Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Viruses ; 14(7)2022 07 20.
Article in English | MEDLINE | ID: mdl-35891551

ABSTRACT

Many drugs have been evaluated to reactivate HIV-1 from cellular reservoirs, but the off-target effects of these latency reversal agents (LRA) remain poorly defined. Transposable elements (TEs) are reactivated during HIV-1 infection, but studies of potential off-target drug effects on TE expression have been limited. We analyzed the differential expression of TEs induced by canonical and non-canonical NF-κB signaling. We evaluated the effect of PKC agonists (Bryostatin and Ingenol B) on the expression of TEs in memory CD4+ T cells. Ingenol B induced 38 differentially expressed TEs (17 HERV (45%) and 21 L1 (55%)). Interestingly, TE expression in effector memory CD4+ T cells was more affected by Bryostatin compared to other memory T-cell subsets, with 121 (107 upregulated and 14 downregulated) differentially expressed (DE) TEs. Of these, 31% (n = 37) were HERVs, and 69% (n = 84) were LINE-1 (L1). AZD5582 induced 753 DE TEs (406 HERV (54%) and 347 L1 (46%)). Together, our findings show that canonical and non-canonical NF-κB signaling activation leads to retroelement expressions as an off-target effect. Furthermore, our data highlights the importance of exploring the interaction between LRAs and the expression of retroelements in the context of HIV-1 eradication strategies.


Subject(s)
DNA Transposable Elements , HIV Infections , HIV Seropositivity , NF-kappa B , Virus Latency , Bryostatins/pharmacology , CD4-Positive T-Lymphocytes/metabolism , Diterpenes/pharmacology , HIV Infections/drug therapy , HIV Infections/metabolism , HIV-1 , Humans , NF-kappa B/metabolism , Virus Activation
2.
Cancers (Basel) ; 13(14)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34298727

ABSTRACT

Retroelements are expressed in diverse types of cancer and are related to tumorigenesis and to cancer progression. We characterized the expression of retroelements in cervical cancer and explored their interplay with HPV infection and their association with expression of neighboring genes. Forty biopsies of invasive cervical carcinoma (squamous cell carcinomas and adenocarcinomas) with genotyped HPV were selected and analyzed for human endogenous retrovirus (HERV) and long interspersed nuclear element 1 (L1) expression through RNA-seq data. We found 8060 retroelements expressed in the samples and a negative correlation of DNA methyltransferase 1 expression with the two most expressed L1 elements. A total of 103 retroelements were found differentially expressed between tumor histological types and between HPV types, including several HERV families (HERV-K, HERV-H, HERV-E, HERV-I and HERV-L). The comparison between HPV mono- and co-infections showed the highest proportion of differentially expressed L1 elements. The location of retroelements affected neighboring gene expression, such as shown for the interleukin-20 gene family. Three HERVs and seven L1 were located close to this gene family and two L1 showed a positive association with IL20RB expression. This study describes the expression of retroelements in cervical cancer and shows their association with HPV status and host gene expression.

3.
Front Oncol ; 10: 553983, 2020.
Article in English | MEDLINE | ID: mdl-33194615

ABSTRACT

In people living with HIV (PLWH), chronic inflammation can lead to cancer initiation and progression, besides driving a dysregulated and diminished immune responsiveness. HIV infection also leads to increased transcription of Human Endogenous Retroviruses (HERVs), which could increase an inflammatory environment and create a tumor growth suppressive environment with high expression of pro-inflammatory cytokines. In order to determine the impact of HIV infection to HERV expression on the breast cancer microenvironment, we sequenced total RNA from formalin-fixed paraffin-embedded (FFPE) breast cancer samples of women HIV-negative and HIV-positive for transcriptome and retrotranscriptome analyses. We performed RNA extraction from FFPE samples, library preparation and total RNA sequencing (RNA-seq). The RNA-seq analysis shows 185 differentially expressed genes: 181 host genes (178 upregulated and three downregulated) and four upregulated HERV transcripts in HIV-positive samples. We also explored the impact of HERV expression in its neighboring breast cancer development genes (BRCA1, CCND1, NBS1/NBN, RAD50, KRAS, PI3K/PIK3CA) and in long non-coding RNA expression (AC060780.1, also known as RP11-242D8.1). We found a significant positive association of HERV expression with RAD50 and with AC060780.1, which suggest a possible role of HERV in regulating breast cancer genes from PLWH with breast cancer. In addition, we found immune system, extracellular matrix organization and metabolic signaling genes upregulated in HIV-positive breast cancer. In conclusion, our findings provide evidence of transcriptional and retrotranscriptional changes in breast cancer from PLWH compared to non-HIV breast cancer, including dysregulation of HERVs, suggesting an indirect effect of the virus on the breast cancer microenvironment.

4.
Viruses ; 12(7)2020 07 06.
Article in English | MEDLINE | ID: mdl-32640516

ABSTRACT

In diseases where epigenetic mechanisms are changed, such as cancer, many genes show altered gene expression and inhibited genes become activated. Human endogenous retrovirus type K (HERV-K) expression is usually inhibited in normal cells from healthy adults. In tumor cells, however, HERV-K mRNA expression has been frequently documented to increase. Importantly, HERV-K-derived proteins can act as tumor-specific antigens, a class of neoantigens, and induce immune responses in different types of cancer. In this review, we describe the function of the HERV-K HML-2 subtype in carcinogenesis as biomarkers, and their potential as targets for cancer immunotherapy.


Subject(s)
Endogenous Retroviruses , Immunotherapy/methods , Neoplasms/virology , Biomarkers, Tumor/immunology , Endogenous Retroviruses/genetics , Endogenous Retroviruses/immunology , Genome, Viral/genetics , Humans , Neoplasms/immunology , Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL