Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
AJNR Am J Neuroradiol ; 45(4): 386-392, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38548304

ABSTRACT

BACKGROUND AND PURPOSE: Carotid siphon calcification might contribute to the high prevalence of cerebrovascular disease in pseudoxanthoma elasticum through increased arterial flow pulsatility. This study aimed to compare intracranial artery flow pulsatility, brain volumes, and small-vessel disease markers between patients with pseudoxanthoma elasticum and controls and the association between arterial calcification and pulsatility in pseudoxanthoma elasticum. MATERIALS AND METHODS: Fifty patients with pseudoxanthoma elasticum and 40 age- and sex-matched controls underwent 3T MR imaging, including 2D phase-contrast acquisitions for flow pulsatility in the assessment of ICA and MCA and FLAIR acquisitions for brain volumes, white matter lesions, and infarctions. All patients with pseudoxanthoma elasticum underwent CT scanning to measure siphon calcification. Flow pulsatility (2D phase-contrast), brain volumes, white matter lesions, and infarctions (3D T1 and 3D T2 FLAIR) were compared between patients and controls. The association between siphon calcification and pulsatility in pseudoxanthoma elasticum was tested with linear regression models. RESULTS: Patients with pseudoxanthoma elasticum (mean age, 57 [SD, 12] years; 24 men) had significantly higher pulsatility indexes (1.05; range, 0.94-1.21 versus 0.94; range, 0.82-1.04; P = .02), lower mean GM volumes (597 [SD, 53] mL versus 632 [SD, 53] mL; P < .01), more white matter lesions (2.6; range, 0.5-7.5 versus 1.1; range, 0.5-2.4) mL; P = .05), and more lacunar infarctions (64 versus 8, P = .04) than controls (mean age, 58 [SD, 11] years; 20 men). Carotid siphon calcification was associated with higher pulsatility indexes in patients with pseudoxanthoma elasticum (ß = 0.10; 95% CI, 0.01-0.18). CONCLUSIONS: Patients with pseudoxanthoma elasticum have increased intracranial artery flow pulsatility and measures of small-vessel disease. Carotid siphon calcification might underlie the high prevalence of cerebrovascular disease in pseudoxanthoma elasticum.


Subject(s)
Brain Injuries , Calcinosis , Cerebrovascular Disorders , Pseudoxanthoma Elasticum , Male , Humans , Middle Aged , Pseudoxanthoma Elasticum/complications , Pseudoxanthoma Elasticum/diagnostic imaging , Pseudoxanthoma Elasticum/pathology , Carotid Artery, Internal/pathology , Cerebrovascular Disorders/diagnostic imaging , Cerebrovascular Disorders/complications , Brain/diagnostic imaging , Brain/pathology , Infarction
2.
Cereb Circ Cogn Behav ; 3: 100142, 2022.
Article in English | MEDLINE | ID: mdl-36324395

ABSTRACT

Perivascular spaces (PVS) are believed to be involved in brain waste disposal. PVS are associated with cerebral small vessel disease. At higher field strengths more PVS can be observed, challenging manual assessment. We developed a method to automatically detect and quantify PVS. A machine learning approach identified PVS in an automatically positioned ROI in the centrum semiovale (CSO), based on -resolution T2-weighted TSE scans. Next, 3D PVS tracking was performed in 50 subjects (mean age 62.9 years (range 27-78), 19 male), and quantitative measures were extracted. Maps of PVS density, length, and tortuosity were created. Manual PVS annotations were available to train and validate the automatic method. Good correlation was found between the automatic and manual PVS count: ICC (absolute/consistency) is 0.64/0.75, and Dice similarity coefficient (DSC) is 0.61. The automatic method counts fewer PVS than the manual count, because it ignores the smallest PVS (length <2 mm). For 20 subjects manual PVS annotations of a second observer were available. Compared with the correlation between the automatic and manual PVS, higher inter-observer ICC was observed (0.85/0.88), but DSC was lower (0.49 in 4 persons). Longer PVS are observed posterior in the CSO compared with anterior in the CSO. Higher PVS tortuosity are observed in the center of the CSO compared with the periphery of the CSO. Our fully automatic method can detect PVS in a 2D slab in the CSO, and extract quantitative PVS parameters by performing 3D tracking. This method enables automated quantitative analysis of PVS.

3.
Cereb Circ Cogn Behav ; 3: 100143, 2022.
Article in English | MEDLINE | ID: mdl-36324413

ABSTRACT

Patients with carotid occlusive disease express altered hemodynamics in the post-occlusive vasculature and lesions commonly attributed to cerebral small vessel disease (SVD). We addressed the question if cerebral perforating artery flow measures, using a novel 7T MRI technique, are altered and related to SVD lesion burden in patients with carotid occlusive disease. 21 patients were included with a uni- (18) or bilateral (3) carotid occlusion (64±7 years) and 19 controls (65±10 years). Mean flow velocity and pulsatility in the perforating arteries in the semi-oval center (CSO) and basal ganglia (BG), measured with a 2D phase contrast 7T MRI sequence, were compared between patients and controls, and between hemispheres in patients with unilateral carotid occlusive disease. In patients, relations were assessed between perforating artery flow measures and SVD burden score and white matter hyperintensity (WMH) volume. CSO perforating artery flow velocity was lower in patients than controls, albeit non-significant (mean difference [95% confidence interval] 0.08 cm/s [0.00-0.16]; p = 0.053), but pulsatility was similar (0.07  [-0.04-0.18]; p = 0.23). BG flow velocity and pulsatility did not differ between patients and controls (velocity = 0.28 cm/s [-0.32-0.88]; p = 0.34; pulsatility = 0.00 [-0.10-0.11]; p = 0.97). Patients with unilateral carotid occlusive disease showed no significant interhemispheric flow differences. Though non-significant, within patients lower CSO (p = 0.06) and BG (p = 0.11) flow velocity related to larger WMH volume. Our findings suggest that carotid occlusive disease may be associated with abnormal cerebral perforating artery flow and that this relates to SVD lesion burden in these patients, although our observations need corroboration in larger study populations.

4.
AJNR Am J Neuroradiol ; 43(4): 540-546, 2022 04.
Article in English | MEDLINE | ID: mdl-35332021

ABSTRACT

BACKGROUND AND PURPOSE: Cerebral small vessel disease contributes to stroke and cognitive impairment and interacts with Alzheimer disease pathology. Because of the small dimensions of the affected vessels, in vivo characterization of blood flow properties is challenging but important to unravel the underlying mechanisms of the disease. MATERIALS AND METHODS: A 2D phase-contrast sequence at 7T MR imaging was used to assess blood flow velocity and the pulsatility index of the perforating basal ganglia arteries. We included patients with cerebral amyloid angiopathy (n = 8; identified through the modified Boston criteria), hypertensive arteriopathy (n = 12; identified through the presence of strictly deep or mixed cerebral microbleeds), and age- and sex-matched controls (n = 28; no cerebral microbleeds). RESULTS: Older age was related to a greater pulsatility index, irrespective of cerebral small vessel disease. In hypertensive arteriopathy, there was an association between lower blood flow velocity of the basal ganglia and the presence of peri-basal ganglia WM hyperintensities. CONCLUSIONS: Our results suggest that age might be the driving factor for altered cerebral small vessel hemodynamics. Furthermore, this study puts cerebral small vessel disease downstream pathologies in the basal ganglia region in relation to blood flow characteristics of the basal ganglia microvasculature.


Subject(s)
Cerebral Amyloid Angiopathy , Cerebral Small Vessel Diseases , Aged , Arteries/pathology , Basal Ganglia/pathology , Cerebral Amyloid Angiopathy/complications , Cerebral Arteries/pathology , Cerebral Hemorrhage/complications , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Humans , Magnetic Resonance Imaging
5.
Phys Fluids (1994) ; 34(12): 121909, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36776539

ABSTRACT

Atrial fibrillation (AF) is the most common cardiac arrhythmia, inducing irregular and faster heart beating. Aside from disabling symptoms-such as palpitations, chest discomfort, and reduced exercise capacity-there is growing evidence that AF increases the risk of dementia and cognitive decline, even in the absence of clinical strokes. Among the possible mechanisms, the alteration of deep cerebral hemodynamics during AF is one of the most fascinating and least investigated hypotheses. Lenticulostriate arteries (LSAs)-small perforating arteries perpendicularly departing from the anterior and middle cerebral arteries and supplying blood flow to basal ganglia-are especially involved in silent strokes and cerebral small vessel diseases, which are considered among the main vascular drivers of dementia. We propose for the first time a computational fluid dynamics analysis to investigate the AF effects on the LSAs hemodynamics by using 7 T high-resolution magnetic resonance imaging (MRI). We explored different heart rates (HRs)-from 50 to 130 bpm-in sinus rhythm and AF, exploiting MRI data from a healthy young male and internal carotid artery data from validated 0D cardiovascular-cerebral modeling as inflow condition. Our results reveal that AF induces a marked reduction of wall shear stress and flow velocity fields. This study suggests that AF at higher HR leads to a more hazardous hemodynamic scenario by increasing the atheromatosis and thrombogenesis risks in the LSAs region.

6.
AJNR Am J Neuroradiol ; 42(11): 2030-2033, 2021 11.
Article in English | MEDLINE | ID: mdl-34561212

ABSTRACT

We compared velocity pulsatility, distensibility, and pulsatility attenuation along the intracranial ICA and MCA between 50 patients with pseudoxanthoma elasticum and 40 controls. Patients with pseudoxanthoma elasticum had higher pulsatility and lower distensibility at all measured locations, except for a similar distensibility at C4. The pulsatility attenuation over the siphon was similar between patients with pseudoxanthoma elasticum and controls. This finding suggests that other disease mechanisms are the main contributors to increased intracranial pulsatility in pseudoxanthoma elasticum.


Subject(s)
Pseudoxanthoma Elasticum , Carotid Artery, Internal , Humans , Pseudoxanthoma Elasticum/diagnostic imaging
7.
AJNR Am J Neuroradiol ; 39(6): 1112-1120, 2018 06.
Article in English | MEDLINE | ID: mdl-29674412

ABSTRACT

BACKGROUND AND PURPOSE: Intracranial vessel wall MR imaging plays an increasing role in diagnosing intracranial vascular diseases. For a complete assessment, pre- and postcontrast sequences are required, and including other sequences, these result in a long scan duration. Ideally, the scan time of the vessel wall sequence should be reduced. The purpose of this study was to evaluate different intracranial vessel wall sequence variants to reduce scan duration, provided an acceptable image quality can be maintained. MATERIALS AND METHODS: Starting from the vessel wall sequence that we use clinically (6:42 minutes), 6 scan variants were tested (scan duration ranging between 4:39 and 8:24 minutes), creating various trade-offs among spatial resolution, SNR, and contrast-to-noise ratio. In total, 15 subjects were scanned on a 3T MR imaging scanner: In 5 subjects, all 7 variants were performed precontrast-only, and in 10 other subjects, the fastest variant (4:39 minutes) and our clinically used variant (6:42 minutes) were performed pre- and postcontrast. RESULTS: The fastest variant (4:39 minutes) had higher or comparable SNRs/contrast-to-noise ratios of the intracranial vessel walls compared with the reference sequence (6:42 minutes). Qualitative assessment showed that the contrast-to-noise ratio was most suppressed in the fastest variant of 4:39 minutes and the variant of 6:42 minutes pre- and postcontrast. SNRs/contrast-to-noise ratios of the fastest variant were all, except one, higher compared with the variant of 6:42 minutes (P < .008). Furthermore, the fastest variant (4:39 minutes) detected all vessel wall lesions identified on the 6:42-minute variant. CONCLUSIONS: A 30% faster vessel wall sequence was developed with high SNRs/contrast-to-noise ratios that resulted in good visibility of the intracranial vessel wall.


Subject(s)
Blood Vessels/diagnostic imaging , Brain/blood supply , Magnetic Resonance Imaging/methods , Adult , Female , Humans , Male , Middle Aged , Signal-To-Noise Ratio
8.
Hum Brain Mapp ; 39(9): 3558-3573, 2018 09.
Article in English | MEDLINE | ID: mdl-29693304

ABSTRACT

Slow sinusoidal, hemodynamic oscillations (SSHOs) around 0.1 Hz are frequently seen in mammalian and human brains. In four patients undergoing epilepsy surgery, subtle but robust fluctuations in oxy- and deoxyhemoglobin were detected using hyperspectral imaging of the cortex. These SSHOs were stationary during the entire 4 to 10 min acquisition time. By Fourier filtering the oxy- and deoxyhemoglobin time signals with a small bandwidth, SSHOs became visible within localized regions of the brain, with distinctive frequencies and a continuous phase variation within that region. SSHOs of deoxyhemoglobin appeared to have an opposite phase and 11% smaller amplitude with respect to the oxyhemoglobin SSHOs. Although the origin of SSHOs remains unclear, we find indications that the observed SSHOs may embody a local propagating hemodynamic wave with velocities in line with capillary blood velocities, and conceivably related to vasomotion and maintenance of adequate tissue perfusion. Hyperspectral imaging of the human cortex during surgery allow in-depth characterization of SSHOs, and may give further insight in the nature and potential (clinical) use of SSHOs.


Subject(s)
Brain Waves/physiology , Cerebral Cortex/physiopathology , Cerebrovascular Circulation , Epilepsy/physiopathology , Hemoglobinometry/methods , Hemoglobins/analysis , Oxyhemoglobins/analysis , Spectrophotometry/methods , Adolescent , Cerebral Cortex/blood supply , Epilepsy/surgery , Female , Fourier Analysis , Functional Neuroimaging/methods , Hemoglobinometry/instrumentation , Humans , Image Processing, Computer-Assisted , Intraoperative Period , Male , Spectrophotometry/instrumentation , Young Adult
9.
AJNR Am J Neuroradiol ; 39(4): 713-719, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29472302

ABSTRACT

BACKGROUND AND PURPOSE: Aneurysm volume pulsation is a potential predictor of intracranial aneurysm rupture. We evaluated whether 7T MR imaging can quantify aneurysm volume pulsation. MATERIALS AND METHODS: In Stage I of the study, 10 unruptured aneurysms in 9 patients were studied using a high-resolution (0.6-mm, isotropic) 3D gradient-echo sequence with cardiac gating. Semiautomatic segmentation was used to measure aneurysm volume (in cubic millimeters) per cardiac phase. Aneurysm pulsation was defined as the relative increase in volume between the phase with the smallest volume and the phase with the largest volume. The accuracy and precision of the measured volume pulsations were addressed by digital phantom simulations and a repeat image analysis. In Stage II, the imaging protocol was optimized and 9 patients with 9 aneurysms were studied with and without administration of a contrast agent. RESULTS: The mean aneurysm pulsation in Stage I was 8% ± 7% (range, 2%-27%), with a mean volume change of 15 ± 14 mm3 (range, 3-51 mm3). The mean difference in volume change for the repeat image analysis was 2 ± 6 mm3. The artifactual volume pulsations measured with the digital phantom simulations were of the same magnitude as the volume pulsations observed in the patient data, even after protocol optimization in Stage II. CONCLUSIONS: Volume pulsation quantification with the current imaging protocol on 7T MR imaging is not accurate due to multiple imaging artifacts. Future studies should always include aneurysm-specific accuracy analysis.


Subject(s)
Intracranial Aneurysm/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Adult , Aged , Female , Humans , Image Interpretation, Computer-Assisted/methods , Male , Middle Aged , Pulsatile Flow
10.
AJNR Am J Neuroradiol ; 37(6): 1050-7, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26846925

ABSTRACT

BACKGROUND AND PURPOSE: High resolution 7T MRI is increasingly used to investigate hippocampal subfields in vivo, but most studies rely on manual segmentation which is labor intensive. We aimed to evaluate an automated technique to segment hippocampal subfields and the entorhinal cortex at 7T MRI. MATERIALS AND METHODS: The cornu ammonis (CA)1, CA2, CA3, dentate gyrus, subiculum, and entorhinal cortex were manually segmented, covering most of the long axis of the hippocampus on 0.70-mm(3) T2-weighted 7T images of 26 participants (59 ± 9 years, 46% men). The automated segmentation of hippocampal subfields approach was applied and evaluated by using leave-one-out cross-validation. RESULTS: Comparison of automated segmentations with corresponding manual segmentations yielded a Dice similarity coefficient of >0.75 for CA1, the dentate gyrus, subiculum, and entorhinal cortex and >0.54 for CA2 and CA3. Intraclass correlation coefficients were >0.74 for CA1, the dentate gyrus, and subiculum; and >0.43 for CA2, CA3, and the entorhinal cortex. Restricting the comparison of the entorhinal cortex segmentation to a smaller range along the anteroposterior axis improved both intraclass correlation coefficients (left: 0.71; right: 0.82) and Dice similarity coefficients (left: 0.78; right: 0.77). The accuracy of the automated segmentation versus a manual rater was lower, though only slightly for most subfields, than the intrarater reliability of an expert manual rater, but it was similar to or slightly higher than the accuracy of an expert-versus-manual rater with ∼170 hours of training for almost all subfields. CONCLUSIONS: This work demonstrates the feasibility of using a computational technique to automatically label hippocampal subfields and the entorhinal cortex at 7T MRI, with a high accuracy for most subfields that is competitive with the labor-intensive manual segmentation. The software and atlas are publicly available: http://www.nitrc.org/projects/ashs/.


Subject(s)
Hippocampus/diagnostic imaging , Magnetic Resonance Imaging/methods , Aged , Automation , CA1 Region, Hippocampal/diagnostic imaging , CA2 Region, Hippocampal/diagnostic imaging , CA3 Region, Hippocampal/diagnostic imaging , Dentate Gyrus/diagnostic imaging , Entorhinal Cortex/diagnostic imaging , Female , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Observer Variation , Reproducibility of Results
11.
AJNR Am J Neuroradiol ; 37(7): 1310-7, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26892986

ABSTRACT

BACKGROUND AND PURPOSE: Both hemodynamics and aneurysm wall thickness are important parameters in aneurysm pathophysiology. Our aim was to develop a method for semi-quantitative wall thickness assessment on in vivo 7T MR images of intracranial aneurysms for studying the relation between apparent aneurysm wall thickness and wall shear stress. MATERIALS AND METHODS: Wall thickness was analyzed in 11 unruptured aneurysms in 9 patients who underwent 7T MR imaging with a TSE-based vessel wall sequence (0.8-mm isotropic resolution). A custom analysis program determined the in vivo aneurysm wall intensities, which were normalized to the signal of nearby brain tissue and were used as measures of apparent wall thickness. Spatial wall thickness variation was determined as the interquartile range in apparent wall thickness (the middle 50% of the apparent wall thickness range). Wall shear stress was determined by using phase-contrast MR imaging (0.5-mm isotropic resolution). We performed visual and statistical comparisons (Pearson correlation) to study the relation between wall thickness and wall shear stress. RESULTS: 3D colored apparent wall thickness maps of the aneurysms showed spatial apparent wall thickness variation, which ranged from 0.07 to 0.53, with a mean variation of 0.22 (a variation of 1.0 roughly means a wall thickness variation of 1 voxel [0.8 mm]). In all aneurysms, apparent wall thickness was inversely related to wall shear stress (mean correlation coefficient, -0.35; P < .05). CONCLUSIONS: A method was developed to measure the wall thickness semi-quantitatively, by using 7T MR imaging. An inverse correlation between wall shear stress and apparent wall thickness was determined. In future studies, this noninvasive method can be used to assess spatial wall thickness variation in relation to pathophysiologic processes such as aneurysm growth and rupture.


Subject(s)
Imaging, Three-Dimensional/methods , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/physiopathology , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Aged , Female , Hemodynamics/physiology , Humans , Intracranial Aneurysm/pathology , Male , Middle Aged , Stress, Mechanical
12.
AJNR Am J Neuroradiol ; 37(5): 802-10, 2016 May.
Article in English | MEDLINE | ID: mdl-26705320

ABSTRACT

BACKGROUND AND PURPOSE: In recent years, several high-resolution vessel wall MR imaging techniques have emerged for the characterization of intracranial atherosclerotic vessel wall lesions in vivo. However, a thorough validation of MR imaging results of intracranial plaques with histopathology is still lacking. The aim of this study was to characterize atherosclerotic plaque components in a quantitative manner by obtaining the MR signal characteristics (T1, T2, T2*, and proton density) at 7T in ex vivo circle of Willis specimens and using histopathology for validation. MATERIALS AND METHODS: A multiparametric ultra-high-resolution quantitative MR imaging protocol was performed at 7T to identify the MR signal characteristics of different intracranial atherosclerotic plaque components, and using histopathology for validation. In total, 38 advanced plaques were matched between MR imaging and histology, and ROI analysis was performed on the identified tissue components. RESULTS: Mean T1, T2, and T2* relaxation times and proton density values were significantly different between different tissue components. The quantitative T1 map showed the most differences among individual tissue components of intracranial plaques with significant differences in T1 values between lipid accumulation (T1 = 838 ± 167 ms), fibrous tissue (T1 = 583 ± 161 ms), fibrous cap (T1 = 481 ± 98 ms), calcifications (T1 = 314 ± 39 ms), and the intracranial arterial vessel wall (T1 = 436 ± 122 ms). CONCLUSIONS: Different tissue components of advanced intracranial plaques have distinguishable imaging characteristics with ultra-high-resolution quantitative MR imaging at 7T. Based on this study, the most promising method for distinguishing intracranial plaque components is T1-weighted imaging.


Subject(s)
Intracranial Arteriosclerosis/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Plaque, Atherosclerotic/diagnostic imaging , Humans , Plaque, Atherosclerotic/pathology
13.
NMR Biomed ; 29(9): 1295-304, 2016 09.
Article in English | MEDLINE | ID: mdl-25916399

ABSTRACT

Thus far, blood flow velocity measurements with MRI have only been feasible in large cerebral blood vessels. High-field-strength MRI may now permit velocity measurements in much smaller arteries. The aim of this proof of principle study was to measure the blood flow velocity and pulsatility of cerebral perforating arteries with 7-T MRI. A two-dimensional (2D), single-slice quantitative flow (Qflow) sequence was used to measure blood flow velocities during the cardiac cycle in perforating arteries in the basal ganglia (BG) and semioval centre (CSO), from which a mean normalised pulsatility index (PI) per region was calculated (n = 6 human subjects, aged 23-29 years). The precision of the measurements was determined by repeated imaging and performance of a Bland-Altman analysis, and confounding effects of partial volume and noise on the measurements were simulated. The median number of arteries included was 14 in CSO and 19 in BG. In CSO, the average velocity per volunteer was in the range 0.5-1.0 cm/s and PI was 0.24-0.39. In BG, the average velocity was in the range 3.9-5.1 cm/s and PI was 0.51-0.62. Between repeated scans, the precision of the average, maximum and minimum velocity per vessel decreased with the size of the arteries, and was relatively low in CSO and BG compared with the M1 segment of the middle cerebral artery. The precision of PI per region was comparable with that of M1. The simulations proved that velocities can be measured in vessels with a diameter of more than 80 µm, but are underestimated as a result of partial volume effects, whilst pulsatility is overestimated. Blood flow velocity and pulsatility in cerebral perforating arteries have been measured directly in vivo for the first time, with moderate to good precision. This may be an interesting metric for the study of haemodynamic changes in aging and cerebral small vessel disease. © 2015 The Authors NMR in Biomedicine Published by John Wiley & Sons Ltd.


Subject(s)
Blood Flow Velocity/physiology , Cerebral Angiography/methods , Cerebral Arteries/physiology , Cerebrovascular Circulation/physiology , Image Enhancement/methods , Magnetic Resonance Angiography/methods , Pulsatile Flow/physiology , Adult , Cerebral Arteries/anatomy & histology , Female , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Fields , Male , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity
15.
J Affect Disord ; 175: 1-7, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25589378

ABSTRACT

INTRODUCTION: Smaller hippocampal volumes have been associated with major depressive disorder (MDD). The hippocampus consists of several subfields that may be differentially related to MDD. We investigated the association of occurrence of major depressive episodes (MDEs), assessed five times over seven years, with hippocampal subfield and entorhinal cortex volumes at 7 tesla MRI. METHODS: In this prospective study of randomly selected general practice attendees, MDEs according to DSM-IV-R criteria were assessed at baseline and after 6, 12, 39 and 84 months follow-up. At the last follow-up, a T2 (0.7 mm(3)) 7 tesla MRI scan was obtained in 47 participants (60±10 years). The subiculum, cornu ammonis (CA) 1 to 3, dentate gyrus&CA4 and entorhinal cortex volumes were manually segmented according a published protocol. RESULTS: Of the 47 participants, 13 had one MDE and 5 had multiple MDEs. ANCOVAs, adjusted for age, sex, education and intracranial volume, revealed no significant differences in hippocampal subfield or entorhinal cortex volumes between participants with and without an MDE in the preceding 84 months. Multiple episodes were associated with smaller subiculum volumes (B=-0.03 mL/episode; 95% CI -0.06; -0.003), but not with the other hippocampal subfield volumes, entorhinal cortex, or total hippocampal volume. LIMITATIONS: A limitation of this study is the small sample size which makes replication necessary. CONCLUSIONS: In this exploratory study, we found that an increasing number of major depressive episodes was associated with smaller subiculum volumes in middle-aged and older persons, but not with smaller volumes in other hippocampal subfields or the entorhinal cortex.


Subject(s)
Depressive Disorder, Major/pathology , Hippocampus/pathology , Magnetic Resonance Imaging , Neuroimaging , Aged , Atrophy/pathology , Diagnostic and Statistical Manual of Mental Disorders , Entorhinal Cortex/pathology , Female , Humans , Male , Middle Aged , Prospective Studies , Time Factors
16.
AJNR Am J Neuroradiol ; 36(4): 694-701, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25477359

ABSTRACT

BACKGROUND AND PURPOSE: Several studies have attempted to characterize intracranial atherosclerotic plaques by using MR imaging sequences. However, dedicated validation of these sequences with histology has not yet been performed. The current study assessed the ability of ultra-high-resolution 7T MR imaging sequences with different image contrast weightings to image plaque components, by using histology as criterion standard. MATERIALS AND METHODS: Five specimens of the circle of Wills were imaged at 7T with 0.11 × 0.11 mm in-plane-resolution proton attenuation-, T1-, T2-, and T2*-weighted sequences (through-plane resolution, 0.11-1 mm). Tissue samples from 13 fiducial-marked locations (per specimen) on MR imaging underwent histologic processing and atherosclerotic plaque classification. Reconstructed MR images were matched with histologic sections at corresponding locations. RESULTS: Forty-four samples were available for subsequent evaluation of agreement or disagreement between plaque components and image contrast differences. Of samples, 52.3% (n = 23) showed no image contrast heterogeneity; this group comprised solely no lesions or early lesions. Of samples, 25.0% (n = 11, mostly advanced lesions) showed good correlation between the spatial organization of MR imaging heterogeneities and plaque components. Areas of foamy macrophages were generally seen as proton attenuation-, T2-, and T2*- hypointense areas, while areas of increased collagen content showed more ambiguous signal intensities. Five samples showed image-contrast heterogeneity without corresponding plaque components on histology; 5 other samples showed contrast heterogeneity based on intima-media artifacts. CONCLUSIONS: MR imaging at 7T has the image contrast capable of identifying both focal intracranial vessel wall thickening and distinguishing areas of different signal intensities spatially corresponding to plaque components within more advanced atherosclerotic plaques.


Subject(s)
Image Processing, Computer-Assisted/methods , Intracranial Arteriosclerosis/pathology , Magnetic Resonance Imaging/methods , Plaque, Atherosclerotic/pathology , Humans
17.
Mult Scler ; 21(2): 155-62, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25013150

ABSTRACT

BACKGROUND: Virchow-Robin spaces (VRS) are associated with vascular and neurodegenerative disease. In multiple sclerosis (MS), VRS have been associated with neuroinflammation. Ultra-high field imaging may be used to gain insight in these contradictory findings. OBJECTIVE: The objective of this paper is to analyze VRS in MS patients using high-resolution 7 Tesla (T) MRI. Additionally, we investigated whether the widening of VRS is related to inflammatory or neurodegenerative aspects of MS. METHODS: Thirty-four MS patients and 11 healthy controls were examined at 7T. Number and size of VRS were measured on three-dimensional (3D) T1-weighted images, and 3D fluid-attenuated inversion recovery (FLAIR) images were used for MS lesion detection. Brain atrophy was quantified by computing supratentorial brain volume fraction (sBVF). VRS counts were correlated with clinical variables, lesion count and sBVF. RESULTS: MS patients displayed more VRS (median 11) than healthy controls (median four), p = 0.001. VRS size did not differ between both groups. VRS count in MS patients was associated with sBVF (rho = -0.40, p = 0.02), but not with lesion count (p = 0.22). CONCLUSIONS: The 7T MRI reveals increased numbers of VRS in MS. The finding that VRS are associated with supratentorial brain atrophy, but not with lesion count, suggests that VRS might rather serve as a neurodegenerative than an inflammatory marker in MS.


Subject(s)
Brain/pathology , Magnetic Resonance Imaging/methods , Multiple Sclerosis/pathology , Neurodegenerative Diseases/pathology , Adult , Atrophy/pathology , Biomarkers , Female , Humans , Magnetic Resonance Imaging/instrumentation , Male , Middle Aged , Multiple Sclerosis/diagnosis , Neurodegenerative Diseases/diagnosis
18.
Magn Reson Med ; 69(3): 868-76, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-22618854

ABSTRACT

The assessment of both geometry and hemodynamics of the intracranial arteries has important diagnostic value in internal carotid occlusion, sickle cell disease, and aneurysm development. Provided that signal to noise ratio (SNR) and resolution are high, these factors can be measured with time-resolved three-dimensional phase contrast MRI. However, within a given scan time duration, an increase in resolution causes a decrease in SNR and vice versa, hampering flow quantification and visualization. To study the benefits of higher SNR at 7 T, three-dimensional phase contrast MRI in the Circle of Willis was performed at 3 T and 7 T in five volunteers. Results showed that the SNR at 7 T was roughly 2.6 times higher than at 3 T. Therefore, segmentation of small vessels such as the anterior and posterior communicating arteries succeeded more frequently at 7 T. Direction of flow and smoothness of streamlines in the anterior and posterior communicating arteries were more pronounced at 7 T. Mean velocity magnitude values in the vessels of the Circle of Willis were higher at 3 T due to noise compared to 7 T. Likewise, areas of the vessels were lower at 3 T. In conclusion, the gain in SNR at 7 T compared to 3 T allows for improved flow visualization and quantification in intracranial arteries.


Subject(s)
Algorithms , Cerebrovascular Circulation/physiology , Circle of Willis/physiology , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Angiography/methods , Adult , Blood Flow Velocity/physiology , Circle of Willis/anatomy & histology , Female , Humans , Image Enhancement/methods , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Young Adult
19.
Magn Reson Med ; 69(4): 1186-93, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22760686

ABSTRACT

A setup for 7T MRI of the carotid arteries in the neck was designed and constructed. Separate dedicated arrays were used for transmit and receive. For the transmit array, single-side adapted dipole antennas were mounted on a dielectric pillow, which was shown to serve as a leaky waveguide, efficiently distributing B1 into the neck. Risk assessment was performed by simulations. Phantom measurements were performed to establish optimal positions of the antennas on the pillow. Using two antennas, a dual transmit setup was created. In vivo B1 (+) maps with different shim configurations were acquired to assess transmit performance. This effective transmit array was used in combination with a dedicated 30 channel small element receive coil. High-resolution in vivo turbo spin echo images were acquired to demonstrate the excellent performance of the setup.


Subject(s)
Carotid Arteries/anatomy & histology , Image Enhancement/instrumentation , Magnetic Resonance Angiography/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis , Humans , Reproducibility of Results , Sensitivity and Specificity
20.
ScientificWorldJournal ; 2012: 691095, 2012.
Article in English | MEDLINE | ID: mdl-22792049

ABSTRACT

PURPOSE: To study the anatomy of the pterygopalatine fossa (PPF) using ultrahigh-resolution magnetic resonance imaging. METHODS: A human cadaveric tissue block containing the pterygopalatine fossa was examined on a clinical 7-Tesla magnetic resonance imaging system. Subsequently, cryosections of the tissue block were created in a coronal plane. The cryosections were photographed and collected on adhesive tape. The on-tape sections were stained for Mallory-Cason, in order to detail the anatomic structures within the fossa. Magnetic resonance images were compared with surface photos of the tissue block and on-tape sections. RESULTS: High-resolution magnetic resonance images demonstrated the common macroscopic structures in the PPF. Smaller structures, best viewed at the level of the operation microscope, which have previously been obscured on magnetic resonance imaging, could be depicted. Some of the orbital pterygopalatine ganglion branches and the pharyngeal nerve were clearly viewed. CONCLUSIONS: In our experience with one human cadaver specimen, magnetic resonance imaging at 7 Tesla seems effective in depicting pterygopalatine fossa anatomy and provides previously unseen details through its demonstration of the pharyngeal nerve and the orbital pterygopalatine ganglion branches. The true viability of depicting the pterygopalatine fossa with ultrahigh-resolution MR will depend on confirmation of our results in larger studies.


Subject(s)
Image Enhancement/methods , Magnetic Resonance Imaging/methods , Pterygopalatine Fossa/anatomy & histology , Pterygopalatine Fossa/cytology , Aged , Cadaver , Humans , International System of Units , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...