Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 13(11): 352, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37810191

ABSTRACT

The ineffectiveness of azole drugs in treating Vulvovaginal Candidiasis (VVC) and Recurrent Vulvovaginal Candidiasis (RVVC) due to antifungal resistance of non-albicans Candida has led to the investigation of inorganic nanoparticles with biological activity. Silver nanoparticles (AgNPs) are important in nanomedicine and have been used in various products and technologies. This study aimed to develop a vaginal cream and assess its in vitro antimicrobial activity against Candida parapsilosis strains, specifically focusing on the synergy between AgNPs and miconazole. AgNPs were synthesized using glucose as a reducing agent and sodium dodecyl sulfate (SDS) as a stabilizer in varying amounts (0.50, 0.25, and 0.10 g). The AgNPs were characterized using UV-Visible (UV-Vis) and Fourier-Transform Infrared (FT-IR) spectroscopies, X-Ray Diffraction (XRD), Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Analysis (EDX). Fifty strains of Candida parapsilosis were used to evaluate the synergistic activity. AgNPs synthesized with 0.5 g SDS had an average size of 77.58 nm and a zeta potential of -49.2 mV, while AgNPs with 0.25 g showed 91.22 nm and -47.2 mV, respectively. AgNPs stabilized with 0.1 g of SDS were not effective. When combined with miconazole, AgNPs exhibited significant antifungal activity, resulting in an average increase of 80% in inhibition zones. The cream developed in this study, containing half the miconazole concentration of commercially available medication, demonstrated larger inhibition zones compared to the commercial samples.

2.
Curr Microbiol ; 80(8): 251, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37351656

ABSTRACT

The high incidence of Candida albicans infections has raised concerns regarding side effects and drug resistance, compounded by a limited number of alternative drugs. Silver nanoparticles (AgNPs) have prominent antimicrobial activity, but effective administration remains a challenge. In this study, AgNPs were synthesized via a green chemistry approach, using glucose as a reducing agent, and incorporated into an agar matrix to form a film (AgFilm). The AgNPs and AgFilm were characterized by Ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and atomic force microscopic (AFM). The UV-Vis spectra of the AgNPs and AgFilm showed bands at 415 and 413 nm, respectively. The PXRD and UV-Vis data suggest that the growth of AgNPs was effectively inhibited in the AgFilm. The diameter of AgNPs dispersed in AgFilm was 76 ± 42 nm, and the thickness of the film and 35 ± 3 µm. The antifungal activity of AgFilm was evaluated against 20 strains of C. albicans, demonstrating high antifungal activity with an inhibition zone of 19 ± 2 mm. Therefore, AgFilm could be a promising option for the treatment of superficial C. albicans infections.


Subject(s)
Antifungal Agents , Metal Nanoparticles , Antifungal Agents/pharmacology , Silver/pharmacology , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/pharmacology
3.
Anticancer Res ; 32(11): 4805-11, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23155246

ABSTRACT

Polymorphisms in genes encoding enzymes of folate metabolism are a focus of breast cancer risk studies due of the role of these enzymes in DNA methylation, synthesis, and repair. MTHFR, encoding for 5,10-methylenetetrahydrofolate reductase, is one of the most studied genes in this regard, but findings are controversial, and the majority of studies have analyzed polymorphisms individually. In this case control study, we examined the combination of the polymorphisms MTHFR C677T and A1298C with MTR A2756G, where MTR, methionine synthase, is an important enzyme of the folate cycle in the methylation pathway. One hundred and forty-two patients with breast cancer and controls were included and the genotypes were determined using PCR-RFLP. In the population studied, individuals carrying the polymorphic allele in the heterozygous state for both enzymes, MTHFR C677T and MTR A2756G, had an increased risk [odds ratio, OR=2.77 (95% confidence interval, CI=1.19-6.52)] for disease, compared to those with the wild genotype. In addition, individuals carrying the MTR 2756 genotype AG had an increased risk when this was combined with the MTHFR 1298 genotype CC [OR=5.13 (95% CI=0.87-38.82)]. No significant results were found from the analyses associating the MTHFR C677T and A1298C genotypes. However, when stratifying the patients by age (50 years old as the cut-off), patients over 50 years old had greater risk, with the presence of both MTHFR polymorphisms in the heterozygous state [OR=5.33 (95% CI=1.42-21.03)]. This study points out the importance of the interactions between the MTHFR C677T, MTHFR A1298C and MTR A2756G polymorphisms, and also highlights the relevance of the MTR A2756G polymorphism and age in breast cancer risk.


Subject(s)
5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , Breast Neoplasms/enzymology , Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Age Factors , Brazil , Female , Genotype , Humans , Polymorphism, Restriction Fragment Length , Polymorphism, Single Nucleotide , Reverse Transcriptase Polymerase Chain Reaction , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...