Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 118: 104395, 2021 06.
Article in English | MEDLINE | ID: mdl-33752093

ABSTRACT

This study characterizes the material properties of a viscoelastic, ex vivo porcine ascending aorta under dynamic-loading conditions via pulsatile flow. The deformation of the opaque vessel wall and the pulsatile flow field inside the vessel were recorded using ultrasound imaging. The internal pressure was extracted from the pulsatile flow results and, when coupled with the vessel-wall expansion, was used to calculate the instantaneous elastic modulus from a novel, time-resolved two-dimensional (i.e. axial and circumferential) stress model. The circumferential instantaneous elasticity obtained from the two-dimensional stress model was found to match the uniaxial tensile test for strains below 50%. The agreement in elasticity between the two stress states reveals that the two-dimensional stress model accurately resolves the circumferential stress of the viscoelastic aorta at physiological strains (8%-30%). At higher strains, results from pulsatile flow generated a more compliant response than the uniaxial measurements. Viscoelastic properties (storage modulus and loss factor) were also calculated using the two-dimensional stress model and compared to those obtained from uniaxial tests. While instantaneous elasticity matched between the cylindrical and uniaxial loading, the viscoelastic behaviour significantly diverged between stress states. The storage modulus obtained from the pulsatile flow data was dependent on mean Reynolds number, while the uniaxial storage modulus results exhibited a strong inverse dependency on the frequency. The loss factor for the pulsatile flow data increased alongside the frequency, while the uniaxial data indicated a constant loss factor over the entire frequency range. The results of the current study show that the two-dimensional stress model can accurately extract the material properties of the ex vivo porcine aorta.


Subject(s)
Aorta , Animals , Elastic Modulus , Elasticity , Pulsatile Flow , Stress, Mechanical , Swine
2.
J Cardiovasc Magn Reson ; 21(1): 59, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31522679

ABSTRACT

BACKGROUND: Displacement Encoding with Stimulated Echoes (DENSE) cardiovascular magnetic resonance (CMR) of the aortic wall offers the potential to improve patient-specific diagnostics and prognostics of diverse aortopathies by quantifying regionally heterogeneous aortic wall strain in vivo. However, before regional mapping of strain can be used to clinically assess aortic pathology, an evaluation of the natural variation of normal regional aortic kinematics is required. METHOD: Aortic spiral cine DENSE CMR was performed at 3 T in 30 healthy adult subjects (range 18 to 65 years) at one or more axial locations that are at high risk for aortic aneurysm or dissection: the infrarenal abdominal aorta (IAA, n = 11), mid-descending thoracic aorta (DTA, n = 17), and/or distal aortic arch (DAA, n = 11). After implementing custom noise-reduction techniques, regional circumferential Green strain of the aortic wall was calculated across 16 sectors around the aortic circumference at each location and normalized by the mean circumferential strain for comparison between individuals. RESULTS: The distribution of normalized circumferential strain (NCS) was heterogeneous for all locations evaluated. Despite large differences in mean strain between subjects, comparisons of NCS revealed consistent patterns of strain distribution for similar groupings of patients by axial location, age, and/or mean displacement angle. NCS at local systole was greatest in the lateral/posterolateral walls in the IAAs (1.47 ± 0.27), medial wall in anteriorly displacing DTAs (1.28 ± 0.20), lateral wall in posteriorly displacing DTAs (1.29 ± 0.29), superior curvature in DAAs < 50 years-old (1.93 ± 0.22), and medial wall in DAAs > 50 years (2.29 ± 0.58). The distribution of strain was strongly influenced by the location of the vertebra and other surrounding structures unique to each location. CONCLUSIONS: Regional in vivo circumferential strain in the adult aorta is unique to each axial location and heterogeneous around its circumference, but can be grouped into consistent patterns defined by basic patient-specific metrics following normalization. The heterogeneous strain distributions unique to each group may be due to local peri-aortic constraints (particularly at the aorto-vertebral interface), heterogeneous material properties, and/or heterogeneous flow patterns. These results must be carefully considered in future studies seeking to clinically interpret or computationally model patient-specific aortic kinematics.


Subject(s)
Aorta, Abdominal/diagnostic imaging , Aorta, Thoracic/diagnostic imaging , Magnetic Resonance Angiography , Magnetic Resonance Imaging, Cine , Patient-Specific Modeling , Adolescent , Adult , Aged , Aorta, Abdominal/physiology , Aortic Aneurysm, Abdominal/etiology , Aortic Aneurysm, Abdominal/physiopathology , Aortic Aneurysm, Thoracic/etiology , Aortic Aneurysm, Thoracic/physiopathology , Biomechanical Phenomena , Female , Healthy Volunteers , Humans , Male , Middle Aged , Predictive Value of Tests , Regional Blood Flow , Reproducibility of Results , Risk Factors , Stress, Mechanical , Vascular Stiffness , Young Adult
3.
Echocardiography ; 33(8): 1121-30, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27083146

ABSTRACT

PURPOSE: Degenerative aortic valve disease (AVD) is a complex disorder that goes beyond valve itself, also undermining aortic wall. We aimed to assess the ascending aortic mechanics with two-dimensional speckle tracking echocardiography (2DSTE) in patients with aortic regurgitation (AR) and hypothesized a relationship with degree of AR. Aortic mechanics were then compared with those of similarly studied healthy controls and patients with aortic stenosis (AS); finally, we aimed to assess the prognostic significance of vascular mechanics in AVD. METHODS: Overall, 73 patients with moderate-to-severe AR and 22 healthy subjects were enrolled, alongside a previously examined cohort (N = 45) with moderate-to-severe AS. Global circumferential ascending aortic strain (CAAS) and strain rate (CAASR) served as indices of aortic deformation; corrected CAAS was calculated as CAAS/pulse pressure (PP). Median clinical follow-up was 438 days. RESULTS: In patients with severe (vs. moderate) AR, CAASR (1.53 ± 0.29/sec vs. 1.90 ± 0.62/sec, P < 0.05) and corrected CAAS (0.14 ± 0.06%/mmHg vs. 0.19 ± 0.08%/mmHg, P < 0.05) were significantly lower, whereas CAAS did not differ significantly. Measurers of aortic mechanics (CAAS, corrected CAAS, CAASR) differed significantly (all P < 0.01) in patients with AS and AR and in healthy subjects, with lower values seen in patients with AS. In follow-up, survival rate of AVD patients with baseline CAASR >0.88/sec was significantly higher (log rank, 97.4% vs. 73.0%; P = 0.03). CONCLUSIONS: Quantitative measures of aortic mechanics were lower for AS patients, suggesting a more significant derangement of aortic elastic properties. In the context of AVD, vascular mechanics assessment proved useful in gauging clinical prognosis.


Subject(s)
Aortic Valve Insufficiency/diagnostic imaging , Aortic Valve Insufficiency/mortality , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/mortality , Echocardiography/methods , Elasticity Imaging Techniques/methods , Aged , Aortic Valve Insufficiency/physiopathology , Aortic Valve Stenosis/physiopathology , Echocardiography/statistics & numerical data , Elastic Modulus , Elasticity , Elasticity Imaging Techniques/statistics & numerical data , Female , Humans , Male , Prevalence , Prognosis , Reproducibility of Results , Risk Factors , Sensitivity and Specificity , Survival Analysis
4.
J Biomech ; 49(12): 2331-40, 2016 08 16.
Article in English | MEDLINE | ID: mdl-26916511

ABSTRACT

A novel computational approach for simulating aortic mechanical response is proposed. Patient-specific geometric description is coupled with a multiscale structurally-motivated tissue constitutive model, explicitly accounting for histological, biophysical and biochemical parameters. Accordingly, geometric and constitutive features can be straight included in highly-personalized numerical analyses, allowing to easily incorporate also effects related to possible pathological tissue defects. A parametric home-made code has been developed by integrating an image segmentation technique, a multiscale (nano-to-macro) tissue mechanical description, and a non-linear finite-element strategy. Preliminary numerical results, based on a case study involving a thoracic aortic segment, are presented and discussed, highlighting soundness and effectiveness of the adopted non-linear constitutive modeling. Moreover, the influence on the aortic macroscale response induced by a localized defect affecting the crimp of collagen fibers is analyzed, proving that the proposed multiscale computational framework is able to provide special insights into both etiology of some cardiovascular diseases and physio-pathological remodeling mechanisms.


Subject(s)
Aorta/cytology , Aorta/metabolism , Mechanical Phenomena , Biomechanical Phenomena , Collagen/metabolism , Humans , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL