Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.091
Filter
1.
Article in English | MEDLINE | ID: mdl-39364577

ABSTRACT

Valproic acid (VA) is a widely used drug for the treatment of diseases affecting the central nervous system. Due to its epigenetic modulatory potential, it has been studied for possible therapeutic application in anticancer therapies. However, the VA exhibits different side effects in its application. Thus, synthetic coordination complexes with valproate can generate promising candidates for new active drugs with reduced toxicity. In this sense, we investigated the genotoxic and mutagenic potential of the sodium valproate and of the mixed ternary mononuclear Mg complex based on VA with 1,10-phenanthroline (Phen) ligand - [Mg (Valp)2Phen], in Saccharomyces cerevisiae and V79 cells. The MTT and clonal survival assays in V79 cells indicated that the Mg complex has higher cytotoxicity than sodium valproate. A similar cytotoxicity profile is observed in yeast. This fact is possibly due to the intercalation capacity of [Mg(Valp)2Phen], inducing DNA strand breaks, as observed in the comet assay and micronucleus test. In this sense, members of the NER, HR, NHEJ and TLS repair pathways are required for the repair of DNA lesions induced by [Mg(Valp)2Phen]. Interestingly, BER proteins apparently increase the cytotoxic potential of the drug. Furthermore, the [Mg(Valp)2Phen] showed higher cytotoxicity in V79 cells and yeast when compared to sodium valproate indicating applicability as a cytotoxic agent.

2.
Sci Total Environ ; 954: 176420, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39326745

ABSTRACT

Anticancer drugs show recalcitrance to conventional wastewater treatments; thus, they are present in aquatic systems and pose an environmental threat. Fungi represent a promising biological alternative for wastewater treatments. Therefore, the goals of this work were to assess the potential of white-rot fungi (Fomes fomentarius (CB13), Hypholoma fasciculare (CB15), Phyllotopsis nidulans (CB14), Pleurotus ostreatus (BWPH), and Trametes versicolor (CB8)) for removing bleomycin and vincristine, and to investigate the impacts of various conditions (shaking, aeration, or biomass immobilization) on the process. The removal capacities were measured using Ultra-Performance Liquid Chromatography (UPLC) coupled with Mass Spectrometry (MS) and preceded by Solid Phase Extraction (SPE). We further identified major drugs degradation products; determined the fungi's main enzyme activity profiles (laccase, manganese and lignin peroxidases); and examined the toxicities of post-processed samples against Lemna minor, Daphnia magna and Pseudomonas putida. In just 2 days, all strains (except for P. nidulans) removed >90 % of vincristine, nearly completely eliminating the drug over time. Bleomycin content reduction occurred with T. versicolor or H. fasciculare, respectively reaching 55 % and 83 % drug elimination after 9 days. Oxygen was found to be crucial for cytostatics degradation, with their highest removal rates occurring in samples with air supply (aeration or agitation). Laccase was the only tested enzyme associated with cytostatics elimination. Drug biodegradation was followed by detoxification, demonstrating the utility of fungi in cytostatics removal.

3.
Life (Basel) ; 14(9)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39337925

ABSTRACT

The field of oncology has witnessed remarkable progress in personalized cancer therapy. Functional precision medicine has emerged as a promising avenue for achieving superior treatment outcomes by integrating omics profiling and sensitivity testing of patient-derived cancer cells. This review paper provides an in-depth analysis of the evolution of cancer-directed drugs, resistance mechanisms, and the role of functional precision medicine platforms in revolutionizing individualized treatment strategies. Using two-dimensional (2D) and three-dimensional (3D) cell cultures, patient-derived xenograft (PDX) models, and advanced functional assays has significantly improved our understanding of tumor behavior and drug response. This progress will lead to identifying more effective treatments for more patients. Considering the limited eligibility of patients based on a genome-targeted approach for receiving targeted therapy, functional precision medicine provides unprecedented opportunities for customizing medical interventions according to individual patient traits and individual drug responses. This review delineates the current landscape, explores limitations, and presents future perspectives to inspire ongoing advancements in functional precision medicine for personalized cancer therapy.

4.
Pharmaceutics ; 16(9)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39339207

ABSTRACT

Although various chemically synthesized materials are essential in medicine, food, and agriculture, they can exert unexpected side effects on the environment and human health by releasing certain toxic chemicals. Therefore, eco-friendly and biocompatible biomaterials based on natural resources are being actively explored. Recently, biosilica derived from diatoms has attracted attention in various biomedical fields, including drug delivery systems (DDS), due to its uniform porous nano-pattern, hierarchical structure, and abundant silanol functional groups. Importantly, the structural characteristics of diatom biosilica improve the solubility of poorly soluble substances and enable sustained release of loaded drugs. Additionally, diatom biosilica predominantly comprises SiO2, has high biocompatibility, and can easily hybridize with other DDS platforms, including hydrogels and cationic DDS, owing to its strong negative charge and abundant silanol groups. This review explores the potential applications of various diatom biosilica-based DDS in various biomedical fields, with a particular focus on hybrid DDS utilizing them.

5.
Explor Res Clin Soc Pharm ; 15: 100493, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39263193

ABSTRACT

Background: Minimizing medication waste through the redispensing of oral anticancer drugs (OADs) that were unused by patients provides economic and environmental benefits, but this is not yet universally implemented in clinical care. ObjectiveS: To identify barriers and facilitators to the implementation of redispensing unused OADs in clinical care. Methods: A multicentre intervention study following a hybrid effectiveness-implementation type I design was conducted, consisting of semi-structured interviews with key stakeholders involved in the redispensing program: pharmacy employees, prescribing clinicians in oncology and haematology, patients who participated in redispensing and patients who declined trial participation. Questions encompassed experiences and suggestions for future implementation. The Consolidated Framework for Implementation Research (CFIR) guided data collection and categorisation of identified barriers and facilitators through thematic analysis. Results: In total, 35 interviews were conducted, identifying 15 themes encompassing barriers and facilitators, reflecting all CFIR domains. Facilitators encompassed: 1) convenient process requiring an acceptable time-investment; 2) support from project leaders and implementation champions; 3) being well-motivated by personal values and societal impact; 4) feeling ensured of medication quality upon redispensing; 5) endorsement by healthcare providers for patient participation; 6) clear and personal patient communication; 7) good visibility of intervention successes; and 8) implementation well supported through a collaborative network. Barriers encompassed: 1) unclear target population; 2) redispensing legally prohibited; 3) absence of financial compensation for pharmacies; 4) complexity arising from two parallel work processes; 5) widespread communication on adjustments within local teams challenging; 6) patient's low receptiveness due to burden of oncology treatment; and 7) lack of familiarization among pharmacy technicians. Conclusions: Facilitators for implementation of redispensing unused drugs mainly related to people's values, motivation, and societal demand, whereas barriers mainly encompassed practical issues, including knowledge, time, financial resources, and legal conditions. Strategies emphasizing the benefits of redispensing and further streamlining process compatibility could support implementation.

6.
Int J Pharm X ; 8: 100281, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39297017

ABSTRACT

Cancer is the leading cause of death globally, and conventional treatments have limited efficacy with severe side effects. The use of nanotechnology has the potential to reduce the side effects of drugs by creating efficient and controlled anticancer drug delivery systems. Nanoparticles (NPs) used as drug carriers offer several advantages, including enhanced drug protection, biodistribution, selectivity and, pharmacokinetics. Therefore, this review is devoted to various organic (lipid, polymeric) as well as inorganic nanoparticles based on different building units and providing a wide range of potent anticancer drug delivery systems. Within these nanoparticulate systems, chitosan (CS)-based NPs are discussed with particular emphasis due to the unique properties of CS and its derivatives including non-toxicity, biodegradability, mucoadhesivity, and tunable physico-chemical as well as biological properties allowing their alteration to specifically target cancer cells. In the context of streamlining the nanoparticulate drug delivery systems (DDS), innovative nanoplatform-based cancer therapy pathways involving passive and active targeting as well as stimuli-responsive DDS enhancing overall orthogonality of developed NP-DDS towards the target are included. The most up-to-date information on delivering anti-cancer drugs using modern dosage forms based on various nanoparticulate systems and, specifically, CSNPs, are summarised and evaluated concerning their benefits, limitations, and advanced applications.

8.
Int J Mol Sci ; 25(17)2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39273679

ABSTRACT

Breast cancer has the highest incidence rate among all malignancies worldwide. Its high mortality is mainly related to the occurrence of multidrug resistance, which significantly limits therapeutic options. In this regard, there is an urgent need to develop compounds that would overcome this phenomenon. There are few reports in the literature that selenium compounds can modulate the activity of P-glycoprotein (MDR1). Therefore, we performed in silico studies and evaluated the effects of the novel selenoesters EDAG-1 and EDAG-8 on BCRP, MDR1, and MRP1 resistance proteins in MCF-7 and MDA-MB-231 breast cancer cells. The cytometric analysis showed that the tested compounds (especially EDAG-8) are inhibitors of BCRP, MDR1, and MRP1 efflux pumps (more potent than the reference compounds-novobiocin, verapamil, and MK-571). An in silico study correlates with these results, suggesting that the compound with the lowest binding energy to these transporters (EDAG-8) has a more favorable spatial structure affecting its anticancer activity, making it a promising candidate in the development of a novel anticancer agent for future breast cancer therapy.


Subject(s)
Breast Neoplasms , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Organoselenium Compounds/pharmacology , Organoselenium Compounds/chemistry , Drug Resistance, Multiple/drug effects , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , MCF-7 Cells , Neoplasm Proteins/metabolism , Neoplasm Proteins/antagonists & inhibitors , Molecular Docking Simulation , Multidrug Resistance-Associated Proteins/metabolism , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Esters/pharmacology , Esters/chemistry , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors
9.
Curr Issues Mol Biol ; 46(9): 9686-9706, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39329928

ABSTRACT

The aim of this review is to explore how diet and dietary supplements influence the activity of key multidrug resistance (MDR) transporters-MRP2, BCRP, and P-gp. These transporters play a crucial role in drug efflux from cancer cells and significantly affect chemotherapy outcomes. This review focuses on how dietary phytochemicals, such as catechins and quercetin, impact the expression and function of these transporters. Both in vitro and in vivo experiments were examined to assess changes in drug bioavailability and intracellular drug accumulation. The findings show that certain dietary components-such as catechins, flavonoids, resveratrol, curcumin, terpenoids, sterols, and alkaloids-can either inhibit or induce MDR transporter activity, thus influencing the effectiveness of chemotherapy. These results highlight the importance of understanding diet-drug interactions in cancer therapy to improve treatment outcomes and reduce side effects. In conclusion, dietary modifications and supplements should be carefully considered in cancer treatment plans to optimize therapeutic efficacy.

10.
Pharmaceutics ; 16(8)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39204314

ABSTRACT

Lung cancer is the leading cause of cancer-related mortality worldwide, largely due to the limited efficacy of anticancer drugs, which is primarily attributed to insufficient doses reaching the lungs. Additionally, patients undergoing treatment experience severe systemic adverse effects due to the distribution of anticancer drugs to non-targeted sites. In light of these challenges, there has been a growing interest in pulmonary administration of drugs for the treatment of lung cancer. This route allows drugs to be delivered directly to the lungs, resulting in high local concentrations that can enhance antitumor efficacy while mitigating systemic toxic effects. However, pulmonary administration poses the challenge of overcoming the mechanical, chemical, and immunological defenses of the respiratory tract that prevent the inhaled drug from properly penetrating the lungs. To overcome these drawbacks, the use of nanoparticles in inhaler formulations may be a promising strategy. Nanoparticles can assist in minimizing drug clearance, increasing penetration into the lung epithelium, and enhancing cellular uptake. They can also facilitate increased drug stability, promote controlled drug release, and delivery to target sites, such as the tumor environment. Among them, chitosan-based nanoparticles demonstrate advantages over other polymeric nanocarriers due to their unique biological properties, including antitumor activity and mucoadhesive capacity. These properties have the potential to enhance the efficacy of the drug when administered via the pulmonary route. In view of the above, this paper provides an overview of the research conducted on the delivery of anticancer drug-loaded chitosan-based nanoparticles incorporated into inhaled drug delivery devices for the treatment of lung cancer. Furthermore, the article addresses the use of emerging technologies, such as siRNA (small interfering RNA), in the context of lung cancer therapy. Particularly, recent studies employing chitosan-based nanoparticles for siRNA delivery via the pulmonary route are described.

11.
Pharmaceutics ; 16(8)2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39204428

ABSTRACT

Modular nanotransporters (MNTs) are drug delivery systems for targeted cancer treatment. As MNTs are composed of several modules, they offer the advantage of high specificity and biocompatibility in delivering drugs to the target compartment of cancer cells. The large carrier module brings together functioning MNT modules and serves as a platform for drug attachment. The development of smaller-sized MNTs via truncation of the carrier module appears advantageous in facilitating tissue penetration. In this study, two new MNTs with a truncated carrier module containing either an N-terminal (MNTN) or a C-terminal (MNTC) part were developed by genetic engineering. Both new MNTs demonstrated a high affinity for target receptors, as revealed by fluorescent-labeled ligand-competitive binding. The liposome leakage assay proved the endosomolytic activity of MNTs. Binding to the importin heterodimer of each truncated MNT was revealed by a thermophoresis assay, while only MNTN possessed binding to Keap1. Finally, the photodynamic efficacy of the photosensitizer attached to MNTN was significantly higher than when attached to either MNTC or the original MNTs. Thus, this work reveals that MNT's carrier module can be truncated without losing MNT functionality, favoring the N-terminal part of the carrier module due to its ability to bind Keap1.

12.
Ther Adv Med Oncol ; 16: 17588359241272970, 2024.
Article in English | MEDLINE | ID: mdl-39206378

ABSTRACT

Background: The rising global incidence of cancer has increased the demand for chemotherapy, which is a crucial treatment modality. Recent advancements in cancer treatment, including targeted agents and immunotherapy, have introduced complications owing to their specific mechanisms. However, comprehensive studies of the combined complications of these approaches are lacking. Objectives: This study aimed to comprehensively assess and analyze the overall incidence of anticancer drug-related complications in a nationwide patient cohort, utilizing a customized National Health Insurance Sharing Service database in Korea. Design: Retrospective cohort study. Methods: We included patients who were prescribed anticancer drugs (excluding endocrine agents) and diagnosed with cancer. For the type of cancer classification, the International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) was used and anticancer drugs were classified based on the Anatomical Therapeutic Chemical code. We classified cancer into 18 types based on the ICD-10 code and delineated cancer-related complications into 12 categories. Complications included hematological, gastrointestinal, infectious, cardiovascular, major bleeding, endocrine, neurotoxic, nephrotoxic, dermatological, pulmonary, musculoskeletal, and hepatotoxic effects. Result: We included 294,544 patients diagnosed with cancer and administered anticancer drugs between 2016 and 2018, with follow-up continuing until 2021. We identified 486,929 anticancer drug-related complications, with an incidence of 1843.6 per 1000 person-years (PY). Anemia was the most common complication, with a rate of 763.7 per 1000 PY, followed by febrile neutropenia (295.7) and nausea/vomiting (246.9). Several complications peaked during the first months following the initiation of anticancer drug therapy; however, herpes, skin infection, heart failure, and peripheral neuropathy peaked at 6-12 months. Among major cancers, breast cancer had the lowest overall incidence of complications. Targeted therapies revealed lower complication rates than cytotoxic chemotherapy; however, they also required careful monitoring of rash. Conclusion: This study highlights the importance of the proactive management of anticancer drug-related complications for patient care improvement.

13.
Cancers (Basel) ; 16(16)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39199548

ABSTRACT

A major hallmark of cancer is the reprogramming of cellular metabolism from oxidative phosphorylation (OXPHOS) to glycolysis, a phenomenon known as the Warburg effect. To sustain high rates of glycolysis, cancer cells overexpress GLUT transporters and glycolytic enzymes, allowing for the enhanced uptake and consumption of glucose. The Warburg effect may be exploited in the treatment of cancer; certain epimers and derivatives of glucose can enter cancer cells and inhibit glycolytic enzymes, stunting metabolism and causing cell death. These include common dietary monosaccharides (ᴅ-mannose, ᴅ-galactose, ᴅ-glucosamine, ʟ-fucose), as well as some rare monosaccharides (xylitol, ᴅ-allose, ʟ-sorbose, ʟ-rhamnose). This article reviews the literature on these sugars in in vitro and in vivo models of cancer, discussing their mechanisms of cytotoxicity. In addition to this, the anticancer potential of some synthetically modified monosaccharides, such as 2-deoxy-ᴅ-glucose and its acetylated and halogenated derivatives, is reviewed. Further, this article reviews how certain monosaccharides can be used in combination with anticancer drugs to potentiate conventional chemotherapies and to help overcome chemoresistance. Finally, the limitations of administering two separate agents, a sugar and a chemotherapeutic drug, are discussed. The potential of the glycoconjugation of classical or repurposed chemotherapy drugs as a solution to these limitations is reviewed.

14.
J Biol Inorg Chem ; 29(6): 583-599, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39133326

ABSTRACT

Iron(III) complexes based on N,N´-bis(salicylidene)ethylenediamine (salene) scaffolds have demonstrated promising anticancer features like induction of ferroptosis, an iron dependent cell death. Since poor cellular uptake limits their therapeutical potential, this study aimed to enhance the lipophilic character of chlorido[N,N'-bis(salicylidene)-1,2-bis(3-methoxyphenyl)ethylenediamine]iron(III) complexes by introducing lipophilicity improving ligands such as fluorine (X1), chlorine (X2) and bromine (X3) in 5-position in the salicylidene moieties. After detailed characterization the binding to nucleophiles, logP values and cellular uptake were determined. The complexes were further evaluated regarding their biological activity on MDA-MB 231 mammary carcinoma, the non-tumorous SV-80 fibroblast, HS-5 stroma and MCF-10A mammary gland cell lines. Stability of the complexes in aqueous and biological environments was proven by the lack of interactions with amino acids and glutathione. Cellular uptake was positively correlated with the logP values, indicating that higher lipophilicity enhanced cellular uptake. The complexes induced strong antiproliferative and antimetabolic effects on MDA-MB 231 cells, but were inactive on all non-malignant cells tested. Generation of mitochondrial reactive oxygen species, increase of lipid peroxidation and induction of both ferroptosis and necroptosis were identified as mechanisms of action. In conclusion, halogenation of chlorido[N,N'-bis(salicylidene)-1,2-bis(3-methoxyphenyl)ethylenediamine]iron(III) complexes raises their lipophilic character resulting in improved cellular uptake.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Drug Design , Halogenation , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Drug Screening Assays, Antitumor , Cell Line, Tumor , Structure-Activity Relationship , Ethylenediamines/chemistry , Ethylenediamines/pharmacology , Ethylenediamines/chemical synthesis , Cell Proliferation/drug effects , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Ferric Compounds/chemical synthesis , Molecular Structure
15.
Cell Chem Biol ; 31(8): 1490-1502.e42, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39116881

ABSTRACT

We describe a protein proximity inducing therapeutic modality called Regulated Induced Proximity Targeting Chimeras or RIPTACs: heterobifunctional small molecules that elicit a stable ternary complex between a target protein (TP) selectively expressed in tumor cells and a pan-expressed protein essential for cell survival. The resulting co-operative protein-protein interaction (PPI) abrogates the function of the essential protein, thus leading to death selectively in cells expressing the TP. This approach leverages differentially expressed intracellular proteins as novel cancer targets, with the advantage of not requiring the target to be a disease driver. In this chemical biology study, we design RIPTACs that incorporate a ligand against a model TP connected via a linker to effector ligands such as JQ1 (BRD4) or BI2536 (PLK1) or CDK inhibitors such as TMX3013 or dinaciclib. RIPTACs accumulate selectively in cells expressing the HaloTag-FKBP target, form co-operative intracellular ternary complexes, and induce an anti-proliferative response in target-expressing cells.


Subject(s)
Antineoplastic Agents , Cell Cycle Proteins , Small Molecule Libraries , Humans , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Cell Proliferation/drug effects , Triazoles/chemistry , Triazoles/pharmacology , Polo-Like Kinase 1 , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Azepines/pharmacology , Azepines/chemistry , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Indolizines/chemistry , Indolizines/pharmacology , Cell Line, Tumor , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Ligands , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Heterocyclic Compounds, 2-Ring/pharmacology , Heterocyclic Compounds, 2-Ring/chemistry , Heterocyclic Compounds, 2-Ring/chemical synthesis , Nuclear Proteins/metabolism , Nuclear Proteins/antagonists & inhibitors , Bromodomain Containing Proteins , Cyclic N-Oxides , Pyridinium Compounds
16.
Article in English | MEDLINE | ID: mdl-39141023

ABSTRACT

Taurine, a non-essential amino acid produced from cysteine, is abundant in body tissues and blood plasma. It plays vital roles in growth, osmosis, lipid metabolism, and neurohormonal modulation. Taurine has antioxidant, anti-apoptotic, and anti-inflammatory properties, and its deficiency can lead to various diseases including cardiovascular, diabetic, renal, and liver disorders. This report provides a comprehensive review of the functional properties of taurine in counteracting pharmaceutical-induced side effects. A search across databases such as Scopus, PubMed, MEDLINE, and Web of Science yielded 109 articles, of which 75 were included in the study. These results suggest that the protective effects of taurine involve mechanisms such as influencing pathways of Nrf2/OH-1, PI3-kinase/AKT and ERK2, boosting antioxidants (SOD, GPx and CAT), and suppression of inflammatory cytokines (TNF-α, IL-1ß and IL-6). Overall, supplementation with taurine along with medications with significant side effects may mitigate these effects and enhance their efficacy. Further investigation of the interactions between taurine and other nutrients or compounds may provide insights into synergistic effects and novel therapeutic approaches.

17.
Adv Healthc Mater ; : e2401197, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39132863

ABSTRACT

Triple-negative breast cancer (TNBC) is the most common primary tumor of the breast with limited effectual drug availability. Therefore, the aim of the study is to develop an innovative phyto-nanomedicine (PNM) to cure TNBC with the least genotoxicity. Hereinafter, the sea buckthorn' extracted polyphenols (SBP), combine with metformin (MET), are synthesized as a novel PNM to evaluate its anti-tumor properties, effectiveness, and mechanism of action in TNBC in vitro and in vivo models. The SBP exhibits 16 new kinds of polyphenols that are been reported earlier which regulated cell development, proliferation, and programmed cell death (PCD) effectively. SBP-MET PNM inhibits MDA-MB-231 (47%), MDA-MB-436 (46%), and 4T1 (46%) cell proliferation but does not affect L929 normal murine cell development and successfully induce PCD (73.19%) in MDA-MB-231 cells. Mechanistically, in vivo SBP-MET proteome expression profiling reveals upregulation of proapoptotic Bax protein and activation of Fas signaling pathways convince downstream Daxx and FADD proteins, which further triggers Caspase-3 that prompts apoptosis in human TNBC cells by cleaving PARP-1 protein. Current findings establish innovative highly biocompatible phyto-nanomedicine that has significant potential to inhibit TNBC cell growth and induce regulated cell death (RCD) in vivo model, thereby opening a new arena for TNBC therapy.

18.
Front Nutr ; 11: 1443895, 2024.
Article in English | MEDLINE | ID: mdl-39149552

ABSTRACT

Background: Tamoxifen (TAM) is a widely used drug in patients with gynecomastia and breast cancer. TAM exerts its anticancer effects via its antiestrogenic activities. Unfortunately, TAM has been reported to exert gonadotoxic effects on male testes. Therefore, this study was designed to explore the possible associated mechanisms involved in TAM-induced testicular dysfunction and the possible ameliorative effects of omega-3 fatty acids (O3FA). Methodology: Animals were randomly divided into control, O3FA, TAM, and TAM + O3FA. All treatment lasted for 28 days. Results: TAM exposure impaired sperm qualities (count, motility, and normal morphology) and decreased testicular 3ß-HSD and 17ß-HSD. It was accompanied by a decline in serum testosterone and an increase in estradiol, luteinizing and follicle-stimulating hormones. These observed alterations were associated with an increase in testicular injury markers, oxido-inflammatory response, and mitochondria-mediated apoptosis. These observed alterations were ameliorated by O3FA treatments. Conclusions: O3FA ameliorated TAM-induced testicular dysfunction in male Wistar rats by modulating XO/UA and Nrf2/NF-kb signaling and cytochrome c-mediated apoptosis in TAM-treated rats.

19.
Sci Rep ; 14(1): 19530, 2024 08 22.
Article in English | MEDLINE | ID: mdl-39174604

ABSTRACT

Macular edema is a known side effect of taxane-based anticancer drugs. We retrospectively investigated data from 11 centers between January 2016 and December 2021. Among 14,260 patients, 30 (0.21%) developed macular edema; from these, the number of cases associated with nab-paclitaxel was 16 (0.43%), significantly higher than the number of cases associated with paclitaxel or docetaxel (P < 0.01). Visual acuity (VA) and retinal choroidal change were examined in 27 patients, with a follow-up of at least 3 months. The patients' mean age was 67.2 years; 14 (51.3%) were male and four (14.8%) had unilateral onset. The mean interval between anticancer drug initiation and the first ophthalmology visit was 290.1 days. Among the 20 patients who discontinued anticancer drugs, VA and edema significantly improved 2 months after discontinuation (LogMAR VA: 0.50 vs. 0.28, central retinal thickness: 472.7 µm vs. 282.5 µm, both P < 0.01). No significant changes were observed in the central choroidal thickness. A correlation was found between duration of taxane treatment and VA immediately before discontinuation of anticancer drugs (ß = 0.00050; 95% confidence interval: 0.00036-0.00097; P < 0.05). Although taxane-induced macular edema is reversible, slower anticancer drug discontinuation worsened VA, highlighting the need for regular ophthalmologic evaluation during treatments.


Subject(s)
Macular Edema , Taxoids , Visual Acuity , Humans , Female , Macular Edema/chemically induced , Macular Edema/drug therapy , Male , Aged , Retrospective Studies , Japan/epidemiology , Middle Aged , Taxoids/adverse effects , Incidence , Prognosis , Visual Acuity/drug effects , Bridged-Ring Compounds/adverse effects , Aged, 80 and over , Antineoplastic Agents/adverse effects , Docetaxel/adverse effects , Paclitaxel/adverse effects , Retina/drug effects , Retina/pathology , Retina/diagnostic imaging
20.
Br J Clin Pharmacol ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160062

ABSTRACT

AIMS: Osimertinib is a third-generation, irreversible, central nervous system-active, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) with efficacy in EGFR-mutated non-small cell lung cancer (NSCLC). We assessed the relationship between plasma osimertinib levels and its efficacy and safety events. METHODS: Comprehensive pharmacokinetics exposure-response (E-R) modelling was performed utilizing steady state area under the curve (AUCss) data from first-line, ≥second-line and adjuvant studies from the osimertinib clinical development programme (20-240 mg once-daily dosing; N = 1689 patients). Analyses were conducted for survival using a proportional hazard model; for interstitial lung disease (ILD) and left ventricular ejection fraction (LVEF) events using a penalized logistic regression model and graphical analysis of potential confounding factors; and for rash and diarrhoea events using descriptive analysis. RESULTS: E-R modelling analyses indicated no clear trend of increasing efficacy with increasing osimertinib AUCss; efficacy in all exposure quartiles was significantly better than the control arm (comparator EGFR-TKI, chemotherapy or placebo) irrespective of treatment line. Model-based analysis suggested a potential relationship between increased osimertinib exposure and increased probability of ILD events, predominantly in Japanese patients. Additionally, there were increased probabilities of rash or diarrhoea with increasing osimertinib exposure. The probability of LVEF events showed overlapping confidence intervals for osimertinib ≤80 mg and control. CONCLUSIONS: E-R modelling in patients with EGFR-mutated NSCLC demonstrated that increased osimertinib exposure was unlikely to increase efficacy but may increase occurrence of certain adverse events. Hence, long-term treatment with doses ≥80 mg was not expected to provide additional benefit.

SELECTION OF CITATIONS
SEARCH DETAIL