Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters











Publication year range
1.
Front Public Health ; 10: 966374, 2022.
Article in English | MEDLINE | ID: mdl-36033819

ABSTRACT

Coffee production workers are exposed to complex mixtures of gases, dust, and vapors, including the known respiratory toxins, diacetyl, and 2,3-pentanedione, which occur naturally during coffee roasting and are also present in flavorings used to flavor coffee. This study evaluated the associations of these two α-diketones with lung function measures in coffee production workers. Workers completed questionnaires, and their lung function was assessed by spirometry and impulse oscillometry (IOS). Personal exposures to diacetyl, 2,3-pentanedione, and their sum (SumDA+PD) were assigned to participants, and metrics of the highest 95th percentile (P95), cumulative, and average exposure were calculated. Linear and logistic regression models for continuous and binary/polytomous outcomes, respectively, were used to explore exposure-response relationships adjusting for age, body mass index, tenure, height, sex, smoking status, race, or allergic status. Decrements in percent predicted forced expiratory volume in 1 second (ppFEV1) and forced vital capacity (ppFVC) were associated with the highest-P95 exposures to 2,3-pentanedione and SumDA+PD. Among flavoring workers, larger decrements in ppFEV1 and ppFVC were associated with highest-P95 exposures to diacetyl, 2,3-pentanedione, and SumDA+PD. Abnormal FEV1, FVC, and restrictive spirometric patterns were associated with the highest-P95, cumulative, and average exposures for all α-diketone metrics; some of these associations were also present among flavoring and non-flavoring workers. The combined category of small and peripheral airways plus small and large airways abnormalities on IOS had elevated odds for highest-P95 exposure to α-diketones. These results may be affected by the small sample size, few cases of abnormal spirometry, and the healthy worker effect. Associations between lung function abnormalities and exposure to α-diketones suggest it may be prudent to consider exposure controls in both flavoring and non-flavoring settings.


Subject(s)
Diacetyl , Occupational Exposure , Flavoring Agents , Humans , Lung , Pentanones
2.
Front Public Health ; 10: 878907, 2022.
Article in English | MEDLINE | ID: mdl-35757620

ABSTRACT

Coffee production workers can be exposed to inhalational hazards including alpha-diketones such as diacetyl and 2,3-pentanedione. Exposure to diacetyl is associated with the development of occupational lung disease, including obliterative bronchiolitis, a rare and irreversible lung disease. We aimed to identify determinants contributing to task-based exposures to diacetyl and 2,3-pentanedione at 17 U.S. coffee production facilities. We collected 606 personal short-term task-based samples including roasting (n = 189), grinding (n = 74), packaging (n = 203), quality control (QC, n = 44), flavoring (n = 15), and miscellaneous production/café tasks (n = 81), and analyzed for diacetyl and 2,3-pentanedione in accordance with the modified OSHA Method 1013/1016. We also collected instantaneous activity-based (n = 296) and source (n = 312) samples using evacuated canisters. Information on sample-level and process-level determinants relating to production scale, sources of alpha-diketones, and engineering controls was collected. Bayesian mixed-effect regression models accounting for censored data were fit for overall data (all tasks) and specific tasks. Notable determinants identified in univariate analyses were used to fit all plausible models in multiple regression analysis which were summarized using a Bayesian model averaging method. Grinding, flavoring, packaging, and production tasks with ground coffee were associated with the highest short-term and instantaneous-activity exposures for both analytes. Highest instantaneous-sources of diacetyl and 2,3-pentanedione included ground coffee, flavored coffee, liquid flavorings, and off-gassing coffee bins or packages. Determinants contributing to higher exposures to both analytes in all task models included sum of all open storage sources and average percent of coffee production as ground coffee. Additionally, flavoring ground coffee and flavoring during survey contributed to notably higher exposures for both analytes in most, but not all task groups. Alternatively, general exhaust ventilation contributed to lower exposures in all but two models. Additionally, among facilities that flavored, local exhaust ventilation during flavoring processes contributed to lower 2,3-pentanedione exposures during grinding and packaging tasks. Coffee production facilities can consider implementing additional exposure controls for processes, sources, and task-based determinants associated with higher exposures to diacetyl and 2,3-pentanedione, such as isolating, enclosing, and directly exhausting grinders, flavoring mixers, and open storage of off-gassing whole bean and ground coffee, to reduce exposures and minimize risks for lung disease among workers.


Subject(s)
Coffee , Diacetyl , Lung Diseases , Occupational Exposure , Pentanones , Bayes Theorem , Diacetyl/analysis , Flavoring Agents/analysis , Humans , Occupational Exposure/analysis , Pentanones/analysis
3.
Front Public Health ; 10: 750289, 2022.
Article in English | MEDLINE | ID: mdl-35664098

ABSTRACT

Exposure to elevated levels of diacetyl in flavoring and microwave popcorn production has been associated with respiratory impairment among workers including from a severe lung disease known as obliterative bronchiolitis. Laboratory studies demonstrate damage to the respiratory tract in rodents exposed to either diacetyl or the related alpha-diketone 2,3-pentanedione. Respiratory tract damage includes the development of obliterative bronchiolitis-like changes in the lungs of rats repeatedly inhaling either diacetyl or 2,3-pentanedione. In one flavored coffee processing facility, current workers who spent time in higher diacetyl and 2,3-pentanedione areas had lower lung function values, while five former flavoring room workers were diagnosed with obliterative bronchiolitis. In that and other coffee roasting and packaging facilities, grinding roasted coffee beans has been identified as contributing to elevated levels of diacetyl and 2,3-pentanedione. To reduce worker exposures, employers can take various actions to control exposures according to the hierarchy of controls. Because elimination or substitution is not applicable to coffee production facilities not using flavorings, use of engineering controls to control exposures at their source is especially important. This work demonstrates the use of temporary ventilated enclosures around grinding equipment in a single coffee roasting and packaging facility to mitigate diacetyl and 2,3-pentanedione emissions from grinding equipment to the main production space. Concentrations of diacetyl and 2,3-pentanedione were measured in various locations throughout the main production space as well as inside and outside of ventilated enclosures to evaluate the effect of the enclosures on exposures. Diacetyl and 2,3-pentanedione concentrations outside one grinder enclosure decreased by 95 and 92%, respectively, despite ground coffee production increasing by 12%, after the enclosure was installed. Outside a second enclosure, diacetyl and 2,3-pentanedione concentrations both decreased 84%, greater than the 33% decrease in ground coffee production after installation. Temporary ventilated enclosures used as engineering control measures in this study effectively reduced emissions of diacetyl and 2,3-pentanedione at the source in this facility. These findings motivated management to explore options with a grinding equipment manufacturer to permanently ventilate their grinders to reduce emissions of diacetyl and 2,3-pentanedione.


Subject(s)
Bronchiolitis , Occupational Exposure , Animals , Coffee , Diacetyl/analysis , Flavoring Agents/analysis , Occupational Exposure/analysis , Occupational Exposure/prevention & control , Pentanones , Rats
4.
Front Public Health ; 10: 786924, 2022.
Article in English | MEDLINE | ID: mdl-35400070

ABSTRACT

Roasted coffee emits hazardous volatile organic compounds including diacetyl and 2,3-pentanedione. Workers in non-flavored coffee roasting and packaging facilities might inhale diacetyl and 2,3-pentanedione from roasted coffee above occupational exposure limits depending on their work activities and proximity to the source of emissions. Objectives of this laboratory study were to: (1) investigate factors affecting specific emission rates (SERs) of diacetyl and 2,3-pentanedione from freshly roasted coffee, (2) explore the effect of time on SERs of coffee stored in sealed bags for 10-days, and (3) predict exposures to workers in hypothetical workplace scenarios. Two roast levels (light and dark) and three physical forms (whole bean, coarse ground, and fine ground) were investigated. Particle size for whole bean and ground coffee were analyzed using geometric mean of Feret diameter. Emitted chemicals were collected on thermal desorption tubes and quantified using mass spectrometry analysis. SERs developed here coupled with information from previous field surveys provided model input to estimate worker exposures during various activities using a probabilistic, near-field/far-field model. For freshly roasted coffee, mean SER of diacetyl and 2,3-pentantedione increased with decreasing particle size of the physical form (whole bean < coarse ground < fine ground) but was not consistent with roast levels. SERs from freshly roasted coffee increased with roast level for diacetyl but did not change for 2,3-pentanedione. Mean SERs were greatest for diacetyl at 3.60 mg kg-1 h-1 for dark, fine ground and for 2,3-pentanedione at 3.88 mg kg-1 h-1 for light, fine ground. For storage, SERs of whole bean remained constant while SERs of dark roast ground coffee decreased and light roast ground coffee increased. Modeling demonstrated that near-field exposures depend on proximity to the source, duration of exposure, and air velocities in the near-field further supporting previously reported chemical air measurements in coffee roasting and packaging facilities. Control of source emissions using local exhaust ventilation especially around grinding activities as well as modification of work practices could be used to reduce exposures in this workforce.


Subject(s)
Diacetyl , Occupational Exposure , Coffee , Diacetyl/analysis , Humans , Occupational Exposure/analysis , Pentanones/analysis
5.
Ann Work Expo Health ; 66(5): 618-631, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35051991

ABSTRACT

α-Diketones such as diacetyl (2,3-butanedione) and 2,3-pentanedione are generated during the roasting and fermentation of foods and are also used as flavoring compounds. Exposure to these compounds has been associated with obliterative bronchiolitis in workers. We report indoor air concentrations of diacetyl and 2,3-pentanedione, as well as acetoin (3-hydroxy-2-butanone), in several small coffee roasteries and breweries using standard integrated air sampling sorbent tubes followed by gas chromatography tandem mass spectrometry as well as the first use of on-site continuous real-time proton-transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS). Diacetyl and 2,3-pentanedione were detected in most of the sorbent samples at concentrations between 0.02 and 8 ppbv, and in general were higher in coffee roasteries compared with breweries. Three integrated air samples, all from the barista area at one facility, exceeded the NIOSH recommended exposure limit (REL) of 5 ppbv for diacetyl. 2,3-Pentanedione concentrations in these three samples were greater than 50% of its REL, but did not exceed it. Acetoin, a precursor to diacetyl, was also detected at concentrations between 0.03 and 5 ppbv in most sorbent tube samples, with concentrations generally higher in breweries. PTR-ToF-MS measurements exhibited similar trends and provided continuous real-time volatile organic compound data that showed episodic excursions with peak concentrations of diacetyl and 2,3-pentanedione between 15 and 20 ppbv. Examination of the time series data identified specific activities associated with peak diketone emissions, including transfer of freshly roasted coffee beans to the cooling tray, or the opening of a brew kettle. Additional indoor air quality parameters including CO2, NO2, and PM2.5 were also assessed on-site. Airway inflammation was assessed in 19 workers before and after each work shift using online measurements of fractional exhaled nitric oxide (FENO). The pre-shift mean FENO was 3.7 (95% confidence interval: -3.6, 11.0) ppbv higher and the post-shift FENO was 7.1 (-1.9, 16.1) ppbv higher for workers at coffee roasteries compared with breweries. The cross-shift change in FENO was 3.4 (-2.8, 9.6) ppbv higher for workers at coffee roasteries compared with breweries. However, none of these differences were statistically significant, and the cross-shift change in FENO was not statistically different from zero for either group of workers. The findings from this pilot study demonstrate that α-diketones and related compounds are present in the indoor air of both breweries and coffee roasteries and may exceed health protective guidelines in coffee roasteries. Additional studies are required to fully characterize worker exposures in these settings and to identify specific work activities and processes associated with high exposures. Engineering controls, including targeted exhaust ventilation and the use of low-cost sensors, are recommended as an approach to protect workers from exposure to hazardous levels of α-diketones.


Subject(s)
Diacetyl , Occupational Exposure , Acetoin/analysis , Coffee , Diacetyl/analysis , Gas Chromatography-Mass Spectrometry/methods , Humans , Occupational Exposure/analysis , Pilot Projects
6.
Crit Rev Toxicol ; 52(9): 715-730, 2022 10.
Article in English | MEDLINE | ID: mdl-36803409

ABSTRACT

Alpha-diketones, notably diacetyl, have been used as flavoring agents. When airborne in occupational settings, exposures to diacetyl have been associated with serious respiratory disease. Other α-diketones, such as 2,3-pentanedione, and analogues such as acetoin (a reduced form of diacetyl), require evaluation, particularly, in light of recently available toxicological studies. The current work reviewed mechanistic, metabolic, and toxicology data available for α-diketones. Data were most available for diacetyl and 2,3-pentanedione, and a comparative assessment of their pulmonary effects was performed, and an occupational exposure limit (OEL) was proposed for 2,3-pentanedione. Previous OELs were reviewed and an updated literature search was performed. Respiratory system histopathology data from 3-month toxicology studies were evaluated with benchmark dose (BMD) modelling of sensitive endpoints. This demonstrated comparable responses at concentrations up to 100 ppm, with no consistent overall pattern of greater sensitivity to either diacetyl or 2,3-pentanedione. In contrast, based on draft raw data, no adverse respiratory effects were observed in comparable 3-month toxicology studies that evaluated exposure to acetoin at up to 800 ppm (highest tested concentration), indicating that acetoin does not present the same inhalation hazard as diacetyl or 2,3-pentanedione. To derive an OEL for 2,3-pentanedione, BMD modelling was conducted for the most sensitive endpoint from 90-day inhalation toxicity studies, namely, hyperplasia of nasal respiratory epithelium. On the basis of this modelling, an 8-hour time-weighted average OEL of 0.07 ppm is proposed to be protective against respiratory effects that may be associated with chronic workplace exposure to 2,3-pentanedione.


Subject(s)
Diacetyl , Occupational Exposure , Diacetyl/toxicity , Acetoin , Ketones , Pentanones/toxicity
7.
Front Public Health ; 9: 657987, 2021.
Article in English | MEDLINE | ID: mdl-34095061

ABSTRACT

Occupational exposure to diacetyl, a butter flavor chemical, can result in obliterative bronchiolitis. Obliterative bronchiolitis is characterized by exertional dyspnea, fixed airflow obstruction, and histopathologic constrictive bronchiolitis, with bronchiolar wall fibrosis leading to luminal narrowing and obliteration. We describe a case of advanced lung disease with histopathology distinct from obliterative bronchiolitis in a 37-year-old male coffee worker following prolonged exposure to high levels of diacetyl and the related compound 2,3-pentanedione, who had no other medical, avocational, or occupational history that could account for his illness. He began working at a coffee facility in the flavoring room and grinding area in 2009. Four years later he moved to the packaging area but continued to flavor and grind coffee at least 1 full day per week. He reported chest tightness and mucous membrane irritation when working in the flavoring room and grinding area in 2010. Beginning in 2014, he developed dyspnea, intermittent cough, and a reduced sense of smell without a work-related pattern. In 2016, spirometry revealed a moderate mixed pattern that did not improve with bronchodilator. Thoracoscopic lung biopsy results demonstrated focal mild cellular bronchiolitis and pleuritis, and focal peribronchiolar giant cells/granulomas, but no evidence of constrictive bronchiolitis. Full-shift personal air-samples collected in the flavoring and grinding areas during 2016 measured diacetyl concentrations up to 84-fold higher than the recommended exposure limit. Medical evaluations indicate this worker developed work-related, airway-centric lung disease, most likely attributable to inhalational exposure to flavorings, with biopsy findings not usual for obliterative bronchiolitis. Clinicians should be aware that lung pathology could vary considerably in workers with suspected flavoring-related lung disease.


Subject(s)
Bronchiolitis Obliterans , Lung Diseases , Adult , Bronchiolitis Obliterans/chemically induced , Coffee/adverse effects , Diacetyl/adverse effects , Humans , Lung/chemistry , Male
8.
Ann Work Expo Health ; 65(6): 715-726, 2021 07 03.
Article in English | MEDLINE | ID: mdl-33837379

ABSTRACT

BACKGROUND: Alpha-diketones such as diacetyl and 2,3-pentanedione have been used as artificial flavorings in a variety of industries and are produced naturally when food products such as coffee beans are roasted. Exposure to these compounds has been associated with bronchiolitis obliterans, a rare and severe respiratory disease. In the current paper, we (i) evaluate which steps in the coffee production process are associated with the highest alpha-diketone emissions at a small craft coffee roaster and associated café, (ii) determine the extent to which direct-reading measurements of CO, CO2, and total volatile organic compounds (VOCs) can serve as lower-cost surrogate indicators for diacetyl concentrations, and (iii) conduct a limited emissions study to quantify the effect that the process variable of roast type has on diacetyl emissions from grinding beans. METHODS: Exposure and area concentration data for diacetyl and 2,3-pentanedione were collected over 4 days of sampling at a single coffee roaster and associated café. Additional measurements of café patrons' exposure to diacetyl were collected in seven other craft roastery/cafes in Seattle, WA. For the emissions experiments, integrated area air samples for diacetyl were collected using sorbent tubes over 30-min intervals for each roast type with the sorbent tubes positioned next to a grinder placed in an exposure chamber. Sorbent tubes were analyzed for alpha-diketones using gas chromatography-mass spectrometry. A photoionization detector (PID) was also used to measure continuous total VOC concentrations at the coffee roastery, and during each grinding experiment. RESULTS: Diacetyl concentrations in five of the seven personal samples from the craft roastery were above the United States National Institute of Occupational Safety and Health (NIOSH) Recommended Exposure Limit (REL) of 5 ppb as an 8-h time-weighted average (TWA)-and one of the seven personal samples exceeded the NIOSH REL for 2,3-pentanedione-9.3 ppb as an 8-h TWA. Median diacetyl and 2,3-pentanedione emissions were highest at the bagging machine followed by the grinder, roaster, barista, and background areas. The arithmetic mean diacetyl concentrations from the seven personal samples collected from café patrons was 3.96 ppb, suggesting that diacetyl exposure poses a negligible health risk to café patrons. Correlations between diacetyl and total VOCs, CO, and CO2 showed that diacetyl was well correlated with total VOCs, but poorly correlated with CO and CO2. Based on our limited emissions study, French roast was associated with the highest mass emission factor of diacetyl. CONCLUSIONS: Results from the exposure assessment study indicated that coffee production workers at this facility had elevated exposures to diacetyl and 2,3-pentanedione compared to recommended guidelines, whereas baristas and café patrons received lower exposures. Area sampling showed that the areas with the highest alpha-diketone emissions were the grinder and the bagging machine, which are both areas associated with tasks involving ground roasted coffee. Future research could focus on designing and evaluating effective engineering controls, in the form of local exhaust ventilation, with the goal of reducing alpha diketone exposures, as well as conducting similar studies at other small-scale craft coffee roasters and cafés to better understand the variability in these emissions and exposures within these types of facilities.


Subject(s)
Occupational Exposure , Volatile Organic Compounds , Coffee , Diacetyl/analysis , Flavoring Agents/analysis , Humans , Occupational Exposure/analysis , Volatile Organic Compounds/analysis
9.
Clin Chest Med ; 41(4): 661-686, 2020 12.
Article in English | MEDLINE | ID: mdl-33153686

ABSTRACT

Occupational bronchiolitis is characterized by inflammation of the small airways, and represents a heterogeneous set of lung conditions that can occur following a range of inhalation exposures related to work. The most common clinical presentation includes insidious onset of exertional dyspnea and cough. Multiple reports in recent years have drawn attention to previously unrecognized risk factors for occupational bronchiolitis following exposures in several settings. Both current and past occupational exposures, including prior military deployment-related exposures, should be considered in patients undergoing evaluation for unexplained dyspnea. Diagnostic testing for potential bronchiolitis should include a thorough assessment of the small airways.


Subject(s)
Bronchiolitis Obliterans/etiology , Occupational Exposure/adverse effects , Humans
10.
Front Public Health ; 8: 561740, 2020.
Article in English | MEDLINE | ID: mdl-33072698

ABSTRACT

Roasted coffee and many coffee flavorings emit volatile organic compounds (VOCs) including diacetyl and 2,3-pentanedione. Exposures to VOCs during roasting, packaging, grinding, and flavoring coffee can negatively impact the respiratory health of workers. Inhalational exposures to diacetyl and 2,3-pentanedione can cause obliterative bronchiolitis. This study summarizes exposures to and emissions of VOCs in 17 coffee roasting and packaging facilities that included 10 cafés. We collected 415 personal and 760 area full-shift, and 606 personal task-based air samples for diacetyl, 2,3-pentanedione, 2,3-hexanedione, and acetoin using silica gel tubes. We also collected 296 instantaneous activity and 312 instantaneous source air measurements for 18 VOCs using evacuated canisters. The highest personal full-shift exposure in part per billion (ppb) to diacetyl [geometric mean (GM) 21 ppb; 95th percentile (P95) 79 ppb] and 2,3-pentanedione (GM 15 ppb; P95 52 ppb) were measured for production workers in flavored coffee production areas. These workers also had the highest percentage of measurements above the NIOSH Recommended Exposure Limit (REL) for diacetyl (95%) and 2,3-pentanedione (77%). Personal exposures to diacetyl (GM 0.9 ppb; P95 6.0 ppb) and 2,3-pentanedione (GM 0.7 ppb; P95 4.4 ppb) were the lowest for non-production workers of facilities that did not flavor coffee. Job groups with the highest personal full-shift exposures to diacetyl and 2,3-pentanedione were flavoring workers (GM 34 and 38 ppb), packaging workers (GM 27 and 19 ppb) and grinder operator (GM 26 and 22 ppb), respectively, in flavored coffee facilities, and packaging workers (GM 8.0 and 4.4 ppb) and production workers (GM 6.3 and 4.6 ppb) in non-flavored coffee facilities. Baristas in cafés had mean full-shift exposures below the RELs (GM 4.1 ppb diacetyl; GM 4.6 ppb 2,3-pentanedione). The tasks, activities, and sources associated with flavoring in flavored coffee facilities and grinding in non-flavored coffee facilities, had some of the highest GM and P95 estimates for both diacetyl and 2,3-pentanedione. Controlling emissions at grinding machines and flavoring areas and isolating higher exposure areas (e.g., flavoring, grinding, and packaging areas) from the main production space and from administrative or non-production spaces is essential for maintaining exposure control.


Subject(s)
Occupational Exposure , Volatile Organic Compounds , Coffee/adverse effects , Diacetyl/adverse effects , Humans , Occupational Exposure/analysis , Pentanones , United States , Volatile Organic Compounds/analysis
11.
Food Chem ; 327: 127031, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32464458

ABSTRACT

The 1,2-dicarbonyl compounds have received extensive attention due to their high reactivity and toxicity in vitro and in vivo. Availability of scavenging compounds may facilitate development of efficient strategies for their control. The concept of in situ generation of carbonyl trapping agents is an intriguing proposition and has been demonstrated with amino acid tryptophan. Ability of indole to undergo electrophilic aromatic substitution reaction was studied in the past with methylglyoxal. To confirm the generality of this reaction, model systems containing indole and several 1,2-dicarbonyl compounds were prepared and reacted at room temperature (RT) and at 150 °C and analyzed by ESI-qTOF-MS/MS and isotopic labeling technique. Indole showed ability to capture all the tested 1,2-dicarbonyls. Longer chain 1,2-dicarbonyls showed higher temperature dependency than shorter chain in their reactivity towards indole. Furthermore, the ability of indole to scavenge Strecker aldehydes was also demonstrated in alanine/glucose and in a bread model systems using [13C-2]indole.


Subject(s)
Aldehydes/chemistry , Indoles/chemistry , Bread/analysis , Temperature , Tryptophan/chemistry
12.
Ann Work Expo Health ; 64(7): 693-704, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32053725

ABSTRACT

Since 2004, the National Institute for Occupational Safety and Health (NIOSH) has received 10 cannabis-related health hazard evaluation (HHE) investigation requests from law enforcement agencies (n = 5), state-approved cannabis grow operations (n = 4), and a coroner's office (n = 1). Earlier requests concerned potential illicit drug exposures (including cannabis) during law enforcement activities and criminal investigations. Most recently HHE requests have involved state-approved grow operations with potential occupational exposures during commercial cannabis production for medicinal and non-medical (recreational) use. As of 2019, the United States Drug Enforcement Administration has banned cannabis as a Schedule I substance on the federal level. However, cannabis legalization at the state level has become more common in the USA. In two completed cannabis grow operation HHE investigations (two investigations are still ongoing as of 2019), potential dermal exposures were evaluated using two distinct surface wipe sample analytical methods. The first analyzed for delta-9-tetrahydrocannabinol (Δ9-THC) using a liquid chromatography and tandem mass spectrometry (LC-MS-MS) method with a limit of detection (LOD) of 4 nanograms (ng) per sample. A second method utilized high performance liquid chromatography with diode-array detection to analyze for four phytocannabinoids (Δ9-THC, Δ9-THC acid, cannabidiol, and cannabinol) with a LOD (2000 ng per sample) which, when comparing Δ9-THC limits, was orders of magnitude higher than the LC-MS-MS method. Surface wipe sampling results for both methods illustrated widespread contamination of all phytocannabinoids throughout the tested occupational environments, highlighting the need to consider THC form (Δ9-THC or Δ9-THC acid) as well as other biologically active phytocannabinoids in exposure assessments. In addition to potential cannabis-related dermal exposures, ergonomic stressors, and psychosocial issues, the studies found employees in cultivation, harvesting, and processing facilities could potentially be exposed to allergens and respiratory hazards through inhalation of organic dusts (including fungus, bacteria, and endotoxin) and volatile organic compounds (VOCs) such as diacetyl and 2,3-pentanedione. These hazards were most evident during the decarboxylation and grinding of dried cannabis material, where elevated job-specific concentrations of VOCs and endotoxin were generated. Additionally, utilization of contemporary gene sequencing methods in NIOSH HHEs provided a more comprehensive characterization of microbial communities sourced during cannabis cultivation and processing. Internal Transcribed Spacer region sequencing revealed over 200 fungal operational taxonomic units and breathing zone air samples were predominantly composed of Botrytis cinerea, a cannabis plant pathogen. B. cinerea, commonly known as gray mold within the industry, has been previously associated with hypersensitivity pneumonitis. This work elucidates new occupational hazards related to cannabis production and the evolving occupational safety and health landscape of an emerging industry, provides a summary of cannabis-related HHEs, and discusses critical lessons learned from these previous HHEs.


Subject(s)
Cannabis , Occupational Exposure , Occupational Health , Botrytis , Cannabis/adverse effects , Humans , National Institute for Occupational Safety and Health, U.S. , Occupational Exposure/analysis , United States
13.
J Agric Food Chem ; 68(11): 3558-3567, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32065523

ABSTRACT

2-Ethyl-3,5(3,6)-dimethylpyrazines (EDMPs) have a pleasant aroma of roasted cocoa or nuts with an extreme low odor threshold that have potential in industrial applications as food fragrances. The food fermentation process can accumulate EDMPs, and this might be the chance to study the biosynthesis mechanism of EDMPs under mild conditions for "natural" EDMPs' production. In this study, an EDMP-producing strain was isolated from baijiu fermentation. This strain was identified as Bacillus subtilis, a generally regarded as safe organism. After reasonable assumption and substrate addition and isotope-labeled experiments, we found that EDMPs are produced from l-threonine and d-glucose at environmental temperature and pressure. In addition, aminoacetone, the metabolite of l-threonine, and 2,3-pentanedione, the metabolite of l-threonine and d-glucose, are intermediates for the production of EDMPs. This study proposed and confirmed the biosynthesis pathway of EDMPs. It will be helpful for the industrial production of EDMPs and provides reference for the biosynthetic mechanism analysis of other valuable pyrazines.


Subject(s)
Bacillus subtilis , Acetone/analogs & derivatives , Fermentation , Pentanones , Pheromones , Pyrazines
14.
Front Public Health ; 8: 5, 2020.
Article in English | MEDLINE | ID: mdl-32083049

ABSTRACT

Introduction: Respiratory hazards in the coffee roasting and packaging industry can include asthmagens such as green coffee bean and other dust and alpha-diketones such as diacetyl and 2,3-pentanedione that can occur naturally from roasting coffee or artificially from addition of flavoring to coffee. We sought to describe the burden of respiratory abnormalities among workers at 17 coffee roasting and packaging facilities. Methods: We completed medical surveys at 17 coffee roasting and packaging facilities that included interviewer-administered questionnaires and pulmonary function testing. We summarized work-related symptoms, diagnoses, and spirometry testing results among all participants. We compared health outcomes between participants who worked near flavoring and who did not. Results: Participants most commonly reported nose and eye symptoms, and wheeze, with a work-related pattern for some. Symptoms and pulmonary function tests were consistent with work-related asthma in some participants. About 5% of workers had abnormal spirometry and most improved after bronchodilator. Health outcomes were similar between employees who worked near flavoring and who did not, except employees who worked near flavoring reported more chronic bronchitis and ever receiving a diagnosis of asthma than those who did not work near flavoring. Conclusion: The symptoms and patterns likely represent overlapping health effects of different respiratory hazards, including green coffee bean and other dust that can contribute to work-related asthma, and diacetyl and 2,3-pentanedione that can contribute to obliterative bronchiolitis. Healthcare providers and occupational health and safety practitioners should be aware that workers at coffee roasting and packaging facilities are potentially at risk for occupational lung diseases.


Subject(s)
Occupational Diseases , Occupational Exposure , Coffee , Diacetyl/analysis , Flavoring Agents/analysis , Humans , Occupational Diseases/chemically induced , Occupational Exposure/adverse effects
15.
Am J Ind Med ; 62(10): 874-882, 2019 10.
Article in English | MEDLINE | ID: mdl-31332812

ABSTRACT

BACKGROUND: Cannabis has been legalized in some form for much of the United States. The National Institute for Occupational Safety and Health (NIOSH) received a health hazard evaluation request from a Minnesota cannabis facility and their union to undertake an evaluation. METHODS: NIOSH representatives visited the facility in August 2016 and April 2017. Surface wipe samples were collected for analysis of delta-9 tetrahydrocannabinol (Δ9-THC), delta-9 tetrahydrocannabinol acid (Δ9-THCA), cannabidiol, and cannabinol. Environmental air samples were collected for volatile organic compounds (VOCs), endotoxins (limulus amebocyte lysate assay), and fungal diversity (NIOSH two-stage BC251 bioaerosol sampler with internal transcribed spacer region sequencing analysis). RESULTS: Surface wipe samples identified Δ9-THC throughout the facility. Diacetyl and 2,3-pentanedione were measured in initial VOC screening and subsequent sampling during tasks where heat transference was greatest, though levels were well below the NIOSH recommended exposure limits. Endotoxin concentrations were highest during processing activities, while internal transcribed spacer region sequencing revealed that the Basidiomycota genus, Wallemia, had the highest relative abundance. CONCLUSIONS: To the authors' knowledge, this is the first published report of potential diacetyl and 2,3-pentanedione exposure in the cannabis industry, most notably during cannabis decarboxylation. Endotoxin exposure was elevated during grinding, indicating that this is a potentially high-risk task. The findings indicate that potential health hazards of significance are present during cannabis processing, and employers should be aware of potential exposures to VOCs, endotoxin, and fungi. Further research into the degree of respiratory and dermal hazards and resulting health effects in this industry is recommended.


Subject(s)
Agriculture , Air Pollutants, Occupational/analysis , Cannabis/chemistry , Inhalation Exposure/analysis , Occupational Exposure/analysis , Air Microbiology , Cannabidiol/analysis , Cannabinol/analysis , Dronabinol/analogs & derivatives , Dronabinol/analysis , Endotoxins/analysis , Humans , Minnesota , Volatile Organic Compounds/analysis
16.
Ann Work Expo Health ; 63(4): 415-425, 2019 04 19.
Article in English | MEDLINE | ID: mdl-30893419

ABSTRACT

Diacetyl is a potentially harmful chemical that is used as an artificial flavouring in the food industry and may also be generated during processing of some natural products including coffee. In Europe, an 8-h time weighted average occupational exposure limit (TWA-OEL) of 20 ppb has been adopted for diacetyl, together with a short-term exposure limit (STEL) of 100 ppb. A new measurement method involving sampling on thermal desorption tubes and analysis by gas chromatography-mass spectrometry has been used to investigate potential exposure to diacetyl, and the related compound 2,3-pentanedione, at eight companies involved in the coffee industry including large- and small-scale manufacturers and coffee shops. A total of 124 static and personal samples were collected. In the majority of personal samples airborne concentrations of diacetyl were <5 ppb, with those at coffee shops generally <1 ppb. However, diacetyl concentrations in ~40% of the long-term personal samples, mainly originating from one site, were found to be in excess of the newly adopted European TWA-OEL of 20 ppb. Diacetyl concentrations up to 400 ppb were detected on the static samples, with the highest values occurring during grinding of roasted coffee beans. 2,3-Pentanedione was also detected in most of the samples at airborne concentrations around half of those for diacetyl. A significant number of other volatile organic compounds (VOCs) were also detected at sub-ppm concentrations, including acetoin, aliphatic carboxylic acids, aldehydes, ketones and esters, methylfuran, furfural and furfuryl-based alcohols and ketones, and nitrogen containing compounds, such as pyridines and pyrazines. In laboratory tests, diacetyl emissions generated during heating of whole beans were found to be significantly lower than those from heating the same beans after grinding. Diacetyl emissions from both ground and whole beans were also found to be significantly dependent on temperature.


Subject(s)
Air Pollutants, Occupational/analysis , Diacetyl/analysis , Gas Chromatography-Mass Spectrometry/methods , Occupational Exposure/analysis , Pentanones/analysis , Volatile Organic Compounds/analysis , Coffee , Flavoring Agents/analysis , Food Industry , Humans
17.
Ann Work Expo Health ; 63(4): 407-414, 2019 04 19.
Article in English | MEDLINE | ID: mdl-30893441

ABSTRACT

Diacetyl is a potentially harmful chemical that is used as an artificial flavouring in the food industry and may also be generated during processing of some natural products including coffee. In Europe, an 8-h time weighted average occupational exposure limit (TWA-OEL) of 20 ppb has been adopted for diacetyl, together with a short-term exposure limit (STEL) of 100 ppb. A sensitive new measurement method for diacetyl, and the related compound 2,3-pentanedione has been developed and evaluated. The new method uses Tenax TA sorbent tubes as the sampling media with analysis by thermal desorption (TD) and gas chromatography-mass spectrometry (GC-MS). The sample tubes are suitable for both active (pumped) and passive (diffusive) sampling. Diacetyl is stable on the sample tubes for at least 3 months but 2,3-pentanedione requires analysis within a month. Sample recovery is unaffected by changes in relative humidity and the presence of acetic acid. For short-term sampling, active sampling is recommended. The safe sampling volume for diacetyl is 3 litres which, at a flow rate of 100 ml min-1, equates to a maximum recommended sampling time of 30 min. For long-term samples, in particular collection of personal samples, passive sampling is recommended. Diffusive uptake rates have been determined for both diacetyl and 2,3-pentanedione on Tenax TA tubes fitted with standard diffusion heads over sampling periods of 1 to 8 h. Analytical limits of detection are approximately 0.2 ng for diacetyl and 0.1 ng for 2,3-pentanedione. These values equate to airborne concentrations of around 0.04 ppb of diacetyl and 0.02 ppb of 2,3-pentanedione for a 1.5-litre active sample and 0.3 ppb of diacetyl and 0.1 ppb of 2,3-pentanedione for an 8-h passive sample. In the case of passive sampling, this limit of detection is less than 1/50th of the new European TWA-OEL for diacetyl of 20 ppb. The method can also be used to identify the presence of other volatile organic compounds at sub-ppm concentrations.


Subject(s)
Air Pollutants, Occupational/analysis , Diacetyl/analysis , Environmental Monitoring/methods , Gas Chromatography-Mass Spectrometry/methods , Occupational Exposure/analysis , Pentanones/analysis , Volatile Organic Compounds/analysis , Humans , Workplace
18.
Toxicol Lett ; 300: 67-72, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30381254

ABSTRACT

We investigated the effects of the small molecule flavorants diacetyl, 2,3-pentanedione and acetoin on neuronal cell viability and ß amyloid aggregation and morphology. Two neuroblastoma cell lines, SH-SY5Y and Neuro 2a (N2a) were exposed to diacetyl, 2,3-pentanedione and acetoin, while Thioflavin T fluorescence kinetics and transmission electron microscopy were used to assess effects on Aß1-42 fibril and aggregate formation and morphology respectively. Diacetyl was intrinsically toxic to both SH-SY5Y and N2a cells, with time and concentration-dependent reductions in cell viability occurring over 24 h and 48 h incubation periods. 2.3-Pentanedione evoked a similar concentration-dependent loss of cell viability in N2a cells at 48 h, but exhibited lessened toxicity in SH-SY5Y cells over 24 h, and minimal loss of cell viability by 48 h. Diacetyl inhibited Aß1-42 aggregation kinetics, reduced aggregate and fibril density and rendered Aß1-42 into amorphous small aggregates. 2,3-Pentanedione also reduced overall aggregate formation, but to a lesser extent than diacetyl and retaining the presence of a meshwork of Aß1-42 aggregates and fibrils. Acetoin was innocuous to neuronal cells and did not alter Aß1-42 fibril density or morphology. These findings highlight the intrinsic neurotoxicity of small molecule diketone flavorants. While providing further insight into their molecular interactions with amyloidogenic proteins, the neurotoxicity of such flavorants is a significant finding and warrants further investigation.


Subject(s)
Acetoin/toxicity , Amyloid beta-Peptides/drug effects , Cell Survival/drug effects , Flavoring Agents/toxicity , Neuroblastoma/chemically induced , Neurotoxicity Syndromes/etiology , Pentanones/toxicity , Cells, Cultured , Humans
19.
Food Res Int ; 105: 393-402, 2018 03.
Article in English | MEDLINE | ID: mdl-29433228

ABSTRACT

Between 15 and 20% of Brazilian coffee production corresponds to defective beans (PVA), which decreases the quality of the coffee brew. Steam treatment has been reported as an alternative to improve the volatile profile and cup quality of coffee. The aim of this study was to propose a steam treatment of defective Coffea canephora beans to improve the volatile profile of the roasted coffee. The sensory impacts of adding steamed coffee (SC) in Coffea arabica blends were evaluated. The steam treatments studied modified the volatile profile of roasted SCs, increasing the contents of acetoin, benzyl alcohol, maltol, 2,6-dimethylpyrazine, 2-furfurylthiol, and 5-methylfurfural and decreasing the contents of 4-ethylguaiacol, isovaleric acid, methional, 2,3-diethyl-5-methylpyrazine, and 3-methoxy-3-methylpyrazine. Among the evaluated parameters, the best condition to maximized the content of the volatiles with a potential positive impact and minimize those with a potential negative impact was 5bar/16min (SC 5). The thresholds of consumer rejection and of detection indicate that up to 30% SC 5 can be added to a high cup quality Coffea arabica coffee without perception or rejection of the coffee brew. A blend of 30% of SC 5 and 70% of Coffea arabica was well accepted.


Subject(s)
Coffea/chemistry , Coffee , Food Handling/methods , Steam , Volatile Organic Compounds/analysis , Adolescent , Adult , Coffee/chemistry , Coffee/standards , Female , Humans , Male , Odorants/analysis , Pressure , Seeds/chemistry , Young Adult
20.
J Appl Microbiol ; 124(6): 1469-1479, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29430777

ABSTRACT

AIM: This study evaluated two methods, namely high performance liquid chromatography with fluorescence detection (HPLC-FLD) and Vibrio harveyi BB170 bioassay, for autoinducer-2 (AI-2) quantification in marine samples. Using both methods, the study also investigated the stability of AI-2 in varying pH, temperature and media, as well as quantified the amount of AI-2 signals in marine samples. METHODS AND RESULTS: HPLC-FLD method showed a higher level of reproducibility and precision compared to V. harveyi BB170 bioassay. Alkaline pH (>8) and high temperature (>37°C) increased the instability of AI-2. The AI-2 concentrations in seawater were low, c. 3·2-27·6 pmol l-1 , whereas 8-week-old marine biofilm grew on an 18·8 cm2 substratum accumulated c. 0·207 nmol of AI-2. CONCLUSION: Both methods have pros and cons for AI-2 quantification in marine samples. Regardless, both methods reported a ubiquitous presence of AI-2 in both planktonic and biomass fractions of seawater, as well as in marine biofilm. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study, AI-2 signals were for the first time enumerated in marine samples to reveal the ubiquitous presence of AI-2 in this environment. The findings suggest a possible role of AI-2 in biofilm formation in marine environment, and the contribution of AI-2 in biofilm-associated problems such as biofouling and biocorrosion.


Subject(s)
Biological Assay/methods , Homoserine/analogs & derivatives , Lactones/analysis , Seawater/analysis , Biofilms , Chromatography, High Pressure Liquid , Environmental Microbiology , Homoserine/analysis , Plankton , Reproducibility of Results , Seawater/microbiology , Spectrometry, Fluorescence , Vibrio/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL