Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 958
Filter
1.
Behav Brain Res ; 473: 115198, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39128628

ABSTRACT

Intracerebral hemorrhage has the characteristics of high morbidity, disability and mortality, which has caused a heavy burden to families and society. Microglia are resident immune cells in the central nervous system, and their activation plays a dual role in tissue damage after intracerebral hemorrhage. The damage in cerebral hemorrhage is embodied in the following aspects: releasing inflammatory factors and inflammatory mediators, triggering programmed cell death, producing glutamate induced excitotoxicity, and destroying blood-brain barrier; The protective effect is reflected in the phagocytosis and clearance of harmful substances by microglia, and the secretion of anti-inflammatory and neurotrophic factors. This article summarizes the function of microglia and its dual regulatory mechanism in intracerebral hemorrhage. In the future, drugs, acupuncture and other clinical treatments can be used to intervene in the activation state of microglia, so as to reduce the harm of microglia.


Subject(s)
Cerebral Hemorrhage , Microglia , Microglia/metabolism , Microglia/physiology , Cerebral Hemorrhage/pathology , Cerebral Hemorrhage/immunology , Humans , Animals , Blood-Brain Barrier/metabolism
2.
Front Mol Neurosci ; 17: 1423132, 2024.
Article in English | MEDLINE | ID: mdl-39156127

ABSTRACT

Intracerebral hemorrhage (ICH) is the second most common subtype of stroke, characterized by high mortality and a poor prognosis. Despite various treatment methods, there has been limited improvement in the prognosis of ICH over the past decades. Therefore, it is imperative to identify a feasible treatment strategy for ICH. Mitochondria are organelles present in most eukaryotic cells and serve as the primary sites for aerobic respiration and energy production. Under unfavorable cellular conditions, mitochondria can induce changes in permeability through the opening of the mitochondrial permeability transition pore (mPTP), ultimately leading to mitochondrial dysfunction and contributing to various diseases. Recent studies have demonstrated that mPTP plays a role in the pathological processes associated with several neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, Huntington's disease, ischemic stroke and ischemia-reperfusion injury, among others. However, there is limited research on mPTP involvement specifically in ICH. Therefore, this study comprehensively examines the pathological processes associated with mPTP in terms of oxidative stress, apoptosis, necrosis, autophagy, ferroptosis, and other related mechanisms to elucidate the potential mechanism underlying mPTP involvement in ICH. This research aims to provide novel insights for the treatment of secondary injury after ICH.

3.
Neurosci Res ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025266

ABSTRACT

Our previous studies have reported that hydrogen sulfide (H2S) has ability to improve diabetes-associated cognitive dysfunction (DACD), but the exact mechanisms remain unknown. Recent research reveals that Warburg effect is associated with synaptic plasticity which plays a key role in cognition promotion. Herein, the present study was aimed to demonstrate whether hippocampal Warburg effect contributes to H2S-ameliorated DACD and further explore its potential mechanism. We found that H2S promoted the hippocampal Warburg effect and inhibited the OxPhos in the hippocampus of STZ-induced diabetic rats. It also improved the hippocampal synaptic plasticity in STZ-induced diabetic rats, as evidenced by the change of microstructures and the expression of different key-enzymes. Furthermore, inhibited hippocampal Warburg effect induced by DCA markedly abolished the improvement of H2S on synaptic plasticity in the hippocampus of STZ-induced diabetic rats. DCA blocked H2S-attenuated the cognitive dysfunction in STZ-induced diabetic rats, according to the Y-maze, Novel Objective Recognition, and Morris Water Maze tests. Collectively, these findings indicated that the hippocampal Warburg effect mediates H2S-ameliorated DACD by improving hippocampal synaptic plasticity.

4.
Phytomedicine ; 132: 155844, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38959552

ABSTRACT

BACKGROUND: Chronic cerebral hypoperfusion (CCH) has been confirmed as one of the pathogenesis underlying vascular cognitive impairment. A series of pathological changes, including inflammation, oxidative stress, and apoptosis, are involved in this pathophysiology and contribute to cognitive impairment and neuropathological alterations. The traditional Chinese medicine (TCM) of Buqi Huoxue Tongnao (BQHXTN) prescription possesses a remarkable clinical efficacy for treating patients with CCH, but still lacks a scientific foundation for its pharmacological mechanisms. PURPOSE: To investigate the role and underlying mechanism of the effects of BQHXTN on CCH both in vitro and in vivo. METHODS: In this study, we established a two-vessel occlusion (2-VO) induced CCH model in Sprague-Dawley rats, an oxygen-glucose deprivation model in BV2 cells, and a steatosis cell model in L02 cells to reveal the underlying mechanisms of BQHXTN by behavioral test, histopathological analysis and the detection of pro-inflammatory cytokine, apoptotic factors and reactive oxide species. Donepezil hydrochloride and Buyang Huanwu decoction were used as positive drugs. RESULTS: Compared with the 2-VO group, BQHXTN treatment at three doses significantly enhanced the memory and learning abilities in the Y-maze and novel object recognition tests. The hematoxylin-eosin staining indicated that BQHXTN protected against hippocampal injury induced by CCH. Of note, in both in vivo and in vitro experiments, BQHXTN prominently inhibited the production of IL-1ß, TNF-α, cleaved-caspase 3, and iNOS by regulating the PI3K/AKT pathway, consequently exerting anti-inflammatory, anti-apoptotic, and antioxidant effects. Moreover, it provided the first initial evidence that BQHXTN treatment mitigated dyslipidemia by increasing the LXRα/CYP7A1 expression, thereby delaying the neuropathological process. CONCLUSION: In summary, these findings firstly revealed the pharmacodynamics and mechanism of BQHXTN, that is, BQHXTN could alleviate cognitive impairment, neuropathological alterations and dyslipidemia in CCH rats by activating PI3K/AKT and LXRα/CYP7A1 signaling pathways, as well as providing a TCM treatment strategy for CCH.


Subject(s)
Drugs, Chinese Herbal , Liver X Receptors , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , Animals , Liver X Receptors/metabolism , Drugs, Chinese Herbal/pharmacology , Signal Transduction/drug effects , Male , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Rats , Disease Models, Animal , Apoptosis/drug effects , Cognitive Dysfunction/drug therapy , Brain Ischemia/drug therapy , Cell Line , Neuroprotective Agents/pharmacology , Cerebrovascular Disorders/drug therapy
5.
Water Res ; 263: 122161, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39084092

ABSTRACT

Recycling phosphorus from waste activated sludge (WAS) is an effective method to address the nonrenewable nature of phosphorus and mitigate environmental pollution. To overcome the challenge of low phosphorus recovery from WAS due to insufficient disintegration, a method using a citric acid-based natural deep eutectic solvent (CA-NADES) assisted with low-temperature pretreatment was proposed to efficiently release and recover phosphorus. The results of 31P nuclear magnetic resonance (NMR) confirmed that low-temperature pretreatment promoted the conversion of organic phosphorus (OP) to inorganic phosphorus (IP) and enhanced the effect of CA-NADES. Changes in the three-dimensional excitation-emission matrix (3D-EEM) and flow cytometry (FCM) indicated that the method of CA-NADES with low-temperature thermal simultaneously release IP and OP by disintegrating sludge flocs, dissolving extracellular polymeric substances (EPS) structure, and cracking cells. When 5 % (v/v) of CA-NADES was added and thermally treated at 60 °C for 30 min, 43 % of total phosphorus (TP) was released from the sludge. The concentrations of proteins and polysaccharides reached 826 and 331 mg/L, respectively, which were 6.30 and 14.43 times higher than those of raw sludge. The dewatering and settling of the sludge were also improved. Metals were either enriched in the solid phase or released into the liquid phase in small quantities (most efficiencies of less than 10 %) for subsequent clean recovery. The released phosphorus was successfully recovered as vivianite with a rate of 90 %. This study develops an efficient, green, and sustainable method for phosphorus recovery from sludge using NADES and provides new insights into the high-value conversion of sludge.


Subject(s)
Phosphorus , Sewage , Solvents , Phosphorus/chemistry , Sewage/chemistry , Solvents/chemistry , Waste Disposal, Fluid/methods , Recycling
7.
Zhen Ci Yan Jiu ; 49(7): 767-776, 2024 Jul 25.
Article in English, Chinese | MEDLINE | ID: mdl-39020496

ABSTRACT

Stroke brings the pathological changes of brain tissues such as hematoma formation or ischemia and hypoxia, which leads to neuronal death and axon degeneration. Axon regeneration after its injury is mainly dependent on the surrounding microenvironment and the related proteins, including glial scar, myelin associated inhibitory factors, axon guidance molecules, and neurotrophic factors. All of them affect axon growth by regulating the morphology and orientation of growth cones, the synaptic stability, and the proliferation and differentiation of neural stem cells. This article summarizes the mechanism of acupuncture in regulating axon regeneration after stroke. Acupuncture inhibits glial scar formation, alleviates the inhibitory effects of its physical and chemical barriers on axon growth, reverses the inhibitory effects of myelin-related inhibitory factors on axon growth, and adjusts the level of axon guidance molecules to promote the proliferation and differentiation of neural stem cells and the regeneration of injured axons, and up-regulates neurotrophic factors. Eventually, post-stroke nerve injury can be ameliorated.


Subject(s)
Acupuncture Therapy , Axons , Nerve Regeneration , Stroke , Humans , Animals , Axons/metabolism , Axons/physiology , Stroke/therapy , Stroke/metabolism , Stroke/physiopathology , Neural Stem Cells/metabolism
8.
Article in English | MEDLINE | ID: mdl-39031110

ABSTRACT

OBJECTIVE: To evaluate the prognostic factors and survival outcomes of patients with surgically treated high-grade neuroendocrine carcinoma of the cervix (NECC). METHODS: This multicenter, retrospective study involved 98 cervical cancer patients with stage IA2-IIA2 and IIIC1/2p high-grade NECC. We divided the patients into two groups based on histology: the pure and mixed groups. All clinicopathologic variables were retrospectively evaluated. Cox regression and Kaplan-Meier methods were used for analysis. RESULTS: In our study, 60 patients were in the pure group and 38 patients were in the mixed group. Cox multivariate analysis showed that mixed histology was a protective factor impacting overall survival (OS) (P = 0.026) and progression free survival (PFS) (P = 0.018) in surgically treated high-grade NECC. Conversely, survival outcomes were negatively impacted by ovarian preservation (OS: HR, 20.84; 95% CI: 5.02-86.57, P < 0.001), age >45 years (OS: HR, 4.50; 95% CI: 1.0-18.83, P = 0.039), tumor size >4 cm (OS: HR, 6.23; 95% CI: 2.34-16.61, P < 0.001), parity >3 (OS: HR, 4.50; 95% CI: 1.02-19.91, P = 0.048), and perineural invasion (OS: HR, 5.21; 95% CI: 1.20-22.53, P = 0.027). Kaplan-Meier survival curves revealed notable differences in histologic type (OS: P = 0.045; PFS: P = 0.024), chemotherapy (OS: P = 0.0056; PFS: P = 0.0041), ovarian preservation (OS: P = 0.00031; PFS: P = 0.0023), uterine invasion (OS: P < 0.0001; PFS: P < 0.0001), and depth of stromal invasion (OS: P = 0.043; PFS: P = 0.022). CONCLUSION: Patients with mixed histologic types who undergo surgery for high-grade NECC have a better prognosis. Meanwhile, ovarian preservation, tumor size >4 cm, parity >3, age >45 years and perineural invasion were poor prognostic predictors. Therefore, patients with high-risk factors should be considered in clinical practice.

9.
Cell Biochem Biophys ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39043960

ABSTRACT

Cerebral ischemia-reperfusion injury (CIRI) is a significant pathological process in stroke, characterized by neuronal cell death and neurological dysfunction. Metformin, commonly used for diabetes management, has been noted for its neuroprotective properties, though its effects on CIRI and the mechanisms involved remain unclear. This study explored the neuroprotective impact of metformin on CIRI, focusing on its potential to modulate the c-Jun N-terminal kinase (JNK) and p38 MAP kinase (p38) signaling pathways. Using in vitro models of oxygen-glucose deprivation/reperfusion (OGD/R) in neuronal cells and in vivo mouse models of middle cerebral artery occlusion (MCAO), the effects of metformin were assessed. Cell viability was measured with Cell Counting Kit-8 (CCK-8), protein expression via Western Blot (WB), and apoptosis through flow cytometry. The extent of brain injury in mice was evaluated using 2,3,5-triphenyltetrazolium chloride (TTC) staining, while JNK and p38 activation statuses were detected through WB and phospho-JNK (p-JNK) immunofluorescence staining. Results showed that metformin significantly improved the viability of HT22 cells post-OGD/R, reduced apoptosis, and decreased OGD/R-induced phosphorylation of JNK and p38 in vitro. In vivo, metformin treatment notably reduced brain infarct volume in MCAO mice, inhibited p-p38 and p-JNK expression, and enhanced neurological function. These findings suggest that metformin exerts neuroprotective effects against CIRI by modulating the JNK/p38 signaling pathway, highlighting its potential therapeutic value in treating cerebral ischemia-reperfusion injury and paving the way for clinical applications.

10.
Heliyon ; 10(13): e33728, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39040268

ABSTRACT

Using county-level panel data for Jiangsu Province from 2008 to 2018, this study adopted a fixed effect model to analyze the impact of land consolidation on crop planting structure, also considering the moderating effect of distance from the city center and the heterogeneous effect of various types of land consolidation. The results revealed that farmland consolidation and land reclamation had a negative impact on the proportion of grain crops (rice, wheat, and corn) cultivated, which declined by 0.0051 % (0.0069 %), 0.0055 % (0.0124 %), and 0.0101 % (0.0123 %) for every 1 % increase in investment, construction area, and newly added arable land from farmland consolidation (land reclamation), respectively, demonstrating that land consolidation has not prevented, or even encouraged nongrain production expansion. The production conditions of reclaimed arable land and land transfer practices following consolidation may be factors affecting these declines. Notably, the negative effect of land consolidation on crop planting structure weakens when the land is further away from the city center. To ensure food security, priority should be given to follow-up management after land consolidation and rational oversight and guidance following land transfer.

11.
Article in English | MEDLINE | ID: mdl-38904636

ABSTRACT

Background: Acute myocardial infarction (AMI) requires timely and efficient intervention to mitigate adverse events and enhance patient prognosis. However, variations in emergency nursing protocols may impact treatment outcomes. Therefore, assessing the effectiveness of a comprehensive emergency nursing model, encompassing advanced assessment techniques and tailored interventions, is important for refining care strategies. Objective: This study aimed to assess the optimization effect of a comprehensive emergency nursing model on rescued patients diagnosed with acute myocardial infarction (AMI) within the cardiology department. Methods: This retrospective study analyzed data from 80 cases of AMI patients admitted to our hospital between January and June 2023. The study was conducted within our hospital's cardiology department. The participants were divided into two groups: an intervention group (n=40) and a control group (n=40). The intervention group received care under the comprehensive, optimized emergency nursing model, while the control group received standard emergency care. Evaluation parameters comprised rescue time, effectiveness of emergency treatment, and nursing satisfaction. Results: No significant differences in baseline patient characteristics were observed between the two groups. However, the intervention group demonstrated notable reductions in triage assessment time, completion of electrocardiograms, venous blood sampling, administration of intravenous medication, and overall emergency duration compared to the control group (P < .001). Additionally, the clinical complication rate in the intervention group, particularly incidences of heart failure and myocardial infarction recurrence, was significantly lower than that in the control group (P < .05). Patients in the intervention group reported significantly higher nursing satisfaction scores compared to their counterparts in the control group (P < .001). Conclusion: The comprehensive emergency nursing model substantially decreased rescue time for AMI patients, minimized complication rates, and enhanced patient satisfaction with nursing care. This model presents an efficacious strategy for optimizing the rescue process of acute myocardial infarction patients within the cardiology department.

12.
Mol Neurobiol ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877366

ABSTRACT

Intracerebral hemorrhage (ICH) is a common cerebrovascular disease that can lead to severe neurological dysfunction in surviving patients, resulting in a heavy burden on patients and their families. When ICH occurs, the blood‒brain barrier is disrupted, thereby promoting immune cell migration into damaged brain tissue. As important immunosuppressive T cells, regulatory T (Treg) cells are involved in the maintenance of immune homeostasis and the suppression of immune responses after ICH. Treg cells mitigate brain tissue damage after ICH in a variety of ways, such as inhibiting the neuroinflammatory response, protecting against blood‒brain barrier damage, reducing oxidative stress damage and promoting nerve repair. In this review, we discuss the changes in Treg cells in ICH clinical patients and experimental animals, the mechanisms by which Treg cells regulate ICH and treatments targeting Treg cells in ICH, aiming to support new therapeutic strategies for clinical treatment.

13.
J Neurol ; 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38910144

ABSTRACT

BACKGROUND: Chronic migraine (CM) significantly impacts both the physical and mental health of patients. Current studies on the safety and effectiveness of different pharmacological prophylaxis interventions for CM are limited. To address this gap, we conducted a network meta-analysis (NMA) to compare and rank the efficacy and safety of various drugs in preventing CM. METHODS: Two independent researchers systematically searched four databases from their inception to August 1, 2023, to identify eligible randomized controlled trials (RCTs). Subsequently, they performed data extraction and assessed the risk of bias. A NMA was then performed. Continuous outcomes and binary outcomes were displayed as weighted mean difference (WMD) and risk ratio (RR), respectively, and corresponding 95% confidence intervals (CI) were reported. The surface under the cumulative ranking curve (SUCRA) was used to rank each intervention separately. RESULTS: 24 RCTs involving 8789 patients were included. Compared to placebo, Botulinum toxin A demonstrated the most significant effect in reducing the monthly migraine days for CM patients (MD = 3.88, 95% CI 0.48, 7.28); in terms of improving the response rate by a 50% reduction in monthly migraine days, Topiramate (RR = 50.06, 95% CI 3.18, 787.30) was the most effective; there was no statistically significant difference between all preventive drugs and placebo in improving the migraine disability assessment (MIDAS) score; in terms of the incidence of adverse events, Eptinezumab (RR = 1.09, 95% CI 0.8, 1.54) exhibited the highest safety profile. CONCLUSION: Among all the drugs for the preventive drugs for CM, Botulinum toxin A has the best efficacy and safety profile, closely followed by calcitonin gene-related peptide (CGRP) monoclonal antibodies (mAbs).

14.
Sci Rep ; 14(1): 14404, 2024 06 22.
Article in English | MEDLINE | ID: mdl-38909101

ABSTRACT

This study aimed to develop and validate prediction models to estimate the risk of death and intensive care unit admission in COVID-19 inpatients. All RT-PCR-confirmed adult COVID-19 inpatients admitted to Fujian Provincial Hospital from October 2022 to April 2023 were considered. Elastic Net Regression was used to derive the risk prediction models. Potential risk factors were considered, which included demographic characteristics, clinical symptoms, comorbidities, laboratory results, treatment process, prognosis. A total of 1906 inpatients were included finally by inclusion/exclusion criteria and were divided into derivation and test cohorts in a ratio of 8:2, where 1526 (80%) samples were used to develop prediction models under a repeated cross-validation framework and the remaining 380 (20%) samples were used for performance evaluation. Overall performance, discrimination and calibration were evaluated in the validation set and test cohort and quantified by accuracy, scaled Brier score (SbrS), the area under the ROC curve (AUROC), and Spiegelhalter-Z statistics. The models performed well, with high levels of discrimination (AUROCICU [95%CI]: 0.858 [0.803,0.899]; AUROCdeath [95%CI]: 0.906 [0.850,0.948]); and good calibrations (Spiegelhalter-ZICU: - 0.821 (p-value: 0.412); Spiegelhalter-Zdeath: 0.173) in the test set. We developed and validated prediction models to help clinicians identify high risk patients for death and ICU admission after COVID-19 infection.


Subject(s)
COVID-19 , Hospitalization , Intensive Care Units , Humans , COVID-19/mortality , COVID-19/virology , Male , Female , Middle Aged , Aged , Risk Factors , Adult , SARS-CoV-2/isolation & purification , Hospital Mortality , ROC Curve , Prognosis , Risk Assessment/methods , China/epidemiology
15.
Food Res Int ; 188: 114507, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823882

ABSTRACT

The microorganisms of the pit mud (PM) of Nongxiangxing baijiu (NXXB) have an important role in the synthesis of flavor substances, and they determine attributes and quality of baijiu. Herein, we utilize metagenomics and genome-scale metabolic models (GSMMs) to investigate the microbial composition, metabolic functions in PM microbiota, as well as to identify microorganisms and communities linked to flavor compounds. Metagenomic data revealed that the most prevalent assembly of bacteria and archaea was Proteiniphilum, Caproicibacterium, Petrimonas, Lactobacillus, Clostridium, Aminobacterium, Syntrophomonas, Methanobacterium, Methanoculleus, and Methanosarcina. The important enzymes ofPMwere in bothGH and GT familymetabolism. A total of 38 high-quality metagenome-assembled genomes (MAGs) were obtained, including those at the family level (n = 13), genus level (n = 17), and species level (n = 8). GSMMs of the 38 MAGs were then constructed. From the GSMMs, individual and community capabilities respectively were predicted to be able to produce 111 metabolites and 598 metabolites. Twenty-three predicted metabolites were consistent with the metabonomics detected flavors and served as targets. Twelve sub-community of were screened by cross-feeding of 38 GSMMs. Of them, Methanobacterium, Sphaerochaeta, Muricomes intestini, Methanobacteriaceae, Synergistaceae, and Caloramator were core microorganisms for targets in each sub-community. Overall, this study of metagenomic and target-community screening could help our understanding of the metabolite-microbiome association and further bioregulation of baijiu.


Subject(s)
Bacteria , Metagenomics , Microbiota , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Archaea/genetics , Archaea/metabolism , Archaea/classification , Flavoring Agents/metabolism , Metagenome
16.
Front Neurol ; 15: 1402129, 2024.
Article in English | MEDLINE | ID: mdl-38938782

ABSTRACT

Objective: There is currently a lack of evidence in evidence-based medicine regarding acupuncture treatment for experimental intracerebral hemorrhage (ICH). The aim of this study was to systematically evaluate the efficacy of acupuncture treatment for experimental ICH based on neurological function scores and brain water content (BWC). Methods: Eight mainstream Chinese and English databases were searched. Outcome measures included neurological function scores and BWC, and subgroup analysis was conducted based on study characteristics. Results: A total of 32 studies were included. Meta-analysis results indicated that compared to the control group, the acupuncture group showed significant reductions in mNSS (MD = -3.16, p < 0.00001), Bederson score (MD = -0.99, p < 0.00001), Longa score (MD = -0.54, p < 0.0001), and brain water content (MD = -5.39, p < 0.00001). Subgroup analysis revealed that for mNSS, the autologous blood model (MD = -3.36) yielded better results than the collagenase model (MD = -0.92, p < 0.00001), and simple fixation (MD = -3.38) or no fixation (MD = -3.39) was superior to sham acupuncture (MD = -0.92, p < 0.00001). For BWC, the autologous blood model (MD = -7.73) outperformed the collagenase model (MD = -2.76, p < 0.00001), and GV20-GB7 (MD = -7.27) was more effective than other acupuncture points (MD = -2.92, p = 0.0006). Conclusion: Acupuncture significantly improves neurological deficits and brain edema in experimental ICH. Acupuncture at GV20 - GB7 is more effective than at other points. These findings support further studies to translate acupuncture into clinical treatment for human ICH. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023435584.

17.
Nat Nanotechnol ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898135

ABSTRACT

The buildup of plaques in atherosclerosis leads to cardiovascular events, with chronic unresolved inflammation and overproduction of reactive oxygen species (ROS) being major drivers of plaque progression. Nanotherapeutics that can resolve inflammation and scavenge ROS have the potential to treat atherosclerosis. Here we demonstrate the potential of black phosphorus nanosheets (BPNSs) as a therapeutic agent for the treatment of atherosclerosis. BPNSs can effectively scavenge a broad spectrum of ROS and suppress atherosclerosis-associated pro-inflammatory cytokine production in lesional macrophages. We also demonstrate ROS-responsive, targeted-peptide-modified BPNS-based carriers for the delivery of resolvin D1 (an inflammation-resolving lipid mediator) to lesional macrophages, which further boosts the anti-atherosclerotic efficacy. The targeted nanotherapeutics not only reduce plaque areas but also substantially improve plaque stability in high-fat-diet-fed apolipoprotein E-deficient mice. This study presents a therapeutic strategy against atherosclerosis, and highlights the potential of BPNS-based therapeutics to treat other inflammatory diseases.

18.
Environ Pollut ; 355: 124231, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38801878

ABSTRACT

Nanocolloids (Nc) are widespread in natural water environment, whereas the potential effects of Nc on dissemination of antibiotic resistance remain largely unknown. In this study, Nc collected from the Yellow River in Henan province was tested for its ability to influence the conjugative transfer of resistant plasmid in aqueous environment. The results revealed that the conjugative transfer of RP4 plasmid between Escherichia coli was down-regulated by 52%-91% upon exposure to 1-10 mg/L Nc and the reduction became constant when the dose became higher (20-200 mg/L). Despite the exposure of Nc activated the anti-oxidation and SOS response in bacteria through up-regulating genes involved in glutathione biosynthesis and DNA recombination, the inhibition on the synthesis and secretion of extracellular polysaccharide induced the prevention of cell-cell contact, leading to the reduction of plasmid transfer. This was evidenced by the decreased bacterial adhesion and lowered levels of genes and metabolites relevant to transmembrane transport and D-glucose phosphorylation, as clarified in phenotypic, transcriptomics and metabolomics analysis of E. coli. The significant down-regulation of glycolysis/gluconeogenesis and TCA cycle was associated with the shortage of ATP induced by Nc. The up-regulation of global regulatory genes (korA and trbA) and the reduction of plasmid genes (trfAp, trbBp, and traG) expression also contributed to the suppressed conjugation of RP4 plasmid. The obtained findings remind that the role of ubiquitous colloidal particles is nonnegligible when practically and comprehensively assessing the risk of antibiotic resistance in the environment.


Subject(s)
Colloids , Escherichia coli , Plasmids , Escherichia coli/genetics , Escherichia coli/drug effects , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Conjugation, Genetic , Drug Resistance, Bacterial/genetics
19.
Bioresour Technol ; 402: 130803, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734263

ABSTRACT

An ionic liquid (IL, [DMAPA]HSO4) was prepared to facilitate the removal of heavy metals by hydrothermal carbonization (HTC) in sewage sludge (SS) and to obtain a positive energy recovery (ER, (Energyoutput/Energyinput - 1) > 0). The results found that the removal efficiencies of the Fe, Mn, Zn, Co, and Cd from SS exceeded 75 % with positive ER (6 %) at 20 wt% IL dosage (IL:SS). IL promoted the HTC reactions of proteins and polysaccharides to produce fixed carbon and small molecule polymers. The process mainly relies on IL to catalyze the dehydration and graphitization of SS and to destroy the heavy metal binding sites such as carboxyl and hydroxyl groups. Additionally, IL aids in constructing the macropore structures in hydrochar, thereby facilitating the release of heavy metals and water during the HTC process. This discovery holds promise for removing heavy metals from SS by one-pot HTC processes with positive energy recovery.


Subject(s)
Ionic Liquids , Metals, Heavy , Sewage , Metals, Heavy/chemistry , Sewage/chemistry , Ionic Liquids/chemistry , Catalysis , Carbon/chemistry , Charcoal/chemistry , Water Pollutants, Chemical , Temperature , Water Purification/methods , Cold Temperature
20.
PLoS One ; 19(5): e0300769, 2024.
Article in English | MEDLINE | ID: mdl-38709750

ABSTRACT

BACKGROUND: Post-stroke depression is a common complication of stroke, with a high incidence rate and low recognition rate. Many patients do not receive effective intervention at the onset, which affects subsequent treatment outcomes. Post-stroke depression not only impacts the patient's mental well-being but also increases the risk of stroke recurrence and poor prognosis. Therefore, it has become a significant public health concern. Acupuncture has gained significant popularity in the treatment of post-stroke depression. However, there are inconsistent clinical research results regarding its efficacy and safety. This systematic review aims to gather and critically assess all available evidence regarding the effectiveness and safety of acupuncture in the treatment of post-stroke depression in patients. METHODS: We will conduct thorough searches for relevant studies in multiple electronic databases (PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, VIP Database, Wan-fang Data and China Biomedical Database). Our search scope will encompass studies published from the inception of each database until September 2023. To evaluate the potential bias in all the included studies, we will adhere to the guidelines offered in the Cochrane Handbook. The total effective rate will be the primary outcome. To conduct a systematic review, we will employ RevMan 5.4 software. RESULTS: This study will obtain efficacy and safety of acupuncture for the treatment of post-stroke depression. CONCLUSIONS: The conclusions of this study will provide evidence-based perspectives that can guide clinical decision-making regarding the practicality and recommended timing of using acupuncture to treat post-stroke depression. Furthermore, this study will help advance the clinical application of acupuncture treatment for post-stroke depression and enhance its efficacy while ensuring patient safety.


Subject(s)
Acupuncture Therapy , Depression , Meta-Analysis as Topic , Stroke , Systematic Reviews as Topic , Humans , Stroke/complications , Stroke/therapy , Acupuncture Therapy/methods , Depression/therapy , Depression/etiology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL