Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Colloid Interface Sci ; 227(2): 495-504, 2000 Jul 15.
Article in English | MEDLINE | ID: mdl-10873338

ABSTRACT

Droplet aggregation is an important cause of instability in emulsions because it may, on one hand, lead to an increased creaming rate, resulting in fast separation of a concentrated emulsion phase (creamed layer). On the other hand, it may also lead to the formation of a stabilizing, droplet-based network. Early detection of instability is often difficult due to the high turbidity and viscosity of more concentrated food emulsions. The applicability of diffusing-wave spectroscopy (DWS) for monitoring droplet aggregation and creaming was studied using a model system consisting of a protein-stabilized emulsion, to which a soluble polymer ("thickener") was added. This addition leads to an increased solvent viscosity and may induce droplet aggregation. In addition, the redistribution process of emulsion droplets in aggregating concentrated emulsions was directly observed by confocal scanning laser microscopy (CSLM). By DWS the decrease of the droplet mobility caused by the viscosity increase of the continuous phase could be separated from the effect of droplet aggregation. Moreover, a distinction could be made between aggregation, leading to increased creaming rates and that leading to the formation of a stabilizing droplet network. The potential of DWS for in situ measurement of the stability of concentrated emulsions is discussed. Copyright 2000 Academic Press.

2.
J Agric Food Chem ; 47(11): 4600-5, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10552857

ABSTRACT

In this work dynamic light scattering was used to study the thermal aggregation of patatin in situ, to elucidate the physical aggregation mechanism of the protein and to be able to relate the aggregation behavior to its structural properties. The dependence of the aggregation rates on the temperature and the ionic strength suggested a mechanism of slow coagulation, being both diffusion and chemically limited. The aggregation rate dependence on the protein concentration was in accordance with the mechanism proposed. The aggregation rates as obtained at temperatures ranging from 40 to 65 degrees C correlated well with unfolding of the protein at a secondary level. Small-angle neutron scattering and dynamic light scattering results were in good accordance; they revealed that native patatin has a cylindrical shape with a diameter and length of 5 and 9.8 nm, respectively.


Subject(s)
Carboxylic Ester Hydrolases , Models, Chemical , Plant Proteins/chemistry , Chromatography, Gel , Kinetics , Protein Conformation , Protein Folding , Temperature
3.
Article in English | MEDLINE | ID: mdl-11969829

ABSTRACT

Casein micelles become mutually attractive when an exocellular polysaccharide produced by Lactococcus lactis subsp. cremoris NIZO B40 (hereafter called EPS) is added to skim milk. The attraction can be explained as a depletion interaction between the casein micelles induced by the nonadsorbing EPS. We used three scattering techniques (small-angle neutron scattering, turbidity measurements, and dynamic light scattering) to measure the attraction. In order to connect the theory of depletion interaction with experiment, we calculated structure factors of hard spheres interacting by a depletion pair potential. Theoretical predictions and all the experiments showed that casein micelles became more attractive upon increasing the EPS concentration.


Subject(s)
Caseins/chemistry , Micelles , Polysaccharides/chemistry , Cell Adhesion , Electron Spin Resonance Spectroscopy , Lactococcus lactis/metabolism , Light , Models, Statistical , Scattering, Radiation
4.
Biophys J ; 71(3): 1389-99, 1996 Sep.
Article in English | MEDLINE | ID: mdl-8874014

ABSTRACT

The lipids found in the bilayers of the stratum corneum fulfill the vital barrier role of mammalian bodies. The main classes of lipids found in stratum corneum are ceramides, cholesterol, and free fatty acids. For an investigation of their phase behavior, mixed Langmuir-Blodgett monolayers of these lipids were prepared. Atomic force microscopy was used to investigate the structure of the monolayers as a function of the monolayer composition. Three different types of ceramide were used: ceramide extracted from pigskin, a commercially available ceramide with several fatty acid chain lengths, and two synthetic ceramides that have only one fatty acid chain length. In pigskin ceramide-cholesterol mixed monolayers phase separation was observed. This phase separation was also found for the commercially available type III Sigma ceramide-cholesterol mixed monolayers with molar ratios ranging from 1:0.1 to 1:1. These monolayers separated into two phases, one composed of the long fatty acid chain fraction of Sigma ceramide III and the other of the short fatty acid chain fraction of Sigma ceramide III mixed with cholesterol. Mixtures with a higher cholesterol content consisted of only one phase. These observations were confirmed by the results obtained with synthetic ceramides, which have only one fatty acid chain length. The synthetic ceramide with a palmitic acid (16:0) chain mixed with cholesterol, and the synthetic ceramide with a lignoceric acid (24:0) chain did not. Free fatty acids showed a preference to mix with one of these phases, depending on their fatty acid chain lengths. The results of this investigation suggest that the model system used in this study is in good agreement with those of other studies concerning the phase behavior of the stratum corneum lipids. By varying the composition of the monolayers one can study the role of each lipid class in detail.


Subject(s)
Epidermis/chemistry , Lipid Bilayers/chemistry , Animals , Biophysical Phenomena , Biophysics , Cattle , Ceramides/chemistry , Cholesterol/chemistry , Fatty Acids/chemistry , Fatty Acids, Nonesterified/chemistry , In Vitro Techniques , Microscopy, Atomic Force , Molecular Structure , Palmitic Acid/chemistry , Pressure , Surface Properties , Swine
SELECTION OF CITATIONS
SEARCH DETAIL