Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
1.
J Leukoc Biol ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941350

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is caused by the inhalation of noxious particles such as cigarette smoke. The pathophysiological features include airway inflammation, alveolar destruction and poorly reversible airflow obstruction. A sub-group of COPD patients have higher blood eosinophil counts (BECs), associated with an increased response to inhaled corticosteroids and increased biomarkers of pulmonary type 2 (T2) inflammation. Emerging evidence shows that COPD patients with increased pulmonary eosinophil counts have an altered airway microbiome. Higher BECs are also associated with increased lung function decline, implicating T2 inflammation in progressive pathophysiology in COPD. We provide a narrative review of the role of eosinophils and T2 inflammation in the pathophysiology of COPD, encompassing the lung microbiome, pharmacological targeting of T2 pathways in COPD, and the clinical use of BEC as a COPD biomarker.

2.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892164

ABSTRACT

Thymic stromal lymphopoietin (TSLP), is a protein belonging to a class of epithelial cytokines commonly called alarmins, which also includes IL-25 and IL-33. Functionally, TSLP is a key player in the immune response to environmental insults, initiating a number of downstream inflammatory pathways. TSLP performs its role by binding to a high-affinity heteromeric complex composed of the thymic stromal lymphopoietin receptor (TSLPR) chain and IL-7Rα. In recent years, the important role of proinflammatory cytokines in the etiopathogenesis of various chronic diseases such as asthma, chronic rhinosinusitis with nasal polyposis (CRSwNP), chronic obstructive pulmonary diseases (COPDs), and chronic spontaneous urticaria has been studied. Although alarmins have been found to be mainly implicated in the mechanisms of type 2 inflammation, studies on monoclonal antibodies against TSLP demonstrate partial efficacy even in patients whose inflammation is not definable as T2 and the so-called low T2. Tezepelumab is a human anti-TSLP antibody that prevents TSLP-TSLPR interactions. Several clinical trials are evaluating the safety and efficacy of Tezepelumab in various inflammatory disorders. In this review, we will highlight major recent advances in understanding the functional role of TSLP, its involvement in Th2-related diseases, and its suitability as a target for biological therapies.


Subject(s)
Antibodies, Monoclonal, Humanized , Cytokines , Thymic Stromal Lymphopoietin , Humans , Cytokines/metabolism , Antibodies, Monoclonal, Humanized/therapeutic use , Animals , Receptors, Cytokine/metabolism , Receptors, Cytokine/antagonists & inhibitors , Molecular Targeted Therapy , Respiratory Tract Diseases/drug therapy , Respiratory Tract Diseases/metabolism , Asthma/drug therapy , Asthma/metabolism
3.
Eur J Intern Med ; 125: 28-31, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762432

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a main global epidemic increasing as population age and affecting approximately 10% of subjects over 45 years. COPD is a heterogeneous inflammatory disease with several endo-phenotypes and clinical presentations. Although neutrophilic inflammation is canonically considered a hallmark of COPD, eosinophilic inflammation can also be present in a subgroup of patients. Several other immune cells and cytokines play a key role in orchestrating and perpetuating the inflammatory pathways in COPD, making them attractive targets for treating this disorder. Recent studies have started to evaluate the possible role of type 2 (T2) inflammation and epithelial-derived alarmins (TSLP and IL-33) in COPD. Two phase III randomized clinical trials (RCTs) showed a modest reduction in exacerbations in COPD patients with eosinophilic phenotype treated with mepolizumab (anti-IL-5) or benralizumab (anti-IL-5Rα). A phase III RCT showed a 30% reduction in exacerbations in COPD patients with ≥ 300 eosinophils/µL treated with dupilumab (anti-IL-4Rα). These results suggest that blocking a single cytokine (e.g., IL-5) or its main target (i.e., IL-5Rα) is less promising than blocking a wider spectrum of cytokines (i.e., IL-4 and IL-13) in COPD. TSLP and IL-33 are upstream regulators of T2-high and T2-low immune responses in airway inflammation. Several ongoing RCTs are evaluating the efficacy and safety of anti-TSLP (tezepelumab), anti-IL-33 (itepekimab, tozorakimab), and anti-ST2 (astegolimab) in patients with COPD, who experience exacerbations. In conclusion, targeting T2 inflammation or epithelial-derived alarmins might represent a step forward in precision medicine for the treatment of a subset of COPD.


Subject(s)
Cytokines , Precision Medicine , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/drug therapy , Cytokines/metabolism , Antibodies, Monoclonal, Humanized/therapeutic use , Randomized Controlled Trials as Topic , Alarmins , Interleukin-33 , Clinical Trials, Phase III as Topic , Interleukin-5/antagonists & inhibitors , Thymic Stromal Lymphopoietin
4.
Biomolecules ; 14(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38672429

ABSTRACT

In 1992, a transcendental report suggested that the receptor of advanced glycation end-products (RAGE) functions as a cell surface receptor for a wide and diverse group of compounds, commonly referred to as advanced glycation end-products (AGEs), resulting from the non-enzymatic glycation of lipids and proteins in response to hyperglycemia. The interaction of these compounds with RAGE represents an essential element in triggering the cellular response to proteins or lipids that become glycated. Although initially demonstrated for diabetes complications, a growing body of evidence clearly supports RAGE's role in human diseases. Moreover, the recognizing capacities of this receptor have been extended to a plethora of structurally diverse ligands. As a result, it has been acknowledged as a pattern recognition receptor (PRR) and functionally categorized as the RAGE axis. The ligation to RAGE leads the initiation of a complex signaling cascade and thus triggering crucial cellular events in the pathophysiology of many human diseases. In the present review, we intend to summarize basic features of the RAGE axis biology as well as its contribution to some relevant human diseases such as metabolic diseases, neurodegenerative, cardiovascular, autoimmune, and chronic airways diseases, and cancer as a result of exposure to AGEs, as well as many other ligands.


Subject(s)
Glycation End Products, Advanced , Inflammation , Receptor for Advanced Glycation End Products , Humans , Receptor for Advanced Glycation End Products/metabolism , Glycation End Products, Advanced/metabolism , Inflammation/metabolism , Signal Transduction , Neoplasms/metabolism , Animals , Cardiovascular Diseases/metabolism , Neurodegenerative Diseases/metabolism , Metabolic Diseases/metabolism , Autoimmune Diseases/metabolism
5.
Curr Issues Mol Biol ; 46(4): 3640-3675, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38666958

ABSTRACT

Alarmins are immune-activating factors released after cellular injury or death. By secreting alarmins, cells can interact with immune cells and induce a variety of inflammatory responses. The broad family of alarmins involves several members, such as high-mobility group box 1, S100 proteins, interleukin-33, and heat shock proteins, among others. Studies have found that the concentrations and expression profiles of alarmins are altered in immune-mediated diseases. Furthermore, they are involved in the pathogenesis of inflammatory conditions. The aim of this narrative review is to present the current evidence on the role of alarmins in rheumatoid arthritis, osteoarthritis, and psoriasis. We discuss their potential involvement in mechanisms underlying the progression of these diseases and whether they could become therapeutic targets. Moreover, we summarize the impact of pharmacological agents used in the treatment of these diseases on the expression of alarmins.

6.
Front Immunol ; 15: 1354556, 2024.
Article in English | MEDLINE | ID: mdl-38415254

ABSTRACT

Heterogeneity characterises inflammatory diseases and different phenotypes and endotypes have been identified. Both innate and adaptive immunity contribute to the immunopathological mechanism of these diseases and barrier damage plays a prominent role triggering type 2 inflammation through the alarmins system, such as anti-Thymic Stromal Lymphopoietin (TSLP). Treatment with anti-TSLP monoclonal antibodies showed efficacy in severe asthma and clinical trials for other eosinophilic diseases are ongoing. The aim of this perspective review is to analyse current advances and future applications of TSLP inhibition to control barrier damage.


Subject(s)
Asthma , Cytokines , Humans , Thymic Stromal Lymphopoietin , Adaptive Immunity , Inflammation
7.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396704

ABSTRACT

This study delves into the critical role of alarmins in chronic spontaneous urticaria (CSU), focusing on their impact on disease severity and the quality of life (QoL) of patients. We investigated the alterations in alarmin levels in CSU patients and their correlations with the Urticaria Activity Score (UAS7) and the Dermatology Life Quality Index (DLQI). We analyzed serum levels of interleukin-25 (IL-25), interleukin-33 (IL-33), and thymic stromal lymphopoietin (TSLP) in 50 CSU patients, comparing these to 38 healthy controls. The study examined the relationship between alarmin levels and clinical outcomes, including disease severity and QoL. Elevated levels of IL-33 and TSLP in CSU patients (p < 0.0001) highlight their potential role in CSU pathogenesis. Although IL-25 showed higher levels in CSU patients, this did not reach statistical significance (p = 0.0823). Crucially, IL-33's correlation with both UAS7 and DLQI scores underscores its potential as a biomarker for CSU diagnosis and severity assessment. Of the alarmins analyzed, IL-33 emerges as particularly significant for further exploration as a diagnostic and prognostic biomarker in CSU. Its substantial correlation with disease severity and impact on QoL makes it a compelling candidate for future research, potentially serving as a target for therapeutic interventions. Given these findings, IL-33 deserves additional investigation to confirm its role and effectiveness as a biomarker and therapeutic target in CSU.


Subject(s)
Chronic Urticaria , Urticaria , Humans , Alarmins , Biomarkers , Chronic Disease , Chronic Urticaria/blood , Chronic Urticaria/diagnosis , Cytokines/therapeutic use , Interleukin-17/blood , Interleukin-17/chemistry , Interleukin-33/blood , Interleukin-33/chemistry , Quality of Life , Thymic Stromal Lymphopoietin/blood , Thymic Stromal Lymphopoietin/chemistry , Urticaria/blood , Urticaria/diagnosis
9.
Vet Med (Auckl) ; 15: 15-29, 2024.
Article in English | MEDLINE | ID: mdl-38371487

ABSTRACT

Atopic dermatitis (AD) is a common inflammatory and pruritic allergic skin disease in humans and dogs worldwide. The pathogenesis of AD is multifactorial, immunologically complex, and may involve genetic factors, epidermal barrier dysfunction, microbiome changes, immune dysregulation, and allergic sensitization. Across species, prevalence of AD is on the rise. At present, there is no cure for canine AD (CAD). The treatment for CAD is multifaceted and aimed at controlling the pruritus, associated inflammation, and infections, repairing the skin barrier function, and dietary management. This review presents data on prevalence, impact, and complex immunological interactions in AD with a focus on subsequent management of the disease in the canine population. A multimodal approach for management of CAD to address varying clinical signs and responses to therapies is discussed.

10.
J Clin Med ; 13(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38256602

ABSTRACT

Periodontitis is a chronic inflammatory disease. We have previously shown that salivary DNA is higher in patients with periodontitis. Neutrophil extracellular traps (NETs) are involved in the pathogenesis of chronic inflammatory diseases. The objective of this case-control study was to compare patients with periodontitis and healthy controls regarding the salivary concentrations of extracellular DNA and NET components. Unstimulated saliva samples were collected from 49 patients with periodontitis and 71 controls before an oral examination. Salivary extracellular DNA was isolated and quantified fluorometrically and using PCR. NET-associated markers were assessed using ELISA. We have found significantly higher concentrations of salivary extracellular DNA in samples from periodontitis patients (five-times higher for supernatant and three times for pellet). Our results show that patients also have three-times-higher salivary nucleosomes and NET-associated enzymes-myeloperoxidase and neutrophil elastase (both two-times higher). Neutrophil elastase and salivary DNA in the pellet correlated positively with the pocket depth/clinical attachment level in periodontitis patients (r = 0.31-weak correlation; p = 0.03 and r = 0.41-moderate correlation, p = 0.004). Correlations between salivary extracellular DNA and NET enzymes were positive and significant. Based on our results, the higher salivary extracellular DNA in periodontitis seems to be related to components of NETs, albeit with weak to moderate correlations indicating that NETs are produced in periodontitis and can play a role in its pathogenesis similarly to other inflammatory diseases. Further studies should prove this assumption with potential diagnostic and therapeutic consequences.

11.
Periodontol 2000 ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38265172

ABSTRACT

It is nowadays well accepted that chronic inflammation plays a pivotal role in tumor initiation and progression. Under this aspect, the oral cavity is predestined to examine this connection because periodontitis is a highly prevalent chronic inflammatory disease and oral squamous cell carcinomas are the most common oral malignant lesions. In this review, we describe how particular molecules of the human innate host defense system may participate as molecular links between these two important chronic noncommunicable diseases (NCDs). Specific focus is directed toward antimicrobial polypeptides, such as the cathelicidin LL-37 and human defensins, as well as S100 proteins and alarmins. We report in which way these peptides and proteins are able to initiate and support oral tumorigenesis, showing direct mechanisms by binding to growth-stimulating cell surface receptors and/or indirect effects, for example, inducing tumor-promoting genes. Finally, bacterial challenges with impact on oral cancerogenesis are briefly addressed.

12.
Microbes Infect ; 26(1-2): 105237, 2024.
Article in English | MEDLINE | ID: mdl-37805122

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) isolated from patients with keratitis produces substantial amounts of phenol-soluble modulin α (PSMα). However, the role of PSMα in S. aureus keratitis remains unclear. We observed that PSMα-producing and PSMα-deficient strains could infect the cornea in our experimental mouse keratitis model; however, only the PSMα-producing strain delayed epithelial wound healing and induced stromal inflammation. PSMα induced damage to the epithelium, the release of alarmins IL-1α and IL-36α, and the expression of inflammatory chemokines by resident corneal cells in the mouse corneal organ culture. The IL-36 (but not IL-1) receptor antagonist attenuated mouse keratitis induced by PSMα-containing bacterial culture supernatants, as well as by infection with PSMα-producing S. aureus, suggesting that the corneal inflammations were dependent on IL-36. Recombinant PSMα elicited IL-36-dependent corneal inflammation in mice. Thus, PSMα and the subsequently released IL-36 are critical factors triggering inflammation during S. aureus keratitis.


Subject(s)
Bacterial Toxins , Keratitis , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Animals , Mice , Staphylococcus aureus , Alarmins , Staphylococcal Infections/microbiology , Keratitis/microbiology , Inflammation
13.
Front Oral Health ; 4: 1320083, 2023.
Article in English | MEDLINE | ID: mdl-38098978

ABSTRACT

Introduction: Periodontitis is delineated by a dysbiotic microbiome at sites of lesions accompanied by a dysregulated persistent inflammatory response that undermines the integrity of the periodontium. The interplay of the altered microbial ecology and warning signals from host cells would be a critical feature for maintaining or re-establishing homeostasis in these tissues. Methods: This study used a nonhuman primate model (Macaca mulatta) with naturally-occurring periodontitis (n = 34) and experimental ligature-induced periodontitis (n = 36) to describe the features of gene expression for an array of damage-associate molecular patterns (DAMPs) or alarmins within the gingival tissues. The animals were age stratified into: ≤3 years (Young), 7-12 years (Adolescent), 12-15 years (Adult) and 17-23 years (Aged). Gingival tissue biopsies were examined via microarray. The analysis focused on 51 genes representative of the DAMPs/alarmins family of host cell warning factors and 18 genes associated with tissue destructive processed in the gingival tissues. Bacterial plaque samples were collected by curette sampling and 16S rRNA gene sequences used to describe the oral microbiome. Results: A subset of DAMPs/alarmins were expressed in healthy and naturally-occurring periodontitis tissues in the animals and suggested local effects on gingival tissues leading to altered levels of DAMPs/alarmins related to age and disease. Significant differences from adult healthy levels were most frequently observed in the young and adolescent animals with few representatives in this gene array altered in the healthy aged gingival tissues. Of the 51 target genes, only approximately ⅓ were altered by ≥1.5-fold in any of the age groups of animals during disease, with those increases observed during disease initiation. Distinctive positive and negative correlations were noted with the DAMP/alarmin gene levels and comparative expression changes of tissue destructive molecules during disease across the age groups. Finally, specific correlations of DAMP/alarmin genes and relative abundance of particular microbes were observed in health and resolution samples in younger animals, while increased correlations during disease in the older groups were noted. Conclusions: Thus, using this human-like preclinical model of induced periodontitis, we demonstrated the dynamics of the activation of the DAMP/alarmin warning system in the gingival tissues that showed some specific differences based on age.

14.
J Exp Clin Cancer Res ; 42(1): 279, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37880798

ABSTRACT

BACKGROUND: Cancer recurrence is regulated by a variety of factors, among which is the material of dying tumor cells; it is suggested that remaining after anti-cancer therapy tumor cells receive a signal from proteins called damage-associated molecular patterns (DAMPs), one of which is heat shock protein 70 (Hsp70). METHODS: Two models of tumor repopulation were employed, based on minimal population of cancer cells and application of conditioned medium (CM). To deplete the CMs of Hsp70 affinity chromatography on ATP-agarose and immunoprecipitation were used. Cell proliferation and the dynamics of cell growth were measured using MTT assay and xCELLigence technology; cell growth markers were estimated using qPCR and with the aid of ELISA for prostaglandin E detection. Immunoprecipitation followed by mass-spectrometry was employed to identify Hsp70-binding proteins and protein-protein interaction assays were developed to reveal the above protein complexes. RESULTS: It was found that CM of dying tumor cells contains tumor regrowth-initiating factors and the removal of one of them, Hsp70, caused a reduction in the relapse-activating capacity. The pull out of Hsp70 alone using ATP-agarose had no effect on repopulation, while the immunodepletion of Hsp70 dramatically reduced its repopulation activity. Using proteomic and immunochemical approaches, we showed that Hsp70 in conditioned medium binds and binds another abundant alarmin, the High Mobility Group B1 (HMGB1) protein; the complex is formed in tumor cells treated with anti-cancer drugs, persists in the cytosol and is further released from dying tumor cells. Recurrence-activating power of Hsp70-HMGB1 complex was proved by the enhanced expression of proliferation markers, Ki67, Aurka and MCM-10 as well as by increase of prostaglandin E production and autophagy activation. Accordingly, dissociating the complex with Hsp70 chaperone inhibitors significantly inhibited the pro-growth effects of the above complex, in both in vitro and in vivo tumor relapse models. CONCLUSIONS: These data led us to suggest that the abundance of the Hsp70-HMGB1 complex in the extracellular matrix may serve as a novel marker of relapse state in cancer patients, while specific targeting of the complex may be promising in the treatment of cancers with a high risk of recurrence.


Subject(s)
HMGB1 Protein , HSP70 Heat-Shock Proteins , Humans , Alarmins , HMGB1 Protein/metabolism , Culture Media, Conditioned , Proteomics , Chronic Disease , Recurrence , Prostaglandins
15.
ASN Neuro ; 15: 17590914231198983, 2023.
Article in English | MEDLINE | ID: mdl-37787108

ABSTRACT

SUMMARY STATEMENT: Neonatal hypoxia-ischemia reduces nicotinamide adenine dinucleotide (NAD+) and SIRT6 levels in the injured hippocampus.Hippocampal high mobility group box-1 (HMGB1) release is significantly increased after neonatal hypoxia-ischemia.Nicotinamide mononucleotide (NMN) treatment normalizes hippocampal NAD+ and SIRT6 levels, with significant decrease in caspase-3 activity and HMGB1 release.NMN improves early developmental behavior, as well as motor and memory function.


Subject(s)
Brain Injuries , HMGB1 Protein , Sirtuins , Mice , Animals , Nicotinamide Mononucleotide/pharmacology , Nicotinamide Mononucleotide/therapeutic use , NAD/therapeutic use , Animals, Newborn , HMGB1 Protein/therapeutic use , Brain Injuries/drug therapy , Ischemia , Hypoxia , Sirtuins/therapeutic use
16.
J Transl Autoimmun ; 7: 100210, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37711153

ABSTRACT

Immune cell infiltration and glandular dysfunction are the hallmarks of autoimmune diseases such as primary Sjogren's syndrome (pSS), however, the mechanism(s) is unknown. Our data show that metformin-treatment induces Ca2+ signaling that restores saliva secretion and prevents immune cell infiltration in the salivary glands of IL14α-transgenic mice (IL14α), which is a model for pSS. Mechanistically, we show that loss of Ca2+ signaling is a major contributing factor, which is restored by metformin treatment, in IL14α mice. Furthermore, the loss of Ca2+ signaling leads to ER stress in salivary glands. Finally, restoration of metformin-induced Ca2+ signaling inhibited the release of alarmins and prevented the activation of ER stress that was essential for immune cell infiltration. These results suggest that loss of metformin-mediated activation of Ca2+ signaling prevents ER stress, which inhibited the release of alarmins that induces immune cell infiltration leading to salivary gland dysfunction observed in pSS.

17.
Genes (Basel) ; 14(9)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37761861

ABSTRACT

BACKGROUND: The immune response in COVID-19 is characterized by the release of alarmin cytokines, which play crucial roles in immune activation and inflammation. The interplay between these cytokines and genetic variations may influence disease severity and outcomes, while sex differences might further contribute to variations in the immune response. METHODS: We measured the levels of alarmin cytokines in a cohort of COVID-19 and non-COVID-19 patients using a sensitive Meso Scale Discovery system. Additionally, we conducted an SNP analysis to identify genetic variations within the IL-33 and TSLP genes. The association between these genetic variations, cytokine production, and COVID-19 severity was examined. RESULTS: Our findings revealed elevated levels of IL-33 and IL-25 in COVID-19-positive patients compared to COVID-19-negative patients (p < 0.05), indicating their potential as therapeutic targets for disease modulation. Moreover, a minor allele within the IL-33 gene (rs3939286) was found to be associated with a protective effect against severe COVID-19 (p < 0.05), and minor alleles of the TSLP gene (rs2289276 and rs13806933) were found to significantly reduce TSLP protein levels in serum (p < 0.05). Sex-specific effects of TSLP and IL-33 SNPs were observed, suggesting a potential influence of sex hormones and genetic variations on the regulation of cytokine production. CONCLUSION: The present study highlights the importance of alarmin cytokines and genetic variations in COVID-19 severity, providing valuable insights into personalized treatment approaches. Our results suggest that targeting alarmin cytokines may offer potential therapeutic benefits in managing COVID-19. Furthermore, the sex-specific effects of genetic variations emphasize the need to consider individual genetic profiles and sex differences when designing targeted interventions.

18.
Expert Rev Respir Med ; 17(9): 773-786, 2023.
Article in English | MEDLINE | ID: mdl-37746733

ABSTRACT

INTRODUCTION: In response to injury, epithelial cells release alarmins including thymic stromal lymphopoietin (TSLP), high mobility group-box-1 (HMGB1), interleukin (IL)-33 and -25 that can initiate innate immune responses. These alarmins are recognized as activators of T2-immune responses characteristic for asthma, but recent evidence highlighted their role in non-T2 inflammation, airway remodeling, and pulmonary fibrosis making them an attractive therapeutic target for chronic respiratory diseases (CRD). AREAS COVERED: In this review, firstly we discuss the role of TSLP, IL-33, IL-25, and HMGB1 in the pathogenesis of asthma, COPD, idiopathic pulmonary fibrosis, and cystic fibrosis according to the published data. In the second part, we summarize the current evidence concerning the efficacy of the antialarmin therapies in CRD. Recent clinical trials showed that anti-TSLP and IL-33/R antibodies can improve severe asthma outcomes. Blocking the IL-33-mediated pathway decreased the exacerbation rate in COPD patients with more important benefit for former-smokers. EXPERT OPINION: Despite progress in the understanding of the alarmins' role in the pathogenesis of CRD, all their mechanisms of action are not yet identified. Blocking IL-33 and TSLP pathways offers an interesting option to treat severe asthma and COPD, but future investigations are needed to establish their place in the treatment strategies.


Subject(s)
Asthma , HMGB1 Protein , Pulmonary Disease, Chronic Obstructive , Respiration Disorders , Humans , Alarmins/therapeutic use , Interleukin-33/therapeutic use , HMGB1 Protein/therapeutic use , Cytokines/metabolism , Thymic Stromal Lymphopoietin , Pulmonary Disease, Chronic Obstructive/drug therapy
19.
Biomedicines ; 11(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37626657

ABSTRACT

In recent years, there has been a growing interest in developing innovative anticancer therapies targeting the tumor microenvironment (TME). The TME is a complex and dynamic milieu surrounding the tumor mass, consisting of various cellular and molecular components, including those from the host organism, endowed with the ability to significantly influence cancer development and progression. Processes such as angiogenesis, immune evasion, and metastasis are crucial targets in the search for novel anticancer drugs. Thus, identifying molecules with "multi-tasking" properties that can counteract cancer cell growth at multiple levels represents a relevant but still unmet clinical need. Extensive research over the past two decades has revealed a consistent anticancer activity for several members of the T2 ribonuclease family, found in evolutionarily distant species. Initially, it was believed that T2 ribonucleases mainly acted as anticancer agents in a cell-autonomous manner. However, further investigation uncovered a complex and independent mechanism of action that operates at a non-cell-autonomous level, affecting crucial processes in TME-induced tumor growth, such as angiogenesis, evasion of immune surveillance, and immune cell polarization. Here, we review and discuss the remarkable properties of ribonucleases from the T2 family in the context of "multilevel" oncosuppression acting on the TME.

20.
Int J Mol Sci ; 24(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37569519

ABSTRACT

Osteoarthritis (OA) is a multifactorial disease in which genetics, aging, obesity, and trauma are well-known risk factors. It is the most prevalent joint disease and the largest disability problem worldwide. Recent findings have described the role of damage-associated molecular patterns (DAMPs) in the course of the disease. In particular, alarmins such as HMGB1, IL-33, and S100B, appear implicated in enhancing articular inflammation and favouring a catabolic switch in OA chondrocytes. The aims of this review are to clarify the molecular signalling of these three molecules in OA pathogenesis, to identify their possible use as staging biomarkers, and, most importantly, to find out whether they could be possible therapeutic targets. Osteoarthritic cartilage expresses increased levels of all three alarmins. HMGB1, in particular, is the most studied alarmin with increased levels in cartilage, synovium, and synovial fluid of OA patients. High levels of HMGB1 in synovial fluid of OA joints are positively correlated with radiological and clinical severity. Counteracting HMGB1 strategies have revealed improving results in articular cells from OA patients and in OA animal models. Therefore, drugs against this alarmin, such as anti-HMGB1 antibodies, could be new treatment possibilities that can modify the disease course since available medications only alleviate symptoms.


Subject(s)
Cartilage, Articular , HMGB1 Protein , Osteoarthritis , Animals , Alarmins/metabolism , Cartilage, Articular/metabolism , Chondrocytes/metabolism , HMGB1 Protein/metabolism , Interleukin-33/metabolism , Joints/pathology , Osteoarthritis/metabolism , Synovial Membrane/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...