bark on the trunk became darker than the healty bark. When the outer bark was peeled away, the inner tissues were water-soaked, often with reddish streaks. In the surveyed orchards, disease incidence ranged from 10 to 20% among young saplings (about 200 three-year-old trees). While no fungal mycelium or spores were found in the diseased areas by microscope, bacterial colonies were isolated by surface-sterilizing small fragments (25 mm2) of symptomatic tissue in 0.5% NaOCl, rinsing the sections twice in sterilized water, and then streaking them on Luria-Bertani (LB) plates. More than 20 bacterial isolates were obtained and all isolates induced a hypersensitive response on Nicotiana tabacum. All isolates were fluorescent on King's medium B, and were gram-negative based on lysis by KOH. Isolates were positive for levan formation, negative for oxidase and arginine dihydrolase, and did not cause soft rot on potato slices. Based on above information, the isolates thus belonged to Lelliot's LOPAT group 1, P. syringae (Lelliott and Stead 1988). The 16S rRNA sequences of five representative isolates (accession numbers OP175939-OP175943) were amplified by PCR, sequenced, and compared with the NCBI GenBank database (Weisburg et al. 1991; Sarkar and Guttman 2004), finding a 99.92% genetic similarity with a previously reported 16S rRNA sequence of a Pseudomonas syringae pv. syringae (Pss) isolate (accession numbers NW389777). Additional housekeeping genes gap1(accession numbers OP186937-OP186941), rpoD (accession numbers OP186952-OP186956), gyrB (accession numbers OP186947-OP186951), and gltA (accession numbers OP186942-OP186946) were PCR-amplified and sequenced as reported by Hwang et al. (2005), followed by multilocus sequence typing analysis (MLSA). Molecular phylogenetic trees (MEGA vesion 6.0, maximum likelihood with Jukes-Cantor model, 1,000 bootstraps) were generated based on each of these five DNA regions and revealed that all five isolates were clustered together with the strains in P. syringae genomospecies 2, and grouped these isolates with Pss in the PAMDB database (Hwang et al. 2005). As a result, these isolates were identified as Pss. Pathogenicity on pecan (cv. Pawnee) was confirmed by cutting the trunks of two-year-old pecan trees with sterilized blades dipped in cell suspensions containing 107 CFU/ml of each isolate. Plants inoculated in a similar manner with sterile water served as negative controls. The inoculated plants were incubated in a greenhouse maintained at 25°C and 80% relative humidity. After 7 to 8 days, all inoculated plants showed the symptoms of necrosis previously described for the original field plants, while the control plants did not show symptoms. The bacteria reisolated from the inoculated plants were identified as Pss using the LOPAT tests. These results and the sequence analysis of the 16S rRNA and four housekeeping genes described above, fulfilled Koch's postulates. No target bacteria were isolated from the control plants. To our knowledge, this is the first report of Pseudomonas syringae pv. syringaecausing bacterial canker of pecan worldwide. The identification of this pathogen will allow the study of strategies for managing the disease. References: Hwang, M. S., et al. 2005. Applied and Environmental Microbiology, 71:5182-5191. Lelliott, R. A., and Stead, D. E. 1988. Blackwell Scientific, Sussex, UK. Sarkar, S. F., and Guttman, D. S. 2004. Applied and Environmental Microbiology, 70:1999. Weisburg, W. G., et al. 1991. Journal of Bacteriology, 173: 697. Zhang, R., et al. 2015. Scientia Horticulturae, 197: 719-727. The author(s) declare no conflict of interest. Keywords: Carya illinoinensis, Pseudomonas syringae, Canker, Identification †Indicates the corresponding author.Y. Q. Zhao; zhaoyuqiang123@126.com.

5.
Plant Dis ; 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36302728

ABSTRACT

Pecan (Carya illinoinensis) is a world-famous nut tree which widely cultivated in China. Quanjiao County, located in Anhui province, is reputed to be the capital of pecan production in China. Since 2019, typical scab symptoms were observed on most pecan cultivars in orchards located in the regions of Quanjiao (32°5'7.08″ N, 118°16'2.91″ E). In April, dark brown to black lesions of scab could be observed on both the abaxial and adaxial surface of the lamina, and were often associated with the veins or midrib. In July, small, brownish, and circular lesions ranging from 1 to 2 mm in diameter were observed at the end of stems and shoulder of the fruit. In the surveyed orchards, disease incidence on the leaves reached more than 35%. While, according to the number of infected nut clusters, disease incidence ranged from 40 to 60% on the infected fruits. Using a sterilized scalpel, conidia were scraped from the surface of a single lesion from the infected leaves or fruits, and a dilute spore suspension was prepared in sterile distilled water, of which 100 microliters was spread on 1% water-agar plate (Bock et al. 2014). The conidia were incubated at 25°C for 48 h under fluorescent lights with a 12-hphotoperiod. Single germinated conidia were selected and transferred into potato dextrose agar (PDA) plate to obtain monospore isolates. From 2019 to 2020, more than 20 isolates were obtained from the infected leaves and fruits. Incubated at 24°C for 6 weeks in darkness on PDA, the colonies were gray-black with circular morphology and floccose texture, which were consistent with the characteristics of Venturia effusa described previously (Gottwald 1982). The conidia were pyriform to ellipsoid, zero to one septate, smooth, attenuated towards apex and base, base truncate, pale brown and 10.08 to 18.14 × 4.86 to 9.56 µm (n = 50) in size. To further identify the isolates, the regions of internal transcribed spacer (ITS), beta-tubulin 2 (TUB2) and translation elongation factor 1 alpha (EF1-a) were amplified and sequenced from genomic DNA for the three representative isolates (AH-81 and AH-82 from the infected leaves, and AH-41 from the infected fruits), respectively (White et al. 1990; Young et al. 2018; Bensch et al. 2006). Sequences of them were deposited in GenBank under nos. OP199056 to OP199058 (ITS), OP566581 to OP566583 (TUB2) and OP566578 to OP566580 (EF1-a). Multilocus phylogenetic analysis revealed that three isolates and V. effusa were clustered in the same clade, indicating high genetic similarity between these organisms. Their morphological and molecular characteristics were consistent with those for V. effusa. The pathogenicity of three isolates were tested on two-year-old container-grown pecan seedlings, which were grown in the nursery. The conidial suspension with a concentration of 5 × 105 conidia/ml was sprayed evenly on the surface of leaves of a healthy pecan seedling, and each isolate inoculated four pecan seedlings. The pathogenicity experiment was repeated three times. The plants inoculated with sterile water were used a negative control. The inoculated plants were enclosed in plastic bags for 2 days, and kept in the nursery greenhouse. Four weeks after inoculation, a similar symptom of scab was observed on leaves of cultivar Mahan, and V. effusa was isolated again from inoculated leaves with the frequency of 100% by the single-spore isolation, whereas no symptoms were observed on the control plants. To our knowledge, this is the first report of V. effusa as a scab pathogen on pecan in Anhui Province of China and underscores the need for monitoring this disease and developing disease control strategies to prevent severe reduction in the value of fruit. References: Bensch, K., et al. 2006. Studies in Mycology, 55(1): 299-305. Bock, C. H., et al. 2014. Forest Pathology, 44(4): 266-275. Gottwald, T. R. 1982. Taxonomy of the pecan scab fungus Cladosporium caryigenum. Mycologia. 74 (3), 382-390. White, T. T., et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Application. Academic Press, San Diego, CA. Young, C. A., et al. 2018. Phytopathology, 108(7): 837-846. The author(s) declare no conflict of interest. Keywords: Venturia effusa, Scab, Pecan, Identification †Indicates the corresponding author.Y. Q. Zhao; zhaoyuqiang123@126.com.

SELECTION OF CITATIONS
SEARCH DETAIL
...