Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Eur J Med Res ; 29(1): 483, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39367463

ABSTRACT

OBJECTIVES: Immune regulation is a pivotal factor in the pathogenesis and repair of spinal cord injury (SCI). This study aims to explore potential immune center genes associated with spinal cord injury. METHODS: The public data set GSE151371 was obtained from the GEO database. The R software package "limma" was used to identify differentially expressed genes (DEGs) in SCI. GO, KEGG and GSEA pathway analyses were performed using the DEGs. The key module genes related to spinal cord injury were selected through WGCNA analysis. Overlapping genes were extracted from WGCNA, DEGs, and immune-related genes. LASSO analysis was employed to identify central genes associated with SCI immunity. Pearson correlation analysis assessed the correlation between hub genes and immune cells in SCI. In addition, we further investigated the hub genes' expression, diagnostic potential, function, and targeted drugs. RESULTS: We have identified three immunity-related hub genes (ABHD5, EDNRB, EDN3). Immune infiltration analysis showed that the hub gene was significantly associated with resting NK cells, M2 macrophages, and monocytes in the immune microenvironment of SCI. ROC analysis demonstrated that these hub genes have favorable diagnostic performance for SCI. Functional analysis revealed that ABHD5 is primarily associated with lipid metabolism pathways, while EDN3 and EDNRB are mainly involved in endothelin, downstream GPCR signaling, and ERK signaling transduction. In addition, we identified six potential targeted drugs based on our findings. CONCLUSIONS: ABHD5, EDNRB, and EDN3 are involved in processes such as SCI progression or repair through immunomodulation and deserve further study.


Subject(s)
Spinal Cord Injuries , Spinal Cord Injuries/genetics , Spinal Cord Injuries/immunology , Humans , Gene Expression Profiling/methods , Gene Regulatory Networks , Computational Biology/methods , Protein Interaction Maps/genetics
2.
Front Oncol ; 14: 1447509, 2024.
Article in English | MEDLINE | ID: mdl-39328203

ABSTRACT

Alpha beta hydrolase domain containing 5 (ABHD5) is an essential coactivator of adipose triglyceride lipase (ATGL), a rate-limiting enzyme in various cell types that promotes the hydrolysis of triacylglycerol (TG) into diacylglycerol (DG) and fatty acid (FA). It acts as a critical regulatory factor in cellular lipid metabolism. The reprogramming of lipid metabolism is one of the hallmarks of cancer, suggesting that altering lipid metabolism could become a new strategy for tumor treatment. Research has revealed a close association between ABHD5 and the development and progression of malignancies. This review summarizes the role of ABHD5 in various malignant tumors and explores the different signaling pathways and metabolic routes that may be involved, providing a comprehensive mechanistic understanding of ABHD5.

3.
Cell Biol Toxicol ; 40(1): 62, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093497

ABSTRACT

BACKGROUND: Increased activity of the transcription factor FOXC1 leads to elevated transcription of target genes, ultimately facilitating the progression of various cancer types. However, there are currently no literature reports on the role of FOXC1 in renal cell carcinoma. METHODS: By using RT-qPCR, immunohistochemistry and Western blotting, FOXC1 mRNA and protein expression was evaluated. Gain of function experiments were utilized to assess the proliferation and metastasis ability of cells. A nude mouse model was created for transplanting tumors and establishing a lung metastasis model to observe cell proliferation and spread in a living organism. Various techniques including biological analysis, CHIP assay, luciferase assay, RT-qRCR and Western blotting experiments were utilized to investigate how FOXC1 contributes to the transcription of ABHD5 on a molecular level. FOXC1 was assessed by Western blot for its impact on AMPK/mTOR signaling pathway. RESULTS: FOXC1 is down-regulated in RCC, causing unfavorable prognosis of patients with RCC. Further experiments showed that forced FOXC1 expression significantly restrains RCC cell growth and cell metastasis. Mechanically, FOXC1 promotes the transcription of ABHD5 to activate AMPK signal pathway to inhibit mTOR signal pathway. Finally, knockdown of ABHD5 recovered the inhibitory role of FOXC1 overexpression induced cell growth and metastasis suppression. CONCLUSION: In general, our study demonstrates that FOXC1 exerts its tumor suppressor role by promoting ABHD5 transcription to regulating AMPK/mTOR signal pathway. FOXC1 could serve as both a diagnostic indicator and potential treatment focus for RCC.


Subject(s)
1-Acylglycerol-3-Phosphate O-Acyltransferase , AMP-Activated Protein Kinases , Carcinoma, Renal Cell , Cell Proliferation , Forkhead Transcription Factors , Kidney Neoplasms , Mice, Nude , Signal Transduction , TOR Serine-Threonine Kinases , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Humans , Animals , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Cell Line, Tumor , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Cell Proliferation/genetics , Mice , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , Gene Expression Regulation, Neoplastic , Disease Progression , Male , Female , Mice, Inbred BALB C
4.
Inflammation ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046603

ABSTRACT

Recent studies increasingly suggest a connection between lipids and idiopathic pulmonary fibrosis (IPF). This study was aimed at exploring potential lipid-related biomarkers for IPF and uncovering the mechanisms underlying pulmonary fibrosis. IPF-related datasets were retrieved from the GEO database, and the ComBat algorithm was used to merge multiple datasets and eliminate batch effects. Weighted gene co-expression network analysis (WGCNA) was utilized to identify modules and genes associated with IPF. Potential hub genes were determined by intersecting these genes with lipid-related genes from the GeneCards database. A machine learning-based integrative approach was developed to construct diagnostic and prognostic signatures, which were validated across several datasets. Additionally, single-cell sequencing data was used to validate the expression differences of core IPF-related genes across various cell types. The effect of ABHD5 on fibroblasts was assessed using the cell counting kit-8, 5-ethynyl-2'-deoxyuridine, and cell scratch assays. The expression levels of fibrotic factors were measured using real-time quantitative polymerase chain reaction and western blot analysis. WGCNA identified a red module potentially related to IPF, and the intersection with lipid-related genes yielded 51 hub genes. These genes were used to build diagnostic and prognostic models that demonstrated robust validation capabilities across multiple datasets. Single-cell sequencing analysis revealed low expression of ABHD5 in the lung tissues of IPF patients, with a higher proportion of fibroblasts exhibiting low ABHD5 expression. Cell experiments showed that under the influence of TGF-ß1, knockdown of ABHD5 slightly promoted fibroblast proliferation. Additionally, fibroblasts with low ABHD5 expression exhibited enhanced migratory capabilities and secreted more fibrotic factors. Lipid-related diagnostic and prognostic models for IPF were developed, and ABHD5 may serve as a potential biomarker. Low ABHD5 expression could potentially accelerate the progression of pulmonary fibrosis.

5.
Insect Sci ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38841829

ABSTRACT

Lipids are an important energy source and are utilized as substrates for various physiological processes in insects. Comparative gene identification 58 (CGI-58), also known as α/ß hydrolase domain-containing 5 (ABHD5), is a highly conserved and multifunctional gene involved in regulating lipid metabolism and cellular energy balance in many organisms. However, the biological functions of ABHD5 in insects are poorly understood. In the current study, we describe the identification and characterization of the ABHD5 gene in the lepidopteran model insect, Bombyx mori. The tissue expression profile investigated using quantitative reverse transcription polymerase chain reaction (RT-qPCR) reveals that BmABHD5 is widely expressed in all tissues, with particularly high levels found in the midgut and testis. A binary transgenic CRISPR/Cas9 system was employed to conduct a functional analysis of BmABHD5, with the mutation of BmABHD5 leading to the dysregulation of lipid metabolism and excessive lipid accumulation in the larval midgut. Histological and physiological analysis further reveals a significant accumulation of lipid droplets in the midgut of mutant larvae. RNA-seq and RT-qPCR analysis showed that genes related to metabolic pathways were significantly affected by the absence of BmABHD5. Altogether, our data prove that BmABHD5 plays an important role in regulating tissue-specific lipid metabolism in the silkworm midgut.

6.
Acta Pharmacol Sin ; 45(6): 1224-1236, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38467717

ABSTRACT

The root of Aconitum carmichaelii Debx. (Fuzi) is an herbal medicine used in China that exerts significant efficacy in rescuing patients from severe diseases. A key toxic compound in Fuzi, aconitine (AC), could trigger unpredictable cardiotoxicities with high-individualization, thus hinders safe application of Fuzi. In this study we investigated the individual differences of AC-induced cardiotoxicities, the biomarkers and underlying mechanisms. Diversity Outbred (DO) mice were used as a genetically heterogeneous model for mimicking individualization clinically. The mice were orally administered AC (0.3, 0.6, 0.9 mg· kg-1 ·d-1) for 7 d. We found that AC-triggered cardiotoxicities in DO mice shared similar characteristics to those observed in clinic patients. Most importantly, significant individual differences were found in DO mice (variation coefficients: 34.08%-53.17%). RNA-sequencing in AC-tolerant and AC-sensitive mice revealed that hemoglobin subunit beta (HBB), a toxic-responsive protein in blood with 89% homology to human, was specifically enriched in AC-sensitive mice. Moreover, we found that HBB overexpression could significantly exacerbate AC-induced cardiotoxicity while HBB knockdown markedly attenuated cell death of cardiomyocytes. We revealed that AC could trigger hemolysis, and specifically bind to HBB in cell-free hemoglobin (cf-Hb), which could excessively promote NO scavenge and decrease cardioprotective S-nitrosylation. Meanwhile, AC bound to HBB enhanced the binding of HBB to ABHD5 and AMPK, which correspondingly decreased HDAC-NT generation and led to cardiomyocytes death. This study not only demonstrates HBB achievement a novel target of AC in blood, but provides the first clue for HBB as a novel biomarker in determining the individual differences of Fuzi-triggered cardiotoxicity.


Subject(s)
AMP-Activated Protein Kinases , Aconitine , Cardiotoxicity , Histone Deacetylases , Animals , Mice , Cardiotoxicity/metabolism , Cardiotoxicity/etiology , Histone Deacetylases/metabolism , AMP-Activated Protein Kinases/metabolism , Male , Humans , Aconitum/chemistry , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Drugs, Chinese Herbal/pharmacology
7.
J Clin Lipidol ; 18(1): e125-e128, 2024.
Article in English | MEDLINE | ID: mdl-37968200

ABSTRACT

Chanarin-Dorfman Syndrome (CDS) is a rare lipid storage disease with ichthyosis, hepatomegaly, myopathy, neuropathy, deafness, and ocular findings. Here, we aim to present an elderly CDS case and highlight the new endocrinological findings. A 66-year-old male patient with cirrhosis was hospitalized for liver transplantation. We suspected Chanarin-Dorfman Syndrome with ichthyosis, fatty liver, and syndromic facial features with bilateral ectropion, deafness, and malocclusion. We showed the lipid droplets in neutrophils called patognomonic Jordans' anomaly. Homozygous c.47+1 G>A mutation in the ABHD5 (NM_016006.6) gene were detected by clinical exome sequencing. Out of <160 CDS cases in the literature, this is the second eldest CDS patient and first with adrenal insufficiency, parathyroid lipoadenoma and atrophic pancreas. Clinicians should be aware of CDS as a rare cause of fatty liver. We recommend a blood smear and genetic analyses in patients with severe ichtiosis, ectropion, deafness and multiple endocrinolgic disorders.


Subject(s)
Deafness , Ectropion , Fatty Liver , Ichthyosiform Erythroderma, Congenital , Ichthyosis , Lipid Metabolism, Inborn Errors , Liver Transplantation , Muscular Diseases , Male , Humans , Aged , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Fatty Liver/diagnosis , Fatty Liver/genetics , Lipids , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics
8.
Am J Med Genet A ; 194(4): e63481, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37984424

ABSTRACT

Chanarin-Dorfman syndrome is an autosomal recessively inherited disorder characterized by ichthyosis, sensorineural hearing loss, and hepatic dysfunction. We report on a 60-year-old female of Venezuelan descent who presented with congenital ichthyosis, progressive sensorineural hearing loss, and liver cirrhosis. We identify a heterozygous copy number deletion involving exon 1 and another heterozygous deletion involving exon 3 of the ABHD5 gene. Exon 2 is preserved. Both deletions were confirmed with RT-PCR. RNAseq from peripheral blood shows a reduction of ABHD5 expression overall and an absence of exon 3 expression, confirming the deleterious effects of the identified deletions. We present exonic deletions as a potentially common type of ABHD5 variation.


Subject(s)
Hearing Loss, Sensorineural , Ichthyosiform Erythroderma, Congenital , Ichthyosis , Lipid Metabolism, Inborn Errors , Muscular Diseases , Female , Humans , Middle Aged , Ichthyosiform Erythroderma, Congenital/complications , Ichthyosiform Erythroderma, Congenital/diagnosis , Ichthyosiform Erythroderma, Congenital/genetics , Lipid Metabolism, Inborn Errors/genetics , Muscular Diseases/genetics , Ichthyosis/complications , Ichthyosis/diagnosis , Ichthyosis/genetics , Liver Cirrhosis , Hearing Loss, Sensorineural/complications , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics
9.
J Lipid Res ; 65(1): 100491, 2024 01.
Article in English | MEDLINE | ID: mdl-38135254

ABSTRACT

Lipolysis is an essential metabolic process that releases unesterified fatty acids from neutral lipid stores to maintain energy homeostasis in living organisms. Adipose triglyceride lipase (ATGL) plays a key role in intracellular lipolysis and can be coactivated upon interaction with the protein comparative gene identification-58 (CGI-58). The underlying molecular mechanism of ATGL stimulation by CGI-58 is incompletely understood. Based on analysis of evolutionary conservation, we used site directed mutagenesis to study a C-terminally truncated variant and full-length mouse ATGL providing insights in the protein coactivation on a per-residue level. We identified the region from residues N209-N215 in ATGL as essential for coactivation by CGI-58. ATGL variants with amino acids exchanges in this region were still able to hydrolyze triacylglycerol at the basal level and to interact with CGI-58, yet could not be activated by CGI-58. Our studies also demonstrate that full-length mouse ATGL showed higher tolerance to specific single amino acid exchanges in the N209-N215 region upon CGI-58 coactivation compared to C-terminally truncated ATGL variants. The region is either directly involved in protein-protein interaction or essential for conformational changes required in the coactivation process. Three-dimensional models of the ATGL/CGI-58 complex with the artificial intelligence software AlphaFold demonstrated that a large surface area is involved in the protein-protein interaction. Mapping important amino acids for coactivation of both proteins, ATGL and CGI-58, onto the 3D model of the complex locates these essential amino acids at the predicted ATGL/CGI-58 interface thus strongly corroborating the significance of these residues in CGI-58-mediated coactivation of ATGL.


Subject(s)
Artificial Intelligence , Lipase , Animals , Mice , Lipase/metabolism , Lipolysis/physiology , Triglycerides/metabolism , Amino Acids/metabolism , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism
10.
Curr Probl Cardiol ; 49(2): 102345, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38103823

ABSTRACT

The review centers on the scientific evidence underlying obesity, providing a detailed examination of the role of perilipin in this condition. It explores potential causes of obesity and delves into therapeutic approaches involving exercise, yoga, and herbal treatments. The paper discusses natural sources that can contribute to combating obesity and underscores the importance of exercise in a scientific context for overcoming obesity. Additionally, it includes information on herbal ingredients that aid in reducing obesity. The review also examines the impact of exercise type and intensity at various time intervals on muscle development. It elucidates triglyceride hydrolysis through different enzymes and the deposition of fatty acids in adipose tissue. The mechanisms by which alpha/beta hydrolase domain-containing protein 5 (ABHD5) and hormone-sensitive lipase (HSL) target and activate their functions are detailed. The inflammatory response in obesity is explored, encompassing inflammatory markers, lipid storage diseases, and their classification with molecular mechanisms. Furthermore, the hormonal regulation of lipolysis is elaborated upon in the review.


Subject(s)
Lipase , Yoga , Humans , Lipase/metabolism , Diet, Healthy , Lipolysis/physiology , Obesity/therapy , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism
11.
Metabolism ; 148: 155693, 2023 11.
Article in English | MEDLINE | ID: mdl-37741434

ABSTRACT

BACKGROUND & AIMS: Autophagy-related 14 (ATG14) is a key regulator of autophagy. ATG14 is also localized to lipid droplet; however, the function of ATG14 on lipid droplet remains unclear. In this study, we aimed to elucidate the role of ATG14 in lipid droplet homeostasis. METHODS: ATG14 loss-of-function and gain-of-function in lipid droplet metabolism were analyzed by fluorescence imaging in ATG14 knockdown or overexpression hepatocytes. Specific domains involved in the ATG14 targeting to lipid droplets were analyzed by deletion or site-specific mutagenesis. ATG14-interacting proteins were analyzed by co-immunoprecipitation. The effect of ATG14 on lipolysis was analyzed in human hepatocytes and mouse livers that were deficient in ATG14, comparative gene identification-58 (CGI-58), or both. RESULTS: Our data show that ATG14 is enriched on lipid droplets in hepatocytes. Mutagenesis analysis reveals that the Barkor/ATG14 autophagosome targeting sequence (BATS) domain of ATG14 is responsible for the ATG14 localization to lipid droplets. Co-immunoprecipitation analysis illustrates that ATG14 interacts with adipose triglyceride lipase (ATGL) and CGI-58. Moreover, ATG14 also enhances the interaction between ATGL and CGI-58. In vitro lipolysis analysis demonstrates that ATG14 deficiency remarkably decreases triglyceride hydrolysis. CONCLUSIONS: Our data suggest that ATG14 can directly enhance lipid droplet breakdown through interactions with ATGL and CGI-58.


Subject(s)
Lipase , Lipid Droplets , Mice , Animals , Humans , Lipase/metabolism , Lipid Droplets/metabolism , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Lipolysis , Lipid Metabolism/genetics , Liver/metabolism , Homeostasis , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism
12.
Int J Pharm X ; 6: 100195, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37448985

ABSTRACT

Gene therapy has shown remarkable effectiveness in the management of disease like cancer and inflammation as a revolutionary therapeutic. Nonetheless, therapeutic drug target discovery, efficient gene delivery, and gene delivery vehicles continue to be significant obstacles. Due to their effective gene transport capabilities and low immunogenicity, supramolecular polymers have garnered significant interest. Herein, ABHD5 is identified as a potential therapeutic target since it is dysregulated in hepatocellular carcinoma (HCC). Interestingly, the downregulation of ABHD5 could induce programmed death-ligand 1 (PD-L1) expression in liver cancer, which may contribute to the immunosuppression. To overcome the immunosuppression caused by PD-L1, an injectable hydrogel is designed to achieve efficient abhydrolase domain containing 5 (ABHD5) gene delivery via the host-guest interaction with branched polyethyleneimine-g-poly (ethylene glycol), poly (ethylene oxide) and poly (propylene oxide) block copolymers and α-CD (PPA/CD), demonstrating the capability for sustained gene release. The co-assembly hydrogel demonstrates good biocompatibility and enhanced gene transfection efficiency, efficiently triggering tumor cell apoptosis. Overall, the results of this study suggest that ABHD5 is a potential therapeutic target, and that a host-guest-based supramolecular hydrogel could serve as a promising platform for the inhibition of HCC.

13.
Cell Biochem Funct ; 41(1): 128-137, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36515301

ABSTRACT

Dysfunction of the adipose tissue metabolism is considered as a significant hallmark of aging. It has been proposed that α-ß hydrolase domain containing 5 (ABHD5) plays a critical role in the control of lipolysis. However, the role of ABHD5 in the control of lipolysis during aging or exercise is unknown. Here we combined the experimental mouse model with transcriptomic analyzes by using murine and human databases to explore the role of ABHD5 in the adipose tissue during aging and in response to exercise. Transcriptomic data revealed a downregulation of Abhd5 messenger RNA levels in the subcutaneous white adipose tissue (scWAT) over time in individuals from 20 to 69 years old. Aged mice displayed dramatic reduction of ABHD5 protein content and lipolytic-related proteins in the scWAT. Interestingly, 4 weeks of high-intensity interval training increased ABHD5 protein level and restored the lipolytic pathway in the scWAT of aged mice. Altogether, our findings demonstrated that aging affects ABHD5 content in the adipose tissue of mice and humans. Conversely, exercise increases ABHD5 activity, recovering the lipolytic activity in aged mice.


Subject(s)
1-Acylglycerol-3-Phosphate O-Acyltransferase , Adipose Tissue , Aging , Exercise , Lipolysis , Adult , Aged , Animals , Humans , Mice , Middle Aged , Young Adult , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Adipose Tissue/enzymology , Aging/metabolism , Hydrolases/genetics , Hydrolases/metabolism
14.
Cancer Biother Radiopharm ; 38(5): 336-346, 2023 Jun.
Article in English | MEDLINE | ID: mdl-32822232

ABSTRACT

Background: Lung adenocarcinoma (LAC) is a common malignancy worldwide. Emerging findings indicated that circular RNAs possess complex capacities of gene modulation in tumorigenesis and metastasis. Nevertheless, the role of circular RNA in LAC is still largely unknown. Materials and Methods: The level of circular RNA cMras (circ_cMras), alpha-beta hydrolase domain 5 (ABHD5), and adipose triglyceride lipase (ATGL) was determined by quantitative real-time polymerase chain reaction assay. Protein levels of ABHD5, ATGL, p53, p65, and phospho-p65 (p-p65) were examined by Western blot. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was used to detect cell proliferation in vitro. Cell apoptosis was estimated using flow cytometry. Transwell assay was used to measure cell migration and invasion in A549 and HCC827 cells. Finally, the role of circ_cMras was explored using xenograft tumor model. Results: Low levels of circ_cMras, ABHD5, and ATGL were observed in LAC tissues and cells. Upregulation of circ_cMras could hamper tumor aggression in vitro and in vivo, exhibiting as the inhibition of cell proliferation, migration, invasion, and promotion of cell apoptosis, as well as the inhibition on tumor growth in vivo. Moreover, ABHD5 deletion could overturn the effects of circ_cMras overexpression on cell behaviors in LAC cells. Furthermore, the inhibiting effects of ABHD5 on cell aggression were reversed by ATGL deficiency in vitro. Mechanically, circ_cMras/ABHD5/ATGL axis exerted its role through NF-κB signaling pathway in LAC cells. Conclusion: Circ_cMras exerted its function through ABHD5/ATGL axis using NF-κB signaling pathway in LAC, which might provide a novel insight for the diagnosis and prognosis of LAC.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , NF-kappa B/metabolism , Hydrolases/metabolism , Cell Line, Tumor , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Signal Transduction , Lung Neoplasms/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Apoptosis/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism
15.
Metabolites ; 12(11)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36355098

ABSTRACT

The α/ß-Hydrolase domain-containing protein 5 (ABHD5; also known as comparative gene identification-58, or CGI-58) is the causative gene of the Chanarin-Dorfman syndrome (CDS), a disorder mainly characterized by systemic triacylglycerol accumulation and a severe defect in skin barrier function. The clinical phenotype of CDS patients and the characterization of global and tissue-specific ABHD5-deficient mouse strains have demonstrated that ABHD5 is a crucial regulator of lipid and energy homeostasis in various tissues. Although ABHD5 lacks intrinsic hydrolase activity, it functions as a co-activating enzyme of the patatin-like phospholipase domain-containing (PNPLA) protein family that is involved in triacylglycerol and glycerophospholipid, as well as sphingolipid and retinyl ester metabolism. Moreover, ABHD5 interacts with perilipins (PLINs) and fatty acid-binding proteins (FABPs), which are important regulators of lipid homeostasis in adipose and non-adipose tissues. This review focuses on the multifaceted role of ABHD5 in modulating the function of key enzymes in lipid metabolism.

16.
J Clin Periodontol ; 49(11): 1192-1202, 2022 11.
Article in English | MEDLINE | ID: mdl-35924763

ABSTRACT

AIM: The role of lipids in periodontitis has not been well studied. Thus, this study aimed to explore periodontitis-associated lipid profile changes and identify differentially expressed lipid metabolites in gingival tissues. MATERIALS AND METHODS: Gingival tissues from 38 patients with periodontitis (periodontitis group) and 38 periodontally healthy individuals (control group) were collected. A ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry-based non-targeted metabolomics platform was used to identify and compare the lipid profiles of the two groups. The distribution and expression of related proteins were subsequently analysed via immunohistochemistry to further validate the identified lipids. RESULTS: Lipid profiles significantly differed between the two groups, and 20 differentially expressed lipid species were identified. Lysophosphatidylcholines (lysoPCs), diacylglycerols (DGs), and phosphatidylethanolamines (PEs) were significantly up-regulated, while triacylglycerols (TGs) were downregulated in the periodontitis group. Moreover, the staining intensity of ABHD5/CGI-58, secretory phospholipase A2 (sPLA2), and sPLA2-IIA was significantly stronger in the gingival tissues of patients with periodontitis than in those of healthy controls. CONCLUSIONS: LysoPCs, DGs, and PEs were significantly up-regulated, whereas TGs were down-regulated in gingival tissues of patients with periodontitis. Correspondingly, the immunohistochemical staining of ABHD5/CGI-58, sPLA2, and sPLA2-IIA in gingival tissues was consistent with the downstream production of lipid classes (lysoPCs, TGs, and DGs).


Subject(s)
Periodontitis , Phospholipases A2, Secretory , 1-Acylglycerol-3-Phosphate O-Acyltransferase , Diglycerides , Humans , Lipidomics , Lysophosphatidylcholines , Phosphatidylethanolamines , Triglycerides
17.
Front Mol Biosci ; 9: 935375, 2022.
Article in English | MEDLINE | ID: mdl-35836935

ABSTRACT

Alpha/beta hydrolase domain-containing 5 (ABHD5), also termed CGI-58, is the key upstream activator of adipose triglyceride lipase (ATGL), which plays an essential role in lipid metabolism and energy storage. Mutations in ABHD5 disrupt lipolysis and are known to cause the Chanarin-Dorfman syndrome. Despite its importance, the structure of ABHD5 remains unknown. In this work, we combine computational and experimental methods to build a 3D structure of ABHD5. Multiple comparative and machine learning-based homology modeling methods are used to obtain possible models of ABHD5. The results from Gaussian accelerated molecular dynamics and experimental data of the apo models and their mutants are used to select the most likely model. Moreover, ensemble docking is performed on representative conformations of ABHD5 to reveal the binding mechanism of ABHD5 and a series of synthetic ligands. Our study suggests that the ABHD5 models created by deep learning-based methods are the best candidate structures for the ABHD5 protein. The mutations of E41, R116, and G328 disturb the hydrogen bonding network with nearby residues and suppress membrane targeting or ATGL activation. The simulations also reveal that the hydrophobic interactions are responsible for binding sulfonyl piperazine ligands to ABHD5. Our work provides fundamental insight into the structure of ABHD5 and its ligand-binding mode, which can be further applied to develop ABHD5 as a therapeutic target for metabolic disease and cancer.

18.
Front Genet ; 13: 847321, 2022.
Article in English | MEDLINE | ID: mdl-35419035

ABSTRACT

The Chanarin-Dorfman syndrome (CDS) is a rare, autosomal recessively inherited genetic disease, whch is associated with a decrease in the lipolysis activity in multiple tissue cells. The clinical phenotype involves multiple organs and systems, including liver, eyes, ears, skeletal muscle and central nervous system. Mutations in ABHD5/CGI58 gene have been confirmed to be associated with CDS. We performed whole exome sequencing on a Chinese CDS patient with skin ichthyosis features mimicking lamellar ichthyosis, ectropion, sensorineural hearing loss, and lipid storage in peripheral blood neutrophils. A novel homozygous missense mutation (p.L154R) in ABHD5 gene was detected in this patient. Genotype-phenotype analysis in reported CDS patients revealed no particular correlation. Our findings further enrich the reservoir of ABHD5 mutations in CDS.

19.
Int J Mol Sci ; 22(24)2021 Dec 12.
Article in English | MEDLINE | ID: mdl-34948160

ABSTRACT

The heart primarily uses fatty acids as energy substrates. Adipose lipolysis is a major source of fatty acids, particularly under stress conditions. In this study, we showed that mice with selective inactivation of the lipolytic coactivator comparative gene identification-58 (CGI-58) in adipose tissue (FAT-KO mice), relative to their littermate controls, had lower circulating FA levels in the fed and fasted states due to impaired adipose lipolysis. They preferentially utilized carbohydrates as energy fuels and were more insulin sensitive and glucose tolerant. Under cold stress, FAT-KO versus control mice had >10-fold increases in glucose uptake in the hearts but no increases in other tissues examined. Plasma concentrations of atrial natriuretic peptide and cardiac mRNAs for atrial and brain-type natriuretic peptides, two sensitive markers of cardiac remodeling, were also elevated. After one week of cold exposure, FAT-KO mice showed reduced cardiac expression of several mitochondrial oxidative phosphorylation proteins. After one month of cold exposure, hearts of these animals showed depressed functions, reduced SERCA2 protein, and increased proteins for MHC-ß, collagen I proteins, Glut1, Glut4 and phospho-AMPK. Thus, CGI-58-dependent adipose lipolysis critically regulates cardiac metabolism and function, especially during cold adaptation. The adipose-heart axis may be targeted for the management of cardiac dysfunction.


Subject(s)
Acclimatization , Cold-Shock Response , Glucose/metabolism , Lipolysis , Mitochondria, Heart/metabolism , Myocardium/metabolism , Animals , Cadherins/deficiency , Cadherins/metabolism , Glucose/genetics , Mice , Mice, Knockout , Mitochondria, Heart/genetics
20.
J Biol Chem ; 297(4): 101206, 2021 10.
Article in English | MEDLINE | ID: mdl-34543623

ABSTRACT

Adipose triglyceride lipase (ATGL) plays a key role in intracellular lipolysis, the mobilization of stored triacylglycerol. This work provides an important basis for generating reproducible and detailed data on the hydrolytic and transacylation activities of ATGL. We generated full-length and C-terminally truncated ATGL variants fused with various affinity tags and analyzed their expression in different hosts, namely E.coli, the insect cell line Sf9, and the mammalian cell line human embryonic kidney 293T. Based on this screen, we expressed a fusion protein of ATGL covering residues M1-D288 flanked with N-terminal and C-terminal purification tags. Using these fusions, we identified key steps in expression and purification protocols, including production in the E. coli strain ArcticExpress (DE3) and removal of copurified chaperones. The resulting purified ATGL variant demonstrated improved lipolytic activity compared with previously published data, and it could be stimulated by the coactivator protein comparative gene identification-58 and inhibited by the protein G0/G1 switch protein 2. Shock freezing and storage did not affect the basal activity but reduced coactivation of ATGL by comparative gene identification 58. In vitro, the truncated ATGL variant demonstrated acyl-CoA-independent transacylation activity when diacylglycerol was offered as substrate, resulting in the formation of fatty acid as well as triacylglycerol and monoacylglycerol. However, the ATGL variant showed neither hydrolytic activity nor transacylation activity upon offering of monoacylglycerol as substrate. To understand the role of ATGL in different physiological contexts, it is critical for future studies to identify all its different functions and to determine under what conditions these activities occur.


Subject(s)
Gene Expression , Lipase , Acylation , Animals , HEK293 Cells , Humans , Hydrolysis , Lipase/biosynthesis , Lipase/chemistry , Lipase/genetics , Lipase/isolation & purification , Mice , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Sf9 Cells , Spodoptera
SELECTION OF CITATIONS
SEARCH DETAIL