Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38746143

ABSTRACT

The Rho GTPases pattern the cell cortex in a variety of fundamental cell-morphogenetic processes including division, wound repair, and locomotion. It has recently become apparent that this patterning arises from the ability of the Rho GTPases to self-organize into static and migrating spots, contractile pulses, and propagating waves in cells from yeasts to mammals 1 . These self-organizing Rho GTPase patterns have been explained by a variety of theoretical models which require multiple interacting positive and negative feedback loops. However, it is often difficult, if not impossible, to discriminate between different models simply because the available experimental data do not simultaneously capture the dynamics of multiple molecular concentrations and biomechanical variables at fine spatial and temporal resolution. Specifically, most studies typically provide either the total Rho GTPase signal or the Rho GTPase activity as reported by various sensors, but not both. Therefore, it remains largely unknown how membrane accumulation of Rho GTPases (i.e., Rho membrane enrichment) is related to Rho activity. Here we dissect the dynamics of RhoA by simultaneously imaging both total RhoA and active RhoA in the regime of acute cortical excitability 2 , characterized by pronounced waves of Rho activity and F-actin polymerization 3-5 . We find that within nascent waves, accumulation of active RhoA precedes that of total RhoA, and we exploit this finding to distinguish between two popular theoretical models previously used to explain propagating cortical Rho waves.

3.
Nat Rev Mol Cell Biol ; 25(4): 290-308, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38172611

ABSTRACT

The Rho GTPases - RHOA, RAC1 and CDC42 - are small GTP binding proteins that regulate basic biological processes such as cell locomotion, cell division and morphogenesis by promoting cytoskeleton-based changes in the cell cortex. This regulation results from active (GTP-bound) Rho GTPases stimulating target proteins that, in turn, promote actin assembly and myosin 2-based contraction to organize the cortex. This basic regulatory scheme, well supported by in vitro studies, led to the natural assumption that Rho GTPases function in vivo in an essentially linear matter, with a given process being initiated by GTPase activation and terminated by GTPase inactivation. However, a growing body of evidence based on live cell imaging, modelling and experimental manipulation indicates that Rho GTPase activation and inactivation are often tightly coupled in space and time via signalling circuits and networks based on positive and negative feedback. In this Review, we present and discuss this evidence, and we address one of the fundamental consequences of coupled activation and inactivation: the ability of the Rho GTPases to self-organize, that is, direct their own transition from states of low order to states of high order. We discuss how Rho GTPase self-organization results in the formation of diverse spatiotemporal cortical patterns such as static clusters, oscillatory pulses, travelling wave trains and ring-like waves. Finally, we discuss the advantages of Rho GTPase self-organization and pattern formation for cell function.


Subject(s)
Cytoskeleton , rho GTP-Binding Proteins , rho GTP-Binding Proteins/metabolism , Cytoskeleton/metabolism , Actins/metabolism , Signal Transduction , Cell Movement , rac1 GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL