Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
J Pharm Bioallied Sci ; 16(Suppl 2): S1055-S1056, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882767

ABSTRACT

Mesotherapy is a popular novel therapeutic modality that delivers intradermal or subcutaneous microinjections of pharmaceutical compounds. Although this novel treatment method is used commonly in aesthetic dermatology, there is little information about the details of injections, efficacy, and side effects of mesotherapy in melasma. In this review, we evaluated the efficacy of various types of anti-pigmentation agents used with mesotherapy in the management of melasma.

2.
J Ethnopharmacol ; 323: 117687, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38163554

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ligusticum sinense Oliv. and L. jeholense Nakai et Kitag. are globally recognized as medicinal botanical species, specifically the rhizomes and roots. These plant parts are collectively referred to as Ligustici Rhizoma et Radix (LReR), which is recorded in the Pharmacopoeia of the People's Republic of China (Ch. P). LReR enjoys widespread recognition in many countries such as China, Russia, Vietnam, and Korea. It is an herbal remedy traditionally employed for dispelling wind and cold, eliminating dampness, and alleviating pain. Numerous bioactive compounds have been successfully isolated and identified, displaying a diverse array of pharmacological activities and medicinal value. THE AIM OF THE REVIEW: This review aims to primarily center on the botanical aspects, ethnopharmacology, phytochemistry, pharmacology, toxicity, quality control, and other applications of LReR to furnish a comprehensive and multidimensional foundation for future exploration and utilization. MATERIALS AND METHODS: Relevant information about LReR was acquired from ancient books, doctoral and master's dissertations, Google Scholar, Web of Science, PubMed, China National Knowledge Infrastructure (CNKI), ScienceDirect, classical literature, and clinical reports. Several electronic databases were also incorporated. RESULTS: In traditional usage, LReR had been traditionally employed for the treatment of anemofrigid headaches, colds, and joint pain. It possessed therapeutic properties for facial skin disorders, thereby facilitating skin regeneration. It has been subjected to comprehensive chemical analysis, resulting in the identification and isolation of 190 compounds, including phthalides, phenylpropanoids, flavonoids, phenolic acids, triterpenes, steroids, volatile oil, fatty acids, and other constituents. The pharmacological activities have been in-depth explored through modern in vivo and in vitro studies, confirming its anti-inflammatory, analgesic, and anti-melanin effects. Furthermore, it exhibited pharmacological activities such as antioxidant, anticancer, antibacterial, and vasodilatory properties. This study provides a basic to contribute to the advancement of research, medicinal applications and product development related to LReR. CONCLUSIONS: Considering its traditional and contemporary applications, phytochemical composition, and pharmacological properties, LReR was regarded as a valuable botanical resource for pharmaceutical and pest control purposes. While certain constituents had demonstrated diverse pharmacological activities and application potential, further elucidation was required to fully understand their specific actions and underlying mechanisms. Hence, there was a need to conduct additional investigations to uncover its material foundation and mode of action.


Subject(s)
Botany , Rhizome , Humans , Ethnopharmacology , Rhizome/chemistry , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Medicine, Chinese Traditional , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytochemicals/analysis , Quality Control
3.
Biochem Biophys Res Commun ; 682: 163-173, 2023 11 19.
Article in English | MEDLINE | ID: mdl-37816300

ABSTRACT

Ergothioneine, a natural derivative of histidine with a thiol/thine tautomeric structure, exhibits exceptional antioxidant properties and inhibition activities on tyrosinase. In this study, enzyme kinetics experiments and chromatographic spectral analysis revealed that ergothioneine inhibited tyrosinase in a reversible and non-competitive manner, with an inhibition constant of 0.554 mg/mL (2.41 mM). As the concentration of ergothioneine increased, the extremely flexible loop structure of tyrosinase extended from 40.1 % to 41.0 %, effectively covering the active center or binding site. Theoretical molecular docking simulation results show that ergothioneine forms complexes with tyrosinase through hydrogen bonding and salt bridges in the active center of Cu ions. Additionally, it was observed that ergothioneine's antioxidant had a stronger reducing impact on dopaquinone, an intermediate in melanin production, than the effect of ascorbic acid at an equivalent concentration (0.5 mg/mL). Ergothioneine reduced the intracellular reactive oxygen species to lower levels than the control group without UVA radiation and regulated the proliferation and differentiation in B16-F10 melanocytes. Clinical trials have shown that a 0.1 % concentration of ergothioneine can effectively suppress melanin production in irradiated skin. The significant reduction in melanin index and an increase in the individual type angle (ITA°) degree were measured after 4 weeks. These results collectively suggest that ergothioneine may be a promising inhibitor of natural antioxidant tyrosinase. Furthermore, due to its safety and efficacy, ergothioneine could be considered one of the bioactive substances for further study on diseases related to melanin production and tyrosinase activity which is of great significance for the cosmetics, medicine and food industries.


Subject(s)
Antioxidants , Ergothioneine , Antioxidants/pharmacology , Antioxidants/metabolism , Melanins/metabolism , Monophenol Monooxygenase/metabolism , Molecular Docking Simulation , Enzyme Inhibitors/chemistry
4.
Pharmaceutics ; 14(9)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36145574

ABSTRACT

Melanin is a kind of dark insoluble pigment that can cause pigmentation and free-radical clearance, inducing melasma, freckles, and chloasma, affecting the quality of life of patients. Due to poor water solubility and low safety, the absorption of poorly water-soluble drugs is limited by the hinderance of a skin barrier. Therefore, it is necessary to develop new, safe, and highly efficient drugs to improve their transdermal absorption efficiency and thus to inhibit the production of melanin. To address these issues, we developed a new nicotinamide (NIC)-stabilized phloretin nanocrystals (PHL-NCs). First, NC technology significantly increased the solubility of PHL. The in vitro release results indicated that at 6 h, the dissolution of the PHL-NIC-NCs was 101.39% ± 2.40% and of the PHL-NCs was 84.92% ± 4.30%, while that of the physical mixture of the two drugs was only 64.43% ± 0.02%. Second, NIC acted not only as a stabilizer to enlarge the storage time of PHL-NIC-NCs (improved to 10-day in vitro stability) but also as a melanin transfer inhibitor to inhibit melanin production. Finally, we verified the melanin inhibition effect of PHL-NIC-NCs evaluated by the zebrafish model. It showed that 0.38 mM/L PHL-NIC-NCs have a lower tyrosinase activity at 62.97% ± 0.52% and have less melanin at 36.57% ± 0.44%. The inhibition effect of PHL-NCs and PHL-NIC-NCs was stronger compared to the positive control arbutin. In conclusion, the combination of NIC and PHL achieves better inhibition of tyrosinase and inhibition of melanin production through synergism. This will provide a direction to the subsequent development of melanin-inhibiting drugs and the combined use of pharmaceutical agents.

5.
J Fungi (Basel) ; 7(6)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208353

ABSTRACT

Fungal keratitis (FK) is a serious ocular infection that can result in various degrees of vision loss, including blindness. The aim of the study was to identify and retrospectively review all FK cases diagnosed between August 2012 and December 2020 at a tertiary care hospital in northern Thailand with a specific focus on epidemiologic features, including season, patient sex and age, the spectrum of pathogens, and presence of certain putative virulence factors. Of 1237 patients with corneal ulcers, 294 (23.8%) were confirmed by direct microscopic examination and/or fungal culture. For the positive cases, direct examinations of Calcofluor white (CW) stains and KOH mounts were found in 97.3% (286/294) and 76.5% (225/294), respectively (p < 0.05). Of the cases diagnosed by microscopy and culture, fungi were isolated in 152 (51.7%), with Fusarium spp. being the most frequently identified (n = 69, 45.5%) followed by dematiaceous fungi (n = 45, 29.6%) and Aspergillus spp. (n = 18, 11.8%). The incidence of FK was higher in the rainy season of July to October. The mean age was 54.4 ± 14.4 (SD) years, with a range of 9-88 years. Males (75.8%) were affected significantly more than females (24.2%) (p < 0.05). Of 294 patients, 132 (44.9%) were middle-aged adults (41-60 years) and 107 (36.4%) were older than 60 years. Trauma to the eye by soil or vegetative matter were the most common preceding factors (188/294; 64.0%). We assessed two virulence factors. First, 142 of the 152 culture-positive FK cases were due to molds, indicating that hyphal morphogenesis is extremely important in disease. We also demonstrated that fungal melanization occurs in the molds during the course of FK by applying a melanin-specific monoclonal antibody (MAb) that labeled fungal elements in corneal samples of patients, and melanin particles derived from the hyphae were also recovered after treatment of the samples with proteolytic enzymes, denaturant and hot concentrated acid. In summary, we demonstrate that northern Thailand has a high rate of FK that is influenced by season and males engaged in outside activities are at highest risk for disease. Moulds are significantly more commonly responsible for FK, in part due to their capacity to form hyphae and melanins. Future studies will examine models of fungal corneal interactions and assess additional factors of virulence, such as secreted enzymes, to more deeply decipher the pathogenesis of FK.

6.
Bioorg Chem ; 106: 104512, 2021 01.
Article in English | MEDLINE | ID: mdl-33293056

ABSTRACT

This study aimed to obtain tyrosinase inhibitors for treating hyperpigmentation. A series of cinnamyl ester analogues were designed and synthesized with cinnamic acid (CA) and peaonol compounds. The safety, melanin content and inhibitory effects of all target compounds were evaluated. In the enzymatic activity test, the inhibitory rate of compounds 8, 13 and 14 had stronger inhibitory activity with the IC50 values of 20.7 µM, 13.98 µM and 15.16 µM, respectively than the positive drug kojic acid (IC50 with 30.83 µM). The cytotoxicity evaluation showed that compounds 13 and 14 have higher safety than the other compounds to the proliferation of B16F10 cells. The result of the melanocyte test supported that compound13 has stronger cellular tyrosinase inhibitory activity than kojic acid and arbutin at 100 µM and 200 µM. The enzyme kinetics mechanism revealed that compound 13 was a non-competitive inhibitor while compounds 8 and 14 were mixed inhibitors. For the experiments of melanin content and tyrosinase activity in the B16F10 melanona cells, the inhibition rates of compounds 8, 14 and 13 were with 19.62%, 20.59% and 23.83%, respectively. In addition, compound 13 revealed the highest inhibitory activity to tyrosinase in the melanocyte with inhibition rates of 23.83%, which was better than kojic acid and arbutin (19.21% and 20.45%) at the same concentration. In the anti-melanogenesis experiment, compounds 8 and 13 had better anti-melanin effects than kojic acid from 25 µM to 100 µM. In summary, the results indicated that compounds 8, 13 and 14 had better tyrosinase inhibitory activity and anti-melanogenesis activity. Especially, the compound 13 has potentiality to develop novel tyrosinase inhibitors and whitening agents. The docking studies results revealed that the functional group of compound 13 mostly depends on the phenolic hydroxyl moiety, and its hydroxyl group did not insert into the active site of tyrosinase, which was in agreement with the results of the kinetics study.


Subject(s)
Acetophenones/pharmacology , Cinnamates/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Acetophenones/chemistry , Animals , Cinnamates/chemistry , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Mice , Molecular Structure , Monophenol Monooxygenase/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
7.
J Cosmet Dermatol ; 20(7): 2341-2349, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33200469

ABSTRACT

BACKGROUND: Ganoderma has been known as a cure for diseases since ancient times, and been used as a medicinal mushroom for more than 2000 years. By many accounts, Ganoderma lucidum extracts from fruit bodies exhibited the comparable tyrosinase inhibition activity. AIMS: To validate A. cinnamomea mycelia anti-melanogenesis activity. Ethanolic extracts of A. cinnamomea mycelia were evaluated using in vitro cell-free tyrosinase assay, cell-based and zebrafish phenotype-based method. Meanwhile, safety assessment was also conducted to ensure the feasibility as the novel ingredients in cosmetic and pharmaceutic industries. METHODS: The major regulatory enzymes being in charge of cutaneous pigmentation, was investigated in both cell-free and cellular enzyme systems, and in phenotype-based zebrafish model. A high-throughput TLC in vitro screening system was introduced to perform the initial evaluation of those with anti-melanin formation activity. RESULTS: Among the fractions, 50% ethanol extracted fraction (AC_Et50_Hex) exhibited highest anti-melanin formation activity. AC_Et50_Hex (at 100 ppm) reduced 30% intracellular melanin of B16-F10 cells through suppression of tyrosinase activity and its protein expression. For animal study, not only does AC_Et50_Hex exhibited similar depigmenting efficacy to kojic acid (56.1% vs 52.3%) with lower dosage (50 ppm vs 1400 ppm), but showed less toxicity to zebrafish. CONCLUSION: A. cinnamomea mycelium extracts can be an ideal candidate/substitute for skin-whitening since kojic acid has been reported with carcinogenic effect. AC_Et50_Hex was recognized as a potential tyrosinase inhibitor throughout in vitro and in vivo analysis studies. The mass production of A. cinnamomea mycelium from agitated fermentation realizes the natural mushroom extracts for commercial application.


Subject(s)
Monophenol Monooxygenase , Zebrafish , Animals , Melanins , Mycelium , Polyporales
8.
J Nat Med ; 73(4): 805-813, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31055728

ABSTRACT

Jatropha multifida is a medicinal plant that belongs to the Euphorbiaceae family. Our investigation revealed that the chloroform extract of J. multifida stems showed anti-melanin deposition activity against α-melanocyte stimulating hormone (α-MSH)- and 3-isobutyl-1-methylxanthine (IBMX)-induced melanogenesis in the mouse melanoma cell line (B16-F10). Further fractionation and purification of the major constituents led to the isolation of two coumarins (1 and 2) and seven known lignoids (3-9). All isolated compounds exhibited anti-melanin deposition activities against the mouse melanoma cell line (B16-F10) with IC50 values ranging from 37.5 to 560.1 µM, without any cytotoxicity even at high concentrations, except for 8. Further mechanistic studies suggested that 9 downregulated tyrosinase mRNA expression, while the anti-melanin deposition activities of 4 and 8 appeared to be unrelated to tyrosinase inhibition and the downregulated expression of the key melanogenesis-associated mRNAs. These results suggested that J. multifida could possess potent skin whitening ingredients.


Subject(s)
Jatropha/chemistry , Melanins/metabolism , Melanoma, Experimental/drug therapy , Plant Extracts/pharmacology , alpha-MSH/pharmacology , Animals , Cell Line, Tumor , Down-Regulation/drug effects , Mice , Monophenol Monooxygenase/metabolism
9.
Mycopathologia ; 182(9-10): 879-885, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28616680

ABSTRACT

Fusarium spp. are recognized as the second most frequently filamentous fungi causing opportunistic infections and particularly important due to the increasing number of immunocompromised patients. F. keratoplasticum (a member of F. solani species complex) is one of the Fusarium species commonly associated with human infection, and therefore, studies on the virulence of this fungus are needed. This study aimed to confirm the presence of melanin in F. keratoplasticum from a patient with systemic fusariosis. Immunofluorescence labeling with anti-melanin monoclonal antibody (MAb) was used to examine an expression of melanin in F. keratoplasticum in vitro and during infection. Electron spin resonance identified the particles extracted from F. keratoplasticum as stable free radical consistent with melanin. Lesional skin from the sites with fusariosis contained hyphal structures that could be labeled by melanin-binding MAb, while digestion of the tissue yielded dark particles that were reactive. These findings suggest that F. keratoplasticum hyphae and chlamydospores can produce melanin in vitro and that hyphae can synthesize pigment in vivo. Given the potential role of melanin in virulence of other fungi, this pigment in F. keratoplasticum may play a role in the pathogenesis of fusariosis.


Subject(s)
Fusariosis/diagnosis , Fusarium/chemistry , Fusarium/isolation & purification , Leukemia, Myeloid, Acute/complications , Melanins/analysis , Opportunistic Infections/diagnosis , Electron Spin Resonance Spectroscopy , Female , Fluorescent Antibody Technique , Fusariosis/microbiology , Gene Expression Profiling , Humans , Hyphae/chemistry , Opportunistic Infections/microbiology , Spores, Fungal/chemistry , Young Adult
10.
J Nat Med ; 70(4): 702-7, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27357963

ABSTRACT

The ceramicines, a series of limonoids from Chisocheton ceramicus (Meliaceae), were evaluated for anti-melanin deposition activity on α-melanocyte stimulating hormone (α-MSH) and 3-isobutyl-1-methylxanthine (IBMX)-treated B16-F10 melanoma cell, and several ceramicines were found to be active. The structure-activity relationship of ceramicines as anti-melanin deposition inhibitors was deduced. Furthermore, the mechanism of anti-melanin deposition activity of ceramicine B, a major constituent of C. ceramicus that showed potent anti-melanin deposition activity, was investigated. Tyrosinase enzymatic activity and tyrosinase mRNA expression were not affected by ceramicine B. The anti-melanin deposition activity of ceramicine B was shown to be related to the downregulation of tyrosinase protein expression. These results suggest that ceramicines have potential to be used as depigmentation agents.


Subject(s)
Limonins/pharmacology , Melanins/metabolism , Melanoma, Experimental/metabolism , Meliaceae/chemistry , Monophenol Monooxygenase/metabolism , Plant Extracts/pharmacology , Animals , Cell Line, Tumor , Down-Regulation/drug effects , Melanins/biosynthesis , Mice , Pigmentation/drug effects , Structure-Activity Relationship
11.
Int J Mol Sci ; 16(10): 24219-42, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26473849

ABSTRACT

Plants rich in antioxidant substances may be useful for preventing skin aging. Pomegranates, containing flavonoids and other polyphenolic compounds, are widely consumed due to their beneficial properties. We examined the underlying mechanisms of dried pomegranate concentrate powder (PCP) on melanin synthesis in B16F10 melanoma cells. The antioxidant effects of PCP were determined by measuring free radical scavenging capacity and transcript levels of antioxidant enzymes. To explore the inhibitory effects of PCP on melanin synthesis, we measured tyrosinase activity and melanin content in α-melanocyte stimulating hormone (α-MSH)-stimulated B16F10 cells. In addition, the levels of tyrosinase-related protein-1 (TRP-1), TRP-2, tyrosinase, and microphthalmia-associated transcription factor (MITF) expression were determined by Western blotting. Changes in the phosphorylation status of protein kinase A (PKA), cAMP response element-binding protein (CREB), mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase Akt, and glycogen kinase 3ß (GSK3ß) were also examined. The free radical scavenging activity of PCP increased in a dose-dependent manner. In PCP-treated B16F10 cells, transcript levels of glutathione peroxidase-1 (GPx-1) were increased compared with α-MSH-stimulated cells. In addition, PCP led to the down-regulation of phospho-p38, phospho-PKA, phospho-CREB, phospho-GSK3ß, MITF, and TRP-1 compared with α-MSH-stimulated B16F10 cells. We believe this effect may be associated with PCP activity, which leads to the inhibition of melanin production and tyrosinase activity. These results suggest that PCP decreases tyrosinase activity and melanin production via inactivation of the p38 and PKA signaling pathways, and subsequently decreases phosphorylation of CREB, MITF, and melanogenic enzymes. These observations provided new insights on the molecular mechanisms of the skin-whitening property of PCP.


Subject(s)
Lythraceae/metabolism , Melanins/biosynthesis , Melanoma, Experimental/drug therapy , Monophenol Monooxygenase/metabolism , Plant Preparations/pharmacology , Animals , Antioxidants/pharmacology , CREB-Binding Protein/metabolism , Cell Line, Tumor , Cyclic AMP-Dependent Protein Kinases/metabolism , Free Radical Scavengers/pharmacology , Freeze Drying , Glutathione Peroxidase/metabolism , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Mice , Microphthalmia-Associated Transcription Factor/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , alpha-MSH/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Glutathione Peroxidase GPX1
SELECTION OF CITATIONS
SEARCH DETAIL