Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(24)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38912679

ABSTRACT

This study explores the effect of molecular permanent dipole moment (PDM) on aggregation of guest molecules in phosphorescent host-guest organic light-emitting diodes (OLEDs). Through a combination of photoluminescence measurements, high-angle annular dark-field scanning transmission electron microscopy analysis, and an Ising model based physical vapor-deposition simulation, we show that higher PDM of tris[2-phenylpyridinato-C2,N]iridium(III) guest can actually lead to a reduced aggregation relative to tris[bis[2-(2-pyridinyl-N)phenyl-C] (acetylacetonato)iridium(III) when doped into a non-polar host 1,3,5-tris(carbazol-9-yl)benzene. This study further explores the effect of host polarity by using a polar host 3',5'-di(carbazol-9-yl)-[1,1'-biphenyl]-3,5-dicarbonitrile, and it is shown that the polar host leads to reduced guest aggregation. This study provides a comprehensive understanding of the impact of molecular PDM on OLED material efficiency and stability, providing insights for optimizing phosphorescent OLED materials.

2.
Ultramicroscopy ; 247: 113687, 2023 May.
Article in English | MEDLINE | ID: mdl-36709683

ABSTRACT

In this work, we develop a machine learning-based method to characterize intracluster concentration (ρc), background concentration (ρb), clustering radius (r̄), and radius dispersity (δr) in simulated atom probe tomography data using multiple spatial statistics summary functions to train a Bayesian regularized neural network. We build upon previous work that utilized Ripley's K-function by incorporating additional features from nearest-neighbor spatial statistics summary functions to better characterize concentration-based metrics. The addition of nearest-neighbor based features allows for highly accurate estimates of ρc and ρb, both with 90% of the predictions within 4.0% of the real value; the root-mean-square errors are reduced by 81.5% and 92.8% from predictions using only K-function based features, respectively. Additionally, including these nearest-neighbor based features improves the ability to differentiate between r̄ and δr.

3.
J Phys Chem Lett ; 12(42): 10437-10443, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34672587

ABSTRACT

In atom probe tomography of molecular organic materials, field ionization of either entire molecules or molecular fragments can occur, but the mechanism governing this behavior was not previously understood. This work explains when a doubly ionized small molecule organic material is expected to undergo fragmentation. We find that multiple detection events arising from post-ionization fragmentation of a parent molecular dication into two daughter ions is well explained by the free energy and geometries of the molecules computed using density functional theory. Of the systems studied, exergonic free energies for formation of the daughter ions, smaller activation energies for dissociation, and increases in bond length are all found to be quantitative predictors for ion fragmentation. This work expands the applicability of atom probe tomography to organic materials by increasing the fundamental understanding of processes occurring during this analysis technique.

4.
Phys Rev Lett ; 127(5): 057701, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34397233

ABSTRACT

We experimentally determine isotropic and anisotropic g-factor corrections in lateral GaAs single-electron quantum dots. We extract the Zeeman splitting by measuring the tunnel rates into the individual spin states of an empty quantum dot for an in-plane magnetic field with various strengths and directions. We quantify the Zeeman energy and find a linear dependence on the magnetic field strength that allows us to extract the g factor. The measured g factor is understood in terms of spin-orbit interaction induced isotropic and anisotropic corrections to the GaAs bulk g factor. Experimental detection and identification of minute band-structure effects in the g factor is of significance for spin qubits in GaAs quantum dots.

5.
Ultramicroscopy ; 220: 113151, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33152650

ABSTRACT

The size and structure of spatial molecular and atomic clustering can significantly impact material properties and is therefore important to accurately quantify. Ripley's K-function (K(r)), a measure of spatial correlation, can be used to perform such quantification when the material system of interest can be represented as a marked point pattern. This work demonstrates how machine learning models based on K(r)-derived metrics can accurately estimate cluster size and intra-cluster density in simulated three dimensional (3D) point patterns containing spherical clusters of varying size; over 90% of model estimates for cluster size and intra-cluster density fall within 11% and 18% error of the true values, respectively. These K(r)-based size and density estimates are then applied to an experimental APT reconstruction to characterize MgZn clusters in a 7000 series aluminum alloy. We find that the estimates are more accurate, consistent, and robust to user interaction than estimates from the popular maximum separation algorithm. Using K(r) and machine learning to measure clustering is an accurate and repeatable way to quantify this important material attribute.

6.
Phys Rev Lett ; 122(20): 207701, 2019 May 24.
Article in English | MEDLINE | ID: mdl-31172765

ABSTRACT

We show that in-plane magnetic-field-assisted spectroscopy allows extraction of the in-plane orientation and full 3D size parameters of the quantum mechanical orbitals of a single electron GaAs lateral quantum dot with subnanometer precision. The method is based on measuring the orbital energies in a magnetic field with various strengths and orientations in the plane of the 2D electron gas. From such data, we deduce the microscopic confinement potential landscape and quantify the degree by which it differs from a harmonic oscillator potential. The spectroscopy is used to validate shape manipulation with gate voltages, agreeing with expectations from the gate layout. Our measurements demonstrate a versatile tool for quantum dots with one dominant axis of strong confinement.

7.
Nat Commun ; 9(1): 3454, 2018 08 27.
Article in English | MEDLINE | ID: mdl-30150721

ABSTRACT

Understanding and control of the spin relaxation time T1 is among the key challenges for spin-based qubits. A larger T1 is generally favored, setting the fundamental upper limit to the qubit coherence and spin readout fidelity. In GaAs quantum dots at low temperatures and high in-plane magnetic fields B, the spin relaxation relies on phonon emission and spin-orbit coupling. The characteristic dependence T1 ∝ B-5 and pronounced B-field anisotropy were already confirmed experimentally. However, it has also been predicted 15 years ago that at low enough fields, the spin-orbit interaction is replaced by the coupling to the nuclear spins, where the relaxation becomes isotropic, and the scaling changes to T1 ∝ B-3. Here, we establish these predictions experimentally, by measuring T1 over an unprecedented range of magnetic fields-made possible by lower temperature-and report a maximum T1 = 57 ± 15 s at the lowest fields, setting a record electron spin lifetime in a nanostructure.

8.
Nano Lett ; 16(10): 6086-6091, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27575667

ABSTRACT

Developing organic photovoltaic materials systems requires a detailed understanding of the heterojunction interface, as it is the foundation for photovoltaic device performance. The bilayer fullerene/acene system is one of the most studied models for testing our understanding of this interface. We demonstrate that the fullerene and acene molecules chemically react at the heterojunction interface, creating a partial monolayer of a Diels-Alder cycloadduct species. Furthermore, we show that the reaction occurs during standard deposition conditions and that thermal annealing increases the concentration of the cycloadduct. The cycloaddition reaction reduces the number of sites available at the interface for charge transfer exciton recombination and decreases the charge transfer state reorganization energy, increasing the open circuit voltage. The submonolayer quantity of the cycloadduct renders it difficult to identify with conventional characterization techniques; we use atom probe tomography to overcome this limitation while also measuring the spatial distribution of each chemical species.

9.
Adv Mater ; 26(18): 2914-8, 2014 May.
Article in English | MEDLINE | ID: mdl-24677269

ABSTRACT

Organic vapor-phase deposition (OVPD) is used to grow tetraphenyldibenzoperiflanthen (DBP):C70 mixed heterojunction photovoltaic devices. Compared with vacuum thermal evaporation (VTE), the OVPD-grown film develops nanocrystalline domains of C70. Optimized OVPD-grown OPVs have a 61% fill factor for a 100 nm active layer thickness, whereas VTE-grown devices have a 47% fill factor at the same thickness.

10.
ACS Nano ; 7(10): 9268-75, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-23991668

ABSTRACT

It has been proposed that interface morphology affects the recombination rate for electrons and holes at donor-acceptor heterojunctions in thin film organic photovoltaic cells. The optimal morphology is one where there is disorder at the heterointerface and order in the bulk of the thin films, maximizing both the short circuit current and open circuit voltage. We show that an amorphous, buried functionalized molecular squaraine donor layer can undergo an "inverted" quasi-epitaxial growth during postdeposition processing, whereby crystallization is seeded by a subsequently deposited self-assembled nanocrystalline acceptor C60 cap layer. We call this apparently unprecedented growth process from a buried interface "inverse quasi-epitaxy" where the crystallites of these "soft" van der Waals bonded materials are only approximately aligned to those of the cap. The resulting crystalline interface hastens charge recombination, thereby reducing the open circuit voltage in an organic photovoltaic cell. The lattice registration also facilitates interdiffusion of the squaraine donor and C60 acceptor, which dramatically improves the short circuit current. By controlling the extent to which this crystallization occurs, the voltage losses can be minimized, resulting in power conversion efficiencies of ηP = 5.4 ± 0.3% for single-junction and ηP = 8.3 ± 0.4% for tandem small-molecule photovoltaics. This is a general phenomenon with implications for all organic donor-acceptor junctions. That is, epitaxial relationships typically result in a reduction in open circuit voltage that must be avoided in both bilayer and bulk heterojunction organic photovoltaic cells.

11.
Nano Lett ; 13(7): 3315-20, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23751049

ABSTRACT

We demonstrate the concentration dependence of C60 absorption in solid solutions of C60 and bathocuprione (BCP), revealing a nonlinear decrease of the C60 charge transfer (CT) state absorption. These blends are utilized to study the photocurrent contribution of the CT in bilayer organic photovoltaics (OPVs); 1:1 blends produce 40% less photocurrent. As exciton blocking electron transporting layers, the blends achieve power conversion efficiencies of 5.3%, an increase of 10% compared to conventional buffers.

12.
Nano Lett ; 12(8): 4366-71, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22809215

ABSTRACT

We demonstrate that solvent vapor annealing of small molecular weight organic heterojunctions can be used to independently control the interface and bulk thin-film morphologies, thereby modifying charge transport and exciton dissociation in these structures. As an example, we anneal diphenyl-functionalized squaraine (DPSQ)/C(60) heterojunctions before or after the deposition of C(60). Solvent vapor annealing of DPSQ before C(60) deposition results in molecular order at the heterointerface. Organic photovoltaics based on this process have reduced open circuit voltages and power conversion efficiencies relative to as-cast devices. In contrast, annealing following C(60) deposition locks in interface disorder found in unannealed junctions while improving order in the thin-film bulk. This results in an increase in short circuit current by >30% while maintaining the open circuit voltage of the as-cast heterojunction device. These results are analyzed in terms of recombination dynamics at excitonic heterojunctions and demonstrate that the optimal organic photovoltaic morphology is characterized by interfacial disorder to minimize polaron-pair recombination, while improved crystallinity in the bulk increases exciton and charge transport efficiency in the active region.

13.
Adv Mater ; 24(15): 1956-60, 2012 Apr 17.
Article in English | MEDLINE | ID: mdl-22450778

ABSTRACT

Two squaraine (SQ) donor molecules with different absorption bands are blended together for better coverage of the solar spectrum. The blend SQ device shows a significant improvement compared with single SQ donor devices. By applying a solvent annealing process and a compound buffer layer, a power-conversion efficiency of 5.9 ± 0.3% is achieved under 1 sun illumination.


Subject(s)
Cyclobutanes/chemistry , Electric Power Supplies , Phenols/chemistry , Sunlight , Electric Conductivity
14.
J Org Chem ; 77(1): 143-59, 2012 Jan 06.
Article in English | MEDLINE | ID: mdl-22077105

ABSTRACT

A systematic study of the preparation of porphyrins with extended conjugation by meso,ß-fusion with polycyclic aromatic hydrocarbons (PAHs) is reported. The meso-positions of 5,15-unsubstituted porphyrins were readily functionalized with PAHs. Ring fusion using standard Scholl reaction conditions (FeCl(3), dichloromethane) occurs for perylene-substituted porphyrins to give a porphyrin ß,meso annulated with perylene rings (0.7:1 ratio of syn and anti isomers). The naphthalene, pyrene, and coronene derivatives do not react under Scholl conditions but are fused using thermal cyclodehydrogenation at high temperatures, giving mixtures of syn and anti isomers of the meso,ß-fused porphyrins. For pyrenyl-substituted porphyrins, a thermal method gives synthetically acceptable yields (>30%). Absorption spectra of the fused porphyrins undergo a progressive bathochromic shift in a series of naphthyl (λ(max) = 730 nm), coronenyl (λ(max) = 780 nm), pyrenyl (λ(max) = 815 nm), and perylenyl (λ(max) = 900 nm) annulated porphyrins. Despite being conjugated with unsubstituted fused PAHs, the ß,meso-fused porphyrins are more soluble and processable than the parent nonfused precursors. Pyrenyl-fused porphyrins exhibit strong fluorescence in the near-infrared (NIR) spectral region, with a progressive improvement in luminescent efficiency (up to 13% with λ(max) = 829 nm) with increasing degree of fusion. Fused pyrenyl-porphyrins have been used as broadband absorption donor materials in photovoltaic cells, leading to devices that show comparatively high photovoltaic efficiencies.

15.
Nano Lett ; 11(10): 4261-4, 2011 Oct 12.
Article in English | MEDLINE | ID: mdl-21923102

ABSTRACT

Squaraine (SQ) dyes are notable for their exceptionally high absorption coefficients extending from the green to the near-infrared. In this work, we utilize the functionalized SQ donor: 2,4-bis [4-(N-phenyl-1-naphthylamino)-2,6-dihydroxyphenyl] squaraine (1-NPSQ) by substitution of isobutylamines in the common "parent SQ" with arylamines to improve stacking and hence exciton and charge transport. The strong electron-withdrawing arylamine group results in a highest occupied molecular orbital energy of 5.3 eV, compared to 5.1 eV for the parent SQ, making 1-NPSQ a suitable donor when used with a C(60) acceptor in an organic photovoltaic cell. Optimized and thermally annealed, nanocrystalline heterojunction 1-NPSQ/C(60)/bathocuproine solar cells with an open circuit voltage of 0.90 ± 0.01 V, fill factor of 0.64 ± 0.01, and short circuit current of 10.0 ± 1.1 mA/cm(2) at 1 sun, AM1.5G illumination (solar spectrally corrected) result in a power conversion efficiency of 5.7 ± 0.6%. Crystallograpnic data suggest that the intermolecular stacking of 1-NPSQ molecules is closer than that of the parent SQ, thereby reducing the device series resistance and increasing its fill factor.

18.
Nano Lett ; 9(9): 3354-8, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19637853

ABSTRACT

We demonstrate that photogenerated excitons in semiconducting carbon nanotubes (CNTs) can be efficiently dissociated by forming a planar heterojunction between CNTs wrapped in semiconducting polymers and the electron acceptor, C(60). Illumination of the CNTs at their near-infrared optical band gap results in the generation of a short-circuit photocurrent with peak external and internal quantum efficiencies of 2.3% and 44%, respectively. Using soft CNT-hybrid materials systems combining semiconducting small molecules and polymers, we have fabricated broad-band photodetectors with a specific detectivity >10(10) cm Hz(1/2) W(1-) from lambda = 400 to 1450 nm and a response time of tau = 7.2 +/- 0.2 ns.


Subject(s)
Fullerenes/chemistry , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Polymers/chemistry , Materials Testing , Particle Size , Photochemistry , Quantum Theory , Semiconductors , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...