Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.088
Filter
1.
Explor Target Antitumor Ther ; 5(3): 678-698, 2024.
Article in English | MEDLINE | ID: mdl-38966174

ABSTRACT

Breast cancer (BC) is the most prevalent malignancy affecting women worldwide, including Portugal. While the majority of BC cases are sporadic, hereditary forms account for 5-10% of cases. The most common inherited mutations associated with BC are germline mutations in the BReast CAncer (BRCA) 1/2 gene (gBRCA1/2). They are found in approximately 5-6% of BC patients and are inherited in an autosomal dominant manner, primarily affecting younger women. Pathogenic variants within BRCA1/2 genes elevate the risk of both breast and ovarian cancers and give rise to distinct clinical phenotypes. BRCA proteins play a key role in maintaining genome integrity by facilitating the repair of double-strand breaks through the homologous recombination (HR) pathway. Therefore, any mutation that impairs the function of BRCA proteins can result in the accumulation of DNA damage, genomic instability, and potentially contribute to cancer development and progression. Testing for gBRCA1/2 status is relevant for treatment planning, as it can provide insights into the likely response to therapy involving platinum-based chemotherapy and poly[adenosine diphosphate (ADP)-ribose] polymerase inhibitors (PARPi). The aim of this review was to investigate the impact of HR deficiency in BC, focusing on BRCA mutations and their impact on the modulation of responses to platinum and PARPi therapy, and to share the experience of Unidade Local de Saúde Santa Maria in the management of metastatic BC patients with DNA damage targeted therapy, including those with the Portuguese c.156_157insAlu BRCA2 founder mutation.

2.
Front Pharmacol ; 15: 1418981, 2024.
Article in English | MEDLINE | ID: mdl-38966542

ABSTRACT

Introduction: Despite the established role of peripheral adenosine receptors in sepsis-induced organ dysfunction, little or no data is available on the interaction of central adenosine receptors with sepsis. The current study tested the hypothesis that central adenosine A3 receptors (A3ARs) modulate the cardiovascular aberrations and neuroinflammation triggered by sepsis and their counteraction by the cholinergic antiinflammatory pathway. Methods: Sepsis was induced by cecal ligation and puncture (CLP) in rats pre-instrumented with femoral and intracisternal (i.c.) catheters for hemodynamic monitoring and central drug administration, respectively. Results: The CLP-induced hypotension, reduction in overall heart rate variability (HRV) and sympathovagal imbalance towards parasympathetic predominance were abolished by i.v. nicotine (100 µg/kg) or i.c. VUF5574 (A3AR antagonist, 2 µg/rat). In addition, the selective A3AR agonist, 3-iodobenzyl-5'-N-methylcarboxamidoadenosine IB-MECA, 4 µg/rat, i.c.) exaggerated the hypotension and cardiac autonomic dysfunction induced by sepsis and opposed the favorable nicotine actions against these septic manifestations. Immunohistochemically, IB-MECA abolished the nicotine-mediated downregulation of NFκB and NOX2 expression in rostral ventrolateral medullary areas (RVLM) of brainstem of septic rats. The inhibitory actions of IB-MECA on nicotine responses disappeared after i.c. administration of PD98059 (MAPK-ERK inhibitor), SP600125 (MAPK-JNK inhibitor) or wortmannin (PI3K inhibitor). Moreover, infliximab (TNFα inhibitor) eliminated the IB-MECA-induced rises in RVLM-NFκB expression and falls in HRV, but not blood pressure. Conclusion: Central PI3K/MAPKs pathway mediates the A3AR counteraction of cholinergic defenses against cardiovascular and neuroinflammatory aberrations in sepsis.

3.
Sleep Biol Rhythms ; 22(3): 385-394, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962793

ABSTRACT

A significant proportion of the world's population suffers from insomnia, a disorder characterized by complications in initiating and maintaining sleep. Many medications used to treat insomnia target the γ-aminobutyric acid (GABA) neurotransmitter system. However, these substances, such as benzodiazepines, induce significant adverse consequences, including dependence and memory impairment, after prolonged use. Thus, current studies are aimed at developing therapeutic hypnotics derived from natural sources that may cause less severe side effects. Heukharang is a variety of lettuce from Korea that was discovered to contain sleep-promoting compounds. Therefore, we investigated the potential effects of sub-chronic administration of Heukharang extract (FSD-LS) on sleep behavior (pentobarbital-induced sleeping test), brain wave activity and sleep architecture (electroencephalography), and physiological behavior (open-field test and rota-rod) in mice, along with radioligand binding assays (GABAA, adenosine A1 and A2A receptors). We found that FSD-LS prolonged the total sleep duration and reduced the onset time of sleep, and enhanced delta wave power and non-rapid eye movement (NREM) sleep duration, all indicating persistent sleep-enhancing effects. FSD-LS lacked adverse effects on the spontaneous locomotor activity and motor coordination of mice, unlike diazepam. Pharmacological blocking using caffeine and bicuculline supported the possible involvement of adenosine receptors in the sleep-promoting effects of FSD-LS, with partial contribution from GABA receptor activity. Overall, our study recommends FSD-LS as a potential source for the development of sleep-aiding therapeutics.

4.
Brain ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38964748

ABSTRACT

Early pathological upregulation of adenosine A2A receptors (A2ARs), one of the caffeine targets, by neurons is thought to be involved in the development of synaptic and memory deficits in Alzheimer's disease (AD) but mechanisms remain ill-defined. To tackle this question, we promoted a neuronal upregulation of A2AR in the hippocampus of APP/PS1 mice developing AD-like amyloidogenesis. Our findings revealed that the early upregulation of A2AR in the presence of an ongoing amyloid pathology exacerbates memory impairments of APP/PS1 mice. These behavioural changes were not linked to major change in the development of amyloid pathology but rather associated with increased phosphorylated tau at neuritic plaques. Moreover, proteomic and transcriptomic analyses coupled with quantitative immunofluorescence studies indicated that neuronal upregulation of the receptor promoted both neuronal and non-neuronal autonomous alterations, i.e. enhanced neuroinflammatory response but also loss of excitatory synapses and impaired neuronal mitochondrial function, presumably accounting for the detrimental effect on memory. Overall, our results provide compelling evidence that neuronal A2AR dysfunction, as seen in the brain of patients, contributes to amyloid-related pathogenesis and underscores the potential of A2AR as a relevant therapeutic target for mitigating cognitive impairments in this neurodegenerative disorder.

5.
Pediatr Neurol ; 158: 49-56, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38959649

ABSTRACT

BACKGROUND: Severe combined immunodeficiency secondary to adenosine deaminase deficiency is rare. The deficiency of this enzyme results in the accumulation of substrates in the tissues, including the brain. Clinical signs of neurological involvement may include seizures, neurodevelopmental disorders, hypotonia, and sensorineural hearing loss. Hematopoietic stem cell transplantation corrects the failure of the immune system but not the neurological involvement. OBJECTIVES: To describe the spectrum of neurological complications identified in a series of children with severe combined immunodeficiency due to adenosine deaminase deficiency. Additionally, we propose a neurological approach including electrophysiological, radiological, and neurocognitive studies to address this group of children in an efficient and timely manner. METHODS: A descriptive, observational, retro-, and prospective analysis of patients with a confirmed immunological diagnosis seen between 1996 and 2021 and referred to the Department of Neurology for neurological evaluation was conducted. RESULTS: Ten patients met the inclusion criteria. The median age at diagnosis was 4 months (range, 1-36 months). All patients had neurodevelopmental delay with hypotonia in six, language delay in three, sensorineural hearing loss in four, and spastic paraparesis in one patient. Two children developed an epileptic syndrome, consisting of generalized epilepsy in one and focal epilepsy in the other. Neuroimaging showed brain calcifications in the basal ganglia and/or centrum semiovale in four patients and enlarged subarachnoid spaces in two other patients. CONCLUSION: In this pediatric series, the rate of neurological involvement associated with abnormalities on neuroimaging was high. Although this involvement could be related to accumulation of adenosine metabolites in the central nervous system, the possibility of associated chronic infections should be ruled out. Given the neurological manifestations, it is important to involve the pediatric neurologist in the multidisciplinary follow-up team.

6.
bioRxiv ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38948727

ABSTRACT

Mitochondria are central to cellular metabolism; hence, their dysfunction contributes to a wide array of human diseases including cancer, cardiopathy, neurodegeneration, and heritable pathologies such as Barth syndrome. Cardiolipin, the signature phospholipid of the mitochondrion promotes proper cristae morphology, bioenergetic functions, and directly affects metabolic reactions carried out in mitochondrial membranes. To match tissue-specific metabolic demands, cardiolipin typically undergoes an acyl tail remodeling process with the final step carried out by the phospholipid-lysophospholipid transacylase tafazzin. Mutations in the tafazzin gene are the primary cause of Barth syndrome. Here, we investigated how defects in cardiolipin biosynthesis and remodeling impact metabolic flux through the tricarboxylic acid cycle and associated pathways in yeast. Nuclear magnetic resonance was used to monitor in real-time the metabolic fate of 13C3-pyruvate in isolated mitochondria from three isogenic yeast strains. We compared mitochondria from a wild-type strain to mitochondria from a Δtaz1 strain that lacks tafazzin and contains lower amounts of unremodeled cardiolipin, and mitochondria from a Δcrd1 strain that lacks cardiolipin synthase and cannot synthesize cardiolipin. We found that the 13C-label from the pyruvate substrate was distributed through about twelve metabolites. Several of the identified metabolites were specific to yeast pathways, including branched chain amino acids and fusel alcohol synthesis. Most metabolites showed similar kinetics amongst the different strains but mevalonate and α-ketoglutarate, as well as the NAD+/NADH couple measured in separate nuclear magnetic resonance experiments, showed pronounced differences. Taken together, the results show that cardiolipin remodeling influences pyruvate metabolism, tricarboxylic acid cycle flux, and the levels of mitochondrial nucleotides.

7.
Syst Biol Reprod Med ; 70(1): 195-203, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38972054

ABSTRACT

The presence of cyclic adenosine monophosphate (cAMP) has been considered to be a fundamental factor in ensuring meiotic arrest prior to ovulation. cAMP is regarded as a key molecule in the regulation of oocyte maturation. However, it has been reported that increased levels of intracellular cAMP can result in abnormal cytokinesis, with some MI oocytes leading to symmetrically cleaved 2-cell MII oocytes. Consequently, we aimed to investigate the effects of elevated intracellular cAMP levels on abnormal cytokinesis and oocyte maturation during the meiosis of mouse oocytes. This study found that a high concentration of isobutylmethylxanthine (IBMX) also caused chromatin/chromosomes aggregation (AC) after the first meiosis. The rates of AC increased the greater the concentration of IBMX. In addition, AC formation was found to be reversible, showing that the re-formation of the spindle chromosome complex was possible after the IBMX was removed. In human oocytes, the chromosomes aggregate after the germinal vesicle breakdown and following the first and second polar body extrusions (the AC phase), while mouse oocytes do not have this AC phase. The results of our current study may indicate that the AC phase in human oocytes could be related to elevated levels of intracytoplasmic cAMP.


Subject(s)
1-Methyl-3-isobutylxanthine , Chromatin , Oocytes , Animals , Oocytes/metabolism , Female , Chromatin/metabolism , 1-Methyl-3-isobutylxanthine/pharmacology , Mice , Humans , Meiosis/drug effects , Cyclic AMP/metabolism , Phosphodiesterase Inhibitors/pharmacology
8.
Epilepsia ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980980

ABSTRACT

OBJECTIVE: Sudden unexpected death in epilepsy (SUDEP) results in more years of potential life lost than any neurological condition with the exception of stroke. It is generally agreed that SUDEP happens due to some form of respiratory, cardiac, and electrocerebral dysfunction following a seizure; however, the mechanistic cause of these perturbations is unclear. One possible explanation lies with adenosinergic signaling. Extracellular levels of the inhibitory neuromodulator adenosine rapidly rise during seizures, a countermeasure that is necessary for seizure termination. Previous evidence has suggested that excessive adenosinergic inhibition could increase the risk of SUDEP by silencing brain areas necessary for life, such as the respiratory nuclei of the brainstem. The goal of this investigation was to further clarify the role of adenosine in seizure-induced respiratory and electrocerebral dysfunction. METHODS: To determine the role of adenosine in postictal physiological dysregulation, we pharmacologically manipulated adenosine signaling prior to amygdala-kindled seizures in mice while recording electroencephalogram (EEG), electromyogram, and breathing using whole body plethysmography. The adenosinergic drugs used in this study included selective and nonselective adenosine receptor antagonists and inhibitors of adenosine metabolism. RESULTS: We found that high doses of adenosine receptor antagonists caused some seizures to result in seizure-induced death; however, counterintuitively, animals in these conditions that did not experience seizure-induced death had little or no postictal generalized EEG suppression. Inhibitors of adenosine metabolism had no effect on postictal breathing but did worsen some postictal electrocerebral outcomes. SIGNIFICANCE: The unexpected effect of high doses of adenosine antagonists on seizure-induced death observed in this study may be due to the increase in seizure severity, vasoconstriction, or phosphodiesterase inhibition caused by these drugs at high doses. These findings further clarify the role of adenosine in seizure-induced death and may have implications for the consumption of caffeine in epilepsy patients and the prevention of SUDEP.

9.
Heart Vessels ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981910

ABSTRACT

Continuous intravenous adenosine triphosphate (ATP) administration is the standard method for inducing maximal hyperemia in fractional flow reserve (FFR) measurements. Several cases have demonstrated fluctuations in the ratio of mean distal coronary pressure to mean arterial pressure (Pd/Pa) value during ATP infusion, which raised our suspicions of FFR value inaccuracy. This study aimed to investigate our hypothesis that Pd/Pa fluctuations may indicate inaccurate FFR measurements caused by insufficient hyperemia. We examined 57 consecutive patients with angiographically intermediate coronary lesions who underwent fractional flow reverse (FFR) measurements in our hospital between November 2016 and September 2018. Pd/Pa was measured after continuous ATP administration (150 µg/kg/min) via a peripheral forearm vein for 5 min (FFRA); and we analyzed the FFR value variation in the final 20 s of the 5 min, defining 'Fluctuation' as variation range > 0.03. Then, 2 mg of nicorandil was administered into the coronary artery during continued ATP infusion, and the Pd/Pa was remeasured (FFRA+N). Fluctuations were observed in 23 of 57 patients. The cases demonstrating discrepancies of > 0.05 between FFRA and FFRA+N were observed more frequently in the fluctuation group than in the non-fluctuation group (12/23 vs. 1/34; p < 0.0001). The discrepancy between FFRA and FFRA+N values was smaller in the non-fluctuation group (mean difference ± SD; -0.00026 ± 0.04636 vs. 0.02608 ± 0.1316). Pd/Pa fluctuation with continuous ATP administration could indicate inaccurate FFR measurements caused by incomplete hyperemia. Additional vasodilator administration may achieve further hyperemia when Pd/Pa fluctuations are observed.

10.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 699-707, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948272

ABSTRACT

Objective: To explore the effect and safety of calcium dibutyryl adenosine cyclophosphate (dbcAMP-Ca) combined with metoprolol in the treatment of older adults with heart failure combined with arrhythmia. Methods: A total of 102 elderly patients with heart failure combined with arrhythmia were enrolled in our hospital between February 2021 and April 2023. The list of patients enrolled was entered into a random database by independent staffs not involved in the study and random assignment sequences were generated by the SAS9.4 software. Then, the 102 elderly patients were divided into a control group ( n=51) and an experimental group ( n=51). Patients in the control group were given metoprolol at an initial dose of 6.25 mg/d, which was gradually increased to the target dose of 25 mg/d. Patients in the experimental group were given 40 mg of dbcAMP-Ca once a day via intravenous drip in addition to the treatment given to the control group. Both groups were treated for 4 weeks. The rate of effective response to clinical treatment (the number of cases achieving significant effects and those achieving some effects divided by the total number of cases in the group) was defined as the main outcome index. Secondary indexes included cardiac function, heart rate variability, exercise ability, hemorheology, myocardial injury indexes, inflammatory indexes, and the occurrence of adverse reactions. Results: The rate of effective response to clinical treatment was higher in the experimental group than that in the control group (94.12% [48/51] vs. 78.43% [40/51], P<0.05). After treatment, the left ventricular end-diastolic and end-systolic dimensions (LVEDD and LVESD) and the interventricular septal thickness (IVS) were lower in the experimental group than those in the control group, while the left ventricular ejection fraction (LVEF) and the stroke volume (SV) were higher in the experimental group than those in the control group ( P<0.05). In terms of heart rate variability after treatment, the standard deviation of all the normal-to-normal intervals/the average of all the normal-to-normal intervals (SDNN/SDANN), the percentage of NN50 in the total number of normal-to-normal intervals (PNN50%), and the root mean square of the differences between adjacent normal-to-normal intervals/root mean square differences of successive R-R intervals (RMSSD) were higher in the experimental group than those in the control group ( P<0.05). In terms of exercise capacity after treatment, the subjects in the experimental group covered more distance in the 6-min walk test than those in the control group did ( P<0.05). In terms of the hemorheology indexes after treatment, the levels of platelet aggregation rate (PAgT), fibrinogen (FIB), erythrocyte sedimentation rate (ESR), and whole blood viscosity (ηb) were lower in the experimental group than those in the control group ( P<0.05). In terms of the myocardial injury indexes after treatment, the levels of serum N-terminal pro-brain natriuretic peptide (NT-pro BNP) and cardiac troponin I (cTnI) were lower in the experimental group than those in the control group, while the levels of insulin-like growth factor 1 (IGF-1) and cardiotrophin 1 (CT-1) were higher in the experimental group than those in the control group ( P<0.05). In terms of the inflammatory indexes after treatment, the levels of interleukin-6 (IL-6), high-sensitive C-reactive protein (hs-CRP), and tumor necrosis factor-α (TNF-α) were lower in the experimental group than those in the control group ( P<0.05). The incidence of adverse reactions in the experimental group (9.80%) and that in the control group (7.84%) were comparable ( P>0.05). Conclusion: The use of dbcAMP-Ca in addition to metoprolol can effectively improve cardiac function, heart rate variability, and exercise tolerance, while inhibiting inflammatory response in elderly patients with heart failure combined with arrhythmia, with high medication safety. The combination medication shows better safety and therapeutic effects than those of metoprolol used alone.


Subject(s)
Arrhythmias, Cardiac , Heart Failure , Metoprolol , Humans , Aged , Heart Failure/drug therapy , Male , Female , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/etiology , Metoprolol/administration & dosage , Drug Therapy, Combination , Adenosine/administration & dosage , Adenosine/analogs & derivatives , Heart Rate/drug effects
11.
J Extracell Vesicles ; 13(7): e12480, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38978304

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is a global cancer burden with a 5-year overall survival rate of around 50%, stagnant for decades. A tumour-induced immunosuppressive microenvironment contributes to HNSCC progression, with the adenosine (ADO) pathway and an upregulated expression of inhibitory immune checkpoint regulators playing a key role in this context. The correlation between high neutrophil-to-lymphocyte ratio (NLR) with advanced tumour staging suggests involvement of neutrophils (NØ) in cancer progression. Interestingly, we associated a high NLR with an increased intracellular PD-L1 localization in primary HNSCC samples, potentially mediating more aggressive tumour characteristics and therefore synergistically favouring tumour progression. Still, further research is needed to harness this knowledge for effective treatments and overcome resistance. Since it is hypothesized that the tumour microenvironment (TME) may be influenced by small extracellular vesicles (sEVs) secreted by tumours (TEX), this study aims to investigate the impact of HNSCC-derived TEX on NØ and blockade of ADO receptors as a potential strategy to reverse the pro-tumour phenotype of NØ. UMSCC47-TEX exhibited CD73 enzymatic activity involved in ADO signalling, as well as the immune checkpoint inhibitor PD-L1. Data revealed that TEX induce chemotaxis of NØ and the sustained interaction promotes a shift into a pro-tumour phenotype, dependent on ADO receptors (P1R), increasing CD170high subpopulation, CD73 and PD-L1 expression, followed by an immunosuppressive secretome. Blocking A3R reduced CD73 and PD-L1 expression. Co-culture experiments with HNSCC cells demonstrated that TEX-modulated NØ increase the CD73/PD-L1 axis, through Cyclin D-CDK4/6 signalling. To support these findings, the CAM model with primary tumour was treated with NØ supernatant. Moreover, these NØ promoted an increase in migration, invasion, and reduced cell death. Targeting P1R on NØ, particularly A3R, exhibited potential therapeutic strategy to counteract immunosuppression in HNSCC. Understanding the TEX-mediated crosstalk between tumours and NØ offers insights into immunomodulation for improving cancer therapies.


Subject(s)
5'-Nucleotidase , B7-H1 Antigen , Extracellular Vesicles , Head and Neck Neoplasms , Neutrophils , Signal Transduction , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Humans , B7-H1 Antigen/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Neutrophils/metabolism , Neutrophils/immunology , Tumor Microenvironment/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/metabolism , 5'-Nucleotidase/metabolism , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Cell Line, Tumor , Immunomodulation , Adenosine/metabolism , GPI-Linked Proteins
12.
Hypertension ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966986

ABSTRACT

BACKGROUND: Evidence suggests that increasing salt intake in pregnancy lowers blood pressure, protecting against preeclampsia. We hypothesized that sodium (Na+) evokes beneficial placental signals that are disrupted in preeclampsia. METHODS: Blood and urine were collected from nonpregnant women of reproductive age (n=26) and pregnant women with (n=50) and without (n=55) preeclampsia, along with placental biopsies. Human trophoblast cell lines and primary human trophoblasts were cultured with varying Na+ concentrations. RESULTS: Women with preeclampsia had reduced placental and urinary Na+ concentrations, yet increased urinary angiotensinogen and reduced active renin, aldosterone concentrations, and osmotic response signal TonEBP (tonicity-responsive enhancer binding protein) expression. In trophoblast cell cultures, TonEBP was consistently increased upon augmented Na+ exposure. Mechanistically, inhibiting Na+/K+-ATPase or adding mannitol evoked the TonEBP response, whereas inhibition of cytoskeletal signaling abolished it. CONCLUSIONS: Enhanced Na+ availability induced osmotic gradient-dependent cytoskeletal signals in trophoblasts, resulting in proangiogenic responses. As placental salt availability is compromised in preeclampsia, adverse systemic responses are thus conceivable.

14.
Molecules ; 29(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38930880

ABSTRACT

Miniaturized weak affinity chromatography is emerging as an interesting alternative to conventional biophysical tools for performing fragment-screening studies in the context of fragment-based drug discovery. In order to push back the analytical limits, it is necessary not only to control non-specific interactions with chromatographic support, but also to adapt this methodology by comparing the results obtained on an affinity column to a control column. The work presented in this study focused on fragment screening that targets a model membrane protein, the adenosine A2A receptor, embedded in nanodiscs (NDs) as biomimetic membranes. By studying the retention behavior of test fragment mixtures on supports modified with different types of NDs, we were able to determine the contribution of ND-related non-specific interactions, in particular the electrostatic effect of anionic phospholipids and the hydrophobic effect of neutral phospholipids. Different strategies for the preparation of control columns (empty NDs, orthosteric site blocking) were investigated and are presented for the first time. With these two types of control columns, the screening enabled the identification of two new fragments of AA2AR, which were confirmed by competition experiments and whose Kd values, estimated directly during the screening or after the competition experiments in frontal mode, were in good agreement.


Subject(s)
Chromatography, Affinity , Nanostructures , Ligands , Chromatography, Affinity/methods , Nanostructures/chemistry , Receptor, Adenosine A2A/chemistry , Receptor, Adenosine A2A/metabolism , Membrane Proteins/chemistry , Protein Binding , Humans , Phospholipids/chemistry , Hydrophobic and Hydrophilic Interactions , Drug Discovery/methods
15.
Biosens Bioelectron ; 261: 116476, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38852325

ABSTRACT

DNA hydrogel represents a noteworthy biomaterial. The preparation of biosensors by combining DNA hydrogel with electrochemiluminescence can simplify the modification process and raise the experimental efficiency. In this study, an electrochemiluminescence (ECL) biosensor based on DNA hydrogel was fabricated to detect adenosine triphosphate (ATP) simply and quickly. CdTe-Ru@SiO2 nanospheres capable of ECL resonance energy transfer (RET) were synthesized and encapsulated CdTe-Ru@SiO2 in the DNA hydrogel to provide strong and stable ECL signals. DNA hydrogel avoided the labeling of ECL signal molecules. The aptamer of ATP as the linker of the hydrogel for the specificity of ATP detection. The cross-linked structure of the aptamer and the polymer chains was opened by ATP, and then the decomposition of the DNA hydrogel initiated the escape of CdTe-Ru@SiO2 to generate an ECL signal. The designed biosensor detected ATP without too much modification and complex experimental steps on the electrode surface, with good specificity and stability, and a wide linear range. The detection range was 10-5000 nM, and the detection limit was 6.68 nM (S/N = 3). The combination of DNA hydrogel and ECL biosensor provided a new way for clinical detection of ATP and other biomolecule.


Subject(s)
Adenosine Triphosphate , Aptamers, Nucleotide , Biosensing Techniques , DNA , Electrochemical Techniques , Hydrogels , Limit of Detection , Luminescent Measurements , Silicon Dioxide , Biosensing Techniques/methods , Adenosine Triphosphate/analysis , Aptamers, Nucleotide/chemistry , Hydrogels/chemistry , Luminescent Measurements/methods , Electrochemical Techniques/methods , DNA/chemistry , Silicon Dioxide/chemistry , Tellurium/chemistry , Cadmium Compounds/chemistry , Humans
16.
Bioorg Med Chem Lett ; 109: 129847, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38857849

ABSTRACT

2'-5'-Adenosine linked nucleic acids are crucial components in living cells that play significant roles, including participating in antiviral defense mechanisms by facilitating the breakdown of viral genetic material. In this report, we present a chemical derivatization method employing 5-fluoro-2-pyridinoyl-imidazole as the acylation agent, a strategy that can be effectively combined with advanced analytical tools, including Nuclear Magnetic Resonance spectroscopy and Liquid Chromatography-Mass Spectrometry, to enhance the characterization and detection capabilities. This marks the first instance of a simple method designed to detect 2'-5'-adenosine linked nucleic acids. The new method is characterized by its time-saving nature, simplicity, and relative accuracy compared to previous methods.


Subject(s)
Adenosine , Acylation , Adenosine/chemistry , Adenosine/analogs & derivatives , Adenosine/analysis , Nucleic Acids/chemistry , Nucleic Acids/analysis , Imidazoles/chemistry , Molecular Structure , Magnetic Resonance Spectroscopy , Mass Spectrometry
17.
Purinergic Signal ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910192

ABSTRACT

Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease. The prevalent features of AD pathogenesis are the appearance of ß-amyloid (Aß) plaques and neurofibrillary tangles, which cause microglial activation, synaptic deficiency, and neuronal loss. Microglia accompanies AD pathological processes and is also linked to cognitive deficits. Purinergic signaling has been shown to play a complex and tight interplay with the chemotaxis, phagocytosis, and production of pro-inflammatory factors in microglia, which is an important mechanism for regulating microglia activation. Here, we review recent evidence for interactions between AD, microglia, and purinergic signaling and find that the purinergic P2 receptors pertinently expressed on microglia are the ionotropic receptors P2X4 and P2X7, and the subtypes of P2YRs expressed by microglia are metabotropic receptors P2Y2, P2Y6, P2Y12, and P2Y13. The adenosine P1 receptors expressed in microglia include A1R, A2AR, and A2BR. Among them, the activation of P2X4, P2X7, and adenosine A1, A2A receptors expressed in microglia can aggravate the pathological process of AD, whereas P2Y2, P2Y6, P2Y12, and P2Y13 receptors expressed by microglia can induce neuroprotective effects. However, A1R activation also has a strong neuroprotective effect and has a significant anti-inflammatory effect in chronic neuroinflammation. These receptors regulate a variety of pathophysiological processes in AD, including APP processing, Aß production, tau phosphorylation, neuroinflammation, synaptic dysfunction, and mitochondrial dysfunction. This review also provides key pharmacological advances in purinergic signaling receptors.

18.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892291

ABSTRACT

Bone regeneration remains a significant clinical challenge, often necessitating surgical approaches when healing bone defects and fracture nonunions. Within this context, the modulation of adenosine signaling pathways has emerged as a promising therapeutic option, encouraging osteoblast activation and tempering osteoclast differentiation. A literature review of the PubMed database with relevant keywords was conducted. The search criteria involved in vitro or in vivo models, with clear methodological descriptions. Only studies that included the use of indirect adenosine agonists, looking at the effects of bone regeneration, were considered relevant according to the eligibility criteria. A total of 29 articles were identified which met the inclusion and exclusion criteria, and they were reviewed to highlight the preclinical translation of adenosine agonists. While preclinical studies demonstrate the therapeutic potential of adenosine signaling in bone regeneration, its clinical application remains unrealized, underscoring the need for further clinical trials. To date, only large, preclinical animal models using indirect adenosine agonists have been successful in stimulating bone regeneration. The adenosine receptors (A1, A2A, A2B, and A3) stimulate various pathways, inducing different cellular responses. Specifically, indirect adenosine agonists act to increase the extracellular concentration of adenosine, subsequently agonizing the respective adenosine receptors. The agonism of each receptor is dependent on its expression on the cell surface, the extracellular concentration of adenosine, and its affinity for adenosine. This comprehensive review analyzed the multitude of indirect agonists currently being studied preclinically for bone regeneration, discussing the mechanisms of each agonist, their cellular responses in vitro, and their effects on bone formation in vivo.


Subject(s)
Bone Regeneration , Purinergic P1 Receptor Agonists , Receptors, Purinergic P1 , Bone Regeneration/drug effects , Humans , Animals , Receptors, Purinergic P1/metabolism , Purinergic P1 Receptor Agonists/pharmacology , Purinergic P1 Receptor Agonists/therapeutic use , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenosine/metabolism , Signal Transduction/drug effects , Translational Research, Biomedical
19.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891948

ABSTRACT

Cardiovascular diseases (CVDs), particularly heart failure, are major contributors to early mortality globally. Heart failure poses a significant public health problem, with persistently poor long-term outcomes and an overall unsatisfactory prognosis for patients. Conventionally, treatments for heart failure have focused on lowering blood pressure; however, the development of more potent therapies targeting hemodynamic parameters presents challenges, including tolerability and safety risks, which could potentially restrict their clinical effectiveness. Adenosine has emerged as a key mediator in CVDs, acting as a retaliatory metabolite produced during cellular stress via ATP metabolism, and works as a signaling molecule regulating various physiological processes. Adenosine functions by interacting with different adenosine receptor (AR) subtypes expressed in cardiac cells, including A1AR, A2AAR, A2BAR, and A3AR. In addition to A1AR, A3AR has a multifaceted role in the cardiovascular system, since its activation contributes to reducing the damage to the heart in various pathological states, particularly ischemic heart disease, heart failure, and hypertension, although its role is not as well documented compared to other AR subtypes. Research on A3AR signaling has focused on identifying the intricate molecular mechanisms involved in CVDs through various pathways, including Gi or Gq protein-dependent signaling, ATP-sensitive potassium channels, MAPKs, and G protein-independent signaling. Several A3AR-specific agonists, such as piclidenoson and namodenoson, exert cardioprotective impacts during ischemia in the diverse animal models of heart disease. Thus, modulating A3ARs serves as a potential therapeutic approach, fueling considerable interest in developing compounds that target A3ARs as potential treatments for heart diseases.


Subject(s)
Heart Diseases , Receptor, Adenosine A3 , Signal Transduction , Humans , Animals , Signal Transduction/drug effects , Receptor, Adenosine A3/metabolism , Heart Diseases/metabolism , Heart Diseases/drug therapy , Adenosine A3 Receptor Agonists/therapeutic use , Adenosine A3 Receptor Agonists/pharmacology , Adenosine/metabolism
20.
Int J Mol Sci ; 25(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38891997

ABSTRACT

Inflammatory skin diseases highlight inflammation as a central driver of skin pathologies, involving a multiplicity of mediators and cell types, including immune and non-immune cells. Adenosine, a ubiquitous endogenous immune modulator, generated from adenosine triphosphate (ATP), acts via four G protein-coupled receptors (A1, A2A, A2B, and A3). Given the widespread expression of those receptors and their regulatory effects on multiple immune signaling pathways, targeting adenosine receptors emerges as a compelling strategy for anti-inflammatory intervention. Animal models of psoriasis, contact hypersensitivity (CHS), and other dermatitis have elucidated the involvement of adenosine receptors in the pathogenesis of these conditions. Targeting adenosine receptors is effective in attenuating inflammation and remodeling the epidermal structure, potentially showing synergistic effects with fewer adverse effects when combined with conventional therapies. What is noteworthy are the promising outcomes observed with A2A agonists in animal models and ongoing clinical trials investigating A3 agonists, underscoring a potential therapeutic approach for the management of inflammatory skin disorders.


Subject(s)
Adenosine , Receptors, Purinergic P1 , Humans , Animals , Adenosine/metabolism , Receptors, Purinergic P1/metabolism , Skin Diseases/drug therapy , Skin Diseases/metabolism , Dermatitis/metabolism , Dermatitis/drug therapy , Dermatitis/pathology , Dermatitis/etiology , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/pathology , Psoriasis/drug therapy , Psoriasis/metabolism , Signal Transduction , Anti-Inflammatory Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...