Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Biosci Rep ; 44(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38717250

ABSTRACT

Temozolomide (TMZ) is the leading therapeutic agent for combating Glioblastoma Multiforme (GBM). Nonetheless, the persistence of chemotherapy-resistant GBM cells remains an ongoing challenge, attributed to various factors, including the translesion synthesis (TLS) mechanism. TLS enables tumor cells to endure genomic damage by utilizing specialized DNA polymerases to bypass DNA lesions. Specifically, TLS polymerase Kappa (Polκ) has been implicated in facilitating DNA damage tolerance against TMZ-induced damage, contributing to a worse prognosis in GBM patients. To better understand the roles of Polκ in TMZ resistance, we conducted a comprehensive assessment of the cytotoxic, antiproliferative, antimetastatic, and genotoxic effects of TMZ on GBM (U251MG) wild-type (WTE) and TLS Polκ knockout (KO) cells, cultivated as three-dimensional (3D) tumor spheroids in vitro. Initial results revealed that TMZ: (i) induces reductions in GBM spheroid diameter (10-200 µM); (ii) demonstrates significant cytotoxicity (25-200 µM); (iii) exerts antiproliferative effects (≤25 µM) and promotes cell cycle arrest (G2/M phase) in Polκ KO spheroids when compared with WTE counterparts. Furthermore, Polκ KO spheroids exhibit elevated levels of cell death (Caspase 3/7) and display greater genotoxicity (53BP1) than WTE following TMZ exposure. Concerning antimetastatic effects, TMZ impedes invadopodia (3D invasion) more effectively in Polκ KO than in WTE spheroids. Collectively, the results suggest that TLS Polκ plays a vital role in the survival, cell death, genotoxicity, and metastatic potential of GBM spheroids in vitro when subjected to TMZ treatment. While the precise mechanisms underpinning this resistance remain elusive, TLS Polκ emerges as a potential therapeutic target for GBM patients.


Subject(s)
DNA-Directed DNA Polymerase , Drug Resistance, Neoplasm , Glioblastoma , Spheroids, Cellular , Temozolomide , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/enzymology , Temozolomide/pharmacology , Drug Resistance, Neoplasm/drug effects , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage/drug effects , Apoptosis/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/enzymology , Antineoplastic Agents, Alkylating/pharmacology
2.
Biomedicines ; 11(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37189700

ABSTRACT

The transcription factor NRF2 is constitutively active in glioblastoma, a highly aggressive brain tumor subtype with poor prognosis. Temozolomide (TMZ) is the primary chemotherapeutic agent for this type of tumor treatment, but resistance to this drug is often observed. This review highlights the research that is demonstrating how NRF2 hyperactivation creates an environment that favors the survival of malignant cells and protects against oxidative stress and TMZ. Mechanistically, NRF2 increases drug detoxification, autophagy, DNA repair, and decreases drug accumulation and apoptotic signaling. Our review also presents potential strategies for targeting NRF2 as an adjuvant therapy to overcome TMZ chemoresistance in glioblastoma. Specific molecular pathways, including MAPKs, GSK3ß, ßTRCP, PI3K, AKT, and GBP, that modulate NRF2 expression leading to TMZ resistance are discussed, along with the importance of identifying NRF2 modulators to reverse TMZ resistance and develop new therapeutic targets. Despite the significant progress in understanding the role of NRF2 in GBM, there are still unanswered questions regarding its regulation and downstream effects. Future research should focus on elucidating the precise mechanisms by which NRF2 mediates resistance to TMZ, and identifying potential novel targets for therapeutic intervention.

3.
Int J Mol Sci ; 23(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35805884

ABSTRACT

Glioblastoma multiforme is a lethal disease and represents the most common and severe type of glioma. Drug resistance and the evasion of cell death are the main characteristics of its malignancy, leading to a high percentage of disease recurrence and the patients' low survival rate. Exploiting the modulation of cell death mechanisms could be an important strategy to prevent tumor development and reverse the high mortality and morbidity rates in glioblastoma patients. Ferroptosis is a recently described type of cell death, which is characterized by iron accumulation, high levels of polyunsaturated fatty acid (PUFA)-containing phospholipids, and deficiency in lipid peroxidation repair. Several studies have demonstrated that ferroptosis has a potential role in cancer treatment and could be a promising approach for glioblastoma patients. Thus, here, we present an overview of the mechanisms of the iron-dependent cell death and summarize the current findings of ferroptosis modulation on glioblastoma including its non-canonical pathway. Moreover, we focused on new ferroptosis-inducing compounds for glioma treatment, and we highlight the key ferroptosis-related genes to glioma prognosis, which could be further explored. Thereby, understanding how to trigger ferroptosis in glioblastoma may provide promising pharmacological targets and indicate new therapeutic approaches to increase the survival of glioblastoma patients.


Subject(s)
Ferroptosis , Glioblastoma , Glioma , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Iron/metabolism , Neoplasm Recurrence, Local
4.
Article in English | MEDLINE | ID: mdl-35649682

ABSTRACT

Human DNA polymerases can bypass DNA lesions performing translesion synthesis (TLS), a mechanism of DNA damage tolerance. Tumor cells use this mechanism to survive lesions caused by specific chemotherapeutic agents, resulting in treatment relapse. Moreover, TLS polymerases are error-prone and, thus, can lead to mutagenesis, increasing the resistance potential of tumor cells. DNA polymerase eta (pol eta) - a key protein from this group - is responsible for protecting against sunlight-induced tumors. Xeroderma Pigmentosum Variant (XP-V) patients are deficient in pol eta activity, which leads to symptoms related to higher sensitivity and increased incidence of skin cancer. Temozolomide (TMZ) is a chemotherapeutic agent used in glioblastoma and melanoma treatment. TMZ damages cells' genomes, but little is known about the role of TLS in TMZ-induced DNA lesions. This work investigates the effects of TMZ treatment in human XP-V cells, which lack pol eta, and in its complemented counterpart (XP-V comp). Interestingly, TMZ reduces the viability of XP-V cells compared to TLS proficient control cells. Furthermore, XP-V cells treated with TMZ presented increased phosphorylation of H2AX, forming γH2AX, compared to control cells. However, cell cycle assays indicate that XP-V cells treated with TMZ replicate damaged DNA and pass-through S-phase, arresting in the G2/M-phase. DNA fiber assay also fails to show any specific effect of TMZ-induced DNA damage blocking DNA elongation in pol eta deficient cells. These results show that pol eta plays a role in protecting human cells from TMZ-induced DNA damage, but this can be different from its canonical TLS mechanism. The new role opens novel therapeutic possibilities of using pol eta as a target to improve the efficacy of TMZ-based therapies against cancer.


Subject(s)
Antineoplastic Agents , Xeroderma Pigmentosum , Antineoplastic Agents/pharmacology , DNA , DNA Damage , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Humans , Temozolomide/pharmacology , Xeroderma Pigmentosum/genetics
5.
Cells ; 9(12)2020 12 01.
Article in English | MEDLINE | ID: mdl-33271924

ABSTRACT

Glioblastoma is a severe type of brain tumor with a poor prognosis and few therapy options. Temozolomide (TMZ) is one of these options, however, with limited success, and failure is mainly due to tumor resistance. In this work, genome-wide CRISPR-Cas9 lentiviral screen libraries for gene knockout or activation were transduced in the human glioblastoma cell line, aiming to identify genes that modulate TMZ resistance. The sgRNAs enriched in both libraries in surviving cells after TMZ treatment were identified by next-generation sequencing (NGS). Pathway analyses of gene candidates on knockout screening revealed several enriched pathways, including the mismatch repair and the Sonic Hedgehog pathways. Silencing three genes ranked on the top 10 list (MSH2, PTCH2, and CLCA2) confirm cell protection from TMZ-induced death. In addition, a CRISPR activation library revealed that NRF2 and Wnt pathways are involved in TMZ resistance. Consistently, overexpression of FZD6, CTNNB1, or NRF2 genes significantly increased cell survival upon TMZ treatment. Moreover, NRF2 and related genes detected in this screen presented a robust negative correlation with glioblastoma patient survival rates. Finally, several gene candidates from knockout or activation screening are targetable by inhibitors or small molecules, and some of them have already been used in the clinic.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Drug Resistance, Neoplasm/genetics , Temozolomide/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Survival/genetics , Gene Expression Regulation, Neoplastic/genetics , Genome-Wide Association Study/methods , Glioblastoma/drug therapy , Glioblastoma/genetics , Hedgehog Proteins/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Small Molecule Libraries/pharmacology
6.
Cells ; 9(9)2020 09 22.
Article in English | MEDLINE | ID: mdl-32971884

ABSTRACT

The cell cycle involves a network of proteins that modulate the sequence and timing of proliferation events. Unregulated proliferation is the most fundamental hallmark of cancer; thus, changes in cell cycle control are at the heart of malignant transformation processes. Several cellular processes can interfere with the cell cycle, including autophagy, the catabolic pathway involved in degradation of intracellular constituents in lysosomes. According to the mechanism used to deliver cargo to the lysosome, autophagy can be classified as macroautophagy (MA), microautophagy (MI), or chaperone-mediated autophagy (CMA). Distinct from other autophagy types, CMA substrates are selectively recognized by a cytosolic chaperone, one-by-one, and then addressed for degradation in lysosomes. The function of MA in cell cycle control, and its influence in cancer progression, are already well-established. However, regulation of the cell cycle by CMA, in the context of tumorigenesis, has not been fully addressed. This review aims to present and debate the molecular mechanisms by which CMA can interfere in the cell cycle, in the context of cancer. Thus, cell cycle modulators, such as MYC, hypoxia-inducible factor-1 subunit alpha (HIF-1α), and checkpoint kinase 1 (CHK1), regulated by CMA activity will be discussed. Finally, the review will focus on how CMA dysfunction may impact the cell cycle, and as consequence promote tumorigenesis.


Subject(s)
Carcinogenesis/genetics , Cell Cycle Checkpoints/genetics , Chaperone-Mediated Autophagy/genetics , Gene Expression Regulation, Neoplastic , Molecular Chaperones/genetics , Neoplasms/genetics , Autophagy/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/metabolism , Disease Progression , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lysosomes/metabolism , Molecular Chaperones/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Proteolysis , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction
7.
Dig Dis ; 37(4): 309-314, 2019.
Article in English | MEDLINE | ID: mdl-30763930

ABSTRACT

BACKGROUND: Focal nodular hyperplasia (FNH) is a frequent benign liver lesion. Its course is considered benign, and there is no recommendation for its treatment. Nevertheless, the literature presents a high incidence of surgery. AIM: To evaluate the results of conservative treatment in a series of patients with presumed FNH. METHODS: The study included patients diagnosed with FNH from May 2007 to July 2017 based on conventional imaging or magnetic resonance imaging with liver-specific contrast (MRI-LSC) or lesion biopsy (histology/immunohistochemical analysis). Patients were followed clinically and using imaging exams. RESULTS: In a total of 54 patients, the diagnosis was obtained by typical findings on computed tomography scan and gadolinium MRI in 48.1% of the patients, by MRI-LSC in 31.5%, and by histological examination in 20.4% of cases. The mean follow-up time was 35.5 months. The initially asymptomatic patients remained symptom-free, and none of those with HNF-related pain had to worsen of the initial symptom. Conservative treatment was effective in 94.4% of the cases. In only 3 cases, there was a need for some therapeutic approach (5.5%); 2 cases for pain and 1 case for lesion growth during follow-up. CONCLUSION: The present study suggests that it is safe to conservatively manage patients with FNH presumed by highly accurate imaging tests. Similar to hepatic hemangiomas, surgery for FNH should be an exception.


Subject(s)
Focal Nodular Hyperplasia/surgery , Adolescent , Adult , Aged , Female , Focal Nodular Hyperplasia/diagnosis , Focal Nodular Hyperplasia/diagnostic imaging , Follow-Up Studies , Humans , Liver/diagnostic imaging , Liver/pathology , Magnetic Resonance Imaging , Male , Middle Aged , Tomography, X-Ray Computed , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...