Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Cardiovasc Digit Health J ; 5(3): 115-121, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38989042

ABSTRACT

Background: Fatal coronary heart disease (FCHD) is often described as sudden cardiac death (affects >4 million people/year), where coronary artery disease is the only identified condition. Electrocardiographic artificial intelligence (ECG-AI) models for FCHD risk prediction using ECG data from wearable devices could enable wider screening/monitoring efforts. Objectives: To develop a single-lead ECG-based deep learning model for FCHD risk prediction and assess concordance between clinical and Apple Watch ECGs. Methods: An FCHD single-lead ("lead I" from 12-lead ECGs) ECG-AI model was developed using 167,662 ECGs (50,132 patients) from the University of Tennessee Health Sciences Center. Eighty percent of the data (5-fold cross-validation) was used for training and 20% as a holdout. Cox proportional hazards (CPH) models incorporating ECG-AI predictions with age, sex, and race were also developed. The models were tested on paired clinical single-lead and Apple Watch ECGs from 243 St. Jude Lifetime Cohort Study participants. The correlation and concordance of the predictions were assessed using Pearson correlation (R), Spearman correlation (ρ), and Cohen's kappa. Results: The ECG-AI and CPH models resulted in AUC = 0.76 and 0.79, respectively, on the 20% holdout and AUC = 0.85 and 0.87 on the Atrium Health Wake Forest Baptist external validation data. There was moderate-strong positive correlation between predictions (R = 0.74, ρ = 0.67, and κ = 0.58) when tested on the 243 paired ECGs. The clinical (lead I) and Apple Watch predictions led to the same low/high-risk FCHD classification for 99% of the participants. CPH prediction correlation resulted in an R = 0.81, ρ = 0.76, and κ = 0.78. Conclusion: Risk of FCHD can be predicted from single-lead ECGs obtained from wearable devices and are statistically concordant with lead I of a 12-lead ECG.

2.
JMIR Form Res ; 8: e53806, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857078

ABSTRACT

BACKGROUND: Sedentary behavior (SB) is one of the largest contributing factors increasing the risk of developing noncommunicable diseases, including cardiovascular disease and type 2 diabetes. Guidelines from the World Health Organization for physical activity suggest the substitution of SB with light physical activity. The Apple Watch contains a health metric known as the stand hour (SH). The SH is intended to record standing with movement for at least 1 minute per hour; however, the activity measured during the determination of the SH is unclear. OBJECTIVE: In this cross-sectional study, we analyzed the algorithm used to determine time spent standing per hour. To do this, we investigated activity measurements also recorded on Apple Watches that influence the recording of an SH. We also aimed to estimate the values of any significant SH predictors in the recording of a SH. METHODS: The cross-sectional study used anonymized data obtained in August 2022 from 20 healthy individuals gathered via convenience sampling. Apple Watch data were extracted from the Apple Health app through the use of a third-party app. Appropriate statistical models were fitted to analyze SH predictors. RESULTS: Our findings show that active energy (AE) and step count (SC) measurements influence the recording of an SH. Comparing when an SH is recorded with when an SH is not recorded, we found a significant difference in the mean and median AE and SC. Above a threshold of 97.5 steps or 100 kJ of energy, it became much more likely that an SH would be recorded when each predictor was analyzed as a separate entity. CONCLUSIONS: The findings of this study reveal the pivotal role of AE and SC measurements in the algorithm underlying the SH recording; however, our findings also suggest that a recording of an SH is influenced by more than one factor. Irrespective of the internal validity of the SH metric, it is representative of light physical activity and might, therefore, have use in encouraging individuals through various means, for example, notifications, to reduce their levels of SB.

3.
J Pers Med ; 14(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38793101

ABSTRACT

This study investigates the correlation between REM sleep patterns, as measured by the Apple Watch, and depressive symptoms in an undiagnosed population. Employing the Apple Watch for data collection, REM sleep duration and frequency were monitored over a specified period. Concurrently, participants' depressive symptoms were evaluated using standardized questionnaires. The analysis, primarily using Spearman's correlation, revealed noteworthy findings. A significant correlation was observed between an increased REM sleep proportion and higher depressive symptom scores, with a correlation coefficient of 0.702, suggesting a robust relationship. These results highlight the potential of using wearable technology, such as the Apple Watch, in early detection and intervention for depressive symptoms, suggesting that alterations in REM sleep could serve as preliminary indicators of depressive tendencies. This approach offers a non-invasive and accessible means to monitor and potentially preempt the progression of depressive disorders. This study's implications extend to the broader context of mental health, emphasizing the importance of sleep assessment in routine health evaluations, particularly for individuals exhibiting early signs of depressive symptoms.

4.
JMIR Form Res ; 8: e52312, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713497

ABSTRACT

BACKGROUND: The Apple Watch (AW) Series 1 provides energy expenditure (EE) for wheelchair users but was found to be inaccurate with an error of approximately 30%, and the corresponding error for heart rate (HR) provided by the Fitbit Charge 2 was approximately 10% to 20%. Improved accuracy of estimated EE and HR is expected with newer editions of these smart watches (SWs). OBJECTIVE: This study aims to assess the accuracy of the AW Series 4 (wheelchair-specific setting) and the Fitbit Versa (treadmill running mode) for estimating EE and HR during wheelchair propulsion at different intensities. METHODS: Data from 20 manual wheelchair users (male: n=11, female: n=9; body mass: mean 75, SD 19 kg) and 20 people without a disability (male: n=11, female: n=9; body mass: mean 75, SD 11 kg) were included. Three 4-minute wheelchair propulsion stages at increasing speed were performed on 3 separate test days (0.5%, 2.5%, or 5% incline), while EE and HR were collected by criterion devices and the AW or Fitbit. The mean absolute percentage error (MAPE) was used to indicate the absolute agreement between the criterion device and SWs for EE and HR. Additionally, linear mixed model analyses assessed the effect of exercise intensity, sex, and group on the SW error. Interclass correlation coefficients were used to assess relative agreement between criterion devices and SWs. RESULTS: The AW underestimated EE with MAPEs of 29.2% (SD 22%) in wheelchair users and 30% (SD 12%) in people without a disability. The Fitbit overestimated EE with MAPEs of 73.9% (SD 7%) in wheelchair users and 44.7% (SD 38%) in people without a disability. Both SWs underestimated HR. The device error for EE and HR increased with intensity for both SWs (all comparisons: P<.001), and the only significant difference between groups was found for HR in the AW (-5.27 beats/min for wheelchair users; P=.02). There was a significant effect of sex on the estimation error in EE, with worse accuracy for the AW (-0.69 kcal/min; P<.001) and better accuracy for the Fitbit (-2.08 kcal/min; P<.001) in female participants. For HR, sex differences were found only for the AW, with a smaller error in female participants (5.23 beats/min; P=.02). Interclass correlation coefficients showed poor to moderate relative agreement for both SWs apart from 2 stage-incline combinations (AW: 0.12-0.57 for EE and 0.11-0.86 for HR; Fitbit: 0.06-0.85 for EE and 0.03-0.29 for HR). CONCLUSIONS: Neither the AW nor Fitbit were sufficiently accurate for estimating EE or HR during wheelchair propulsion. The AW underestimated EE and the Fitbit overestimated EE, and both SWs underestimated HR. Caution is hence required when using SWs as a tool for training intensity regulation and energy balance or imbalance in wheelchair users.

5.
Digit Health ; 10: 20552076241254026, 2024.
Article in English | MEDLINE | ID: mdl-38746874

ABSTRACT

Introduction: Fitness trackers can provide continuous monitoring of vital signs and thus have the potential to become a complementary, mobile and effective tool for early detection of patient deterioration and post-operative complications. Methods: To evaluate potential implementations in acute care setting, we included 36 patients after moderate to major surgery in a recent randomised pilot trial to compare the performance of vital sign monitoring by three different fitness trackers (Apple Watch 7, Garmin Fenix 6pro and Withings ScanWatch) with established standard clinical monitors in post-anaesthesia care units and monitoring wards. Results: During a cumulative period of 56 days, a total of 53,197 heart rate (HR) measurements, as well as 12,219 measurements of the peripheral blood oxygen saturation (SpO2) and 28,954 respiratory rate (RR) measurements were collected by fitness trackers. Under real-world conditions, HR monitoring was accurate and reliable across all benchmarked devices (r = [0.95;0.98], p < 0.001; Bias = [-0.74 bpm;-0.01 bpm]; MAPE∼2%). However, the performance of SpO2 (r = [0.21;0.68]; p < 0.001; Bias = [-0.46%;-2.29%]; root-mean-square error = [2.82%;4.1%]) monitoring was substantially inferior. RR measurements could not be obtained for two of the devices, therefore exclusively the accuracy of the Garmin tracker could be evaluated (r = 0.28, p < 0.001; Bias = -1.46/min). Moreover, the time resolution of the vital sign measurements highly depends on the tracking device, ranging from 0.7 to 117.94 data points per hour. Conclusion: According to the results of the present study, tracker devices are generally reliable and accurate for HR monitoring, whereas SpO2 and RR measurements should be interpreted carefully, considering the clinical context of the respective patients.

6.
Clin Trials ; : 17407745241230287, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38486348

ABSTRACT

BACKGROUND/AIMS: Information regarding the use of wearable devices in clinical research, including disease areas, intervention techniques, trends in device types, and sample size targets, remains elusive. Therefore, we conducted a comprehensive review of clinical research trends related to wristband wearable devices in research planning and examined their applications in clinical investigations. METHODS: As this study identified trends in the adoption of wearable devices during the planning phase of clinical research, including specific disease areas and targeted number of intervention cases, we searched ClinicalTrials.gov-a prominent platform for registering and disseminating clinical research. Since wrist-worn devices represent a large share of the market, we focused on wrist-worn devices and selected the most representative models among them. The main analysis focused on major wearable devices to facilitate data analysis and interpretation, but other wearables were also surveyed for reference. We searched ClinicalTrials.gov with the keywords "ActiGraph,""Apple Watch,""Empatica,""Fitbit,""Garmin," and "wearable devices" to obtain studies published up to 21 August 2022. This initial search yielded 3214 studies. After excluding duplicate National Clinical Trial studies (the overlap was permissible among different device types except for wearable devices), our analysis focused on 2930 studies, including simple, time-series, and type-specific assessments of various variables. RESULTS: Overall, an increasing number of clinical studies have incorporated wearable devices since 2012. While ActiGraph and Fitbit initially dominated this landscape, the use of other devices has steadily increased, constituting approximately 10% of the total after 2015. Observational studies outnumbered intervention studies, with behavioral and device-based interventions being particularly prevalent. Regarding disease types, cancer and cardiovascular diseases accounted for approximately 20% of the total. Notably, 114 studies adopted multiple devices simultaneously within the context of their clinical investigations. CONCLUSIONS: Our findings revealed that the utilization of wearable devices for data collection and behavioral interventions in various disease areas has been increasing over time since 2012. The increase in the number of studies over the past 3 years has been particularly significant, suggesting that this trend will continue to accelerate in the future. Devices and their evaluation methods that have undergone thorough validation, confirmed their accuracy, and adhered to established legal regulations will likely assume a pivotal role in evaluations, allowing for remote clinical trials. Moreover, behavioral intervention therapy utilizing apps is becoming more extensive, and we expect to see more examples that will lead to their approval as programmed medical devices in the future.

7.
IEEE Open J Eng Med Biol ; 5: 14-20, 2024.
Article in English | MEDLINE | ID: mdl-38445244

ABSTRACT

OBJECTIVE: Panic attacks are an impairing mental health problem that affects 11% of adults every year. Current criteria describe them as occurring without warning, despite evidence suggesting individuals can often identify attack triggers. We aimed to prospectively explore qualitative and quantitative factors associated with the onset of panic attacks. RESULTS: Of 87 participants, 95% retrospectively identified a trigger for their panic attacks. Worse individually reported mood and state-level mood, as indicated by Twitter ratings, were related to greater likelihood of next-day panic attack. In a subsample of participants who uploaded their wearable sensor data (n = 32), louder ambient noise and higher resting heart rate were related to greater likelihood of next-day panic attack. CONCLUSIONS: These promising results suggest that individuals who experience panic attacks may be able to anticipate their next attack which could be used to inform future prevention and intervention efforts.

8.
Am J Emerg Med ; 79: 25-32, 2024 May.
Article in English | MEDLINE | ID: mdl-38330880

ABSTRACT

BACKGROUND: Wearable devices, particularly smartwatches like the Apple Watch (AW), can record important cardiac information, such as single­lead electrocardiograms (ECGs). Although they are increasingly used to detect conditions such as atrial fibrillation (AF), research on their effectiveness in detecting a wider range of dysrhythmias and abnormal ECG findings remains limited. The primary objective of this study is to evaluate the accuracy of the AW in detecting various cardiac rhythms by comparing it with standard ECG's lead-I. METHODS: This single-center prospective observational study was conducted in a tertiary care emergency department (ED) between 1.10.2023 and 31.10.2023. The study population consisted of all patients assessed in the critical care areas of the ED, all of whom underwent standard 12­lead ECGs for various clinical reasons. Participants in the study were included consecutively. An AW was attached to patients' wrists and an ECG lead-I printout was obtained. Heart rate, rhythm and abnormal findings were evaluated and compared with the lead-I of standard ECG. Two emergency medicine specialists performed the ECG evaluations. Rhythms were categorized as normal sinus rhythm and abnormal rhythms, while ECG findings were categorized as the presence or absence of abnormal findings. AW and 12­lead ECG outputs were compared using the McNemar test. Predictive performance analyses were also performed for subgroups. Bland-Altman analysis using absolute mean differences and concordance correlation coefficients was used to assess the level of heart rate agreement between devices. RESULTS: The study was carried out on 721 patients. When analyzing ECG rhythms and abnormal findings in lead-I, the effectiveness of AW in distinguishing between normal and abnormal rhythms was similar to standard ECGs (p = 0.52). However, there was a significant difference between AW and standard ECGs in identifying abnormal findings in lead-I (p < 0.05). Using Bland-Altman analysis for heart rate assessment, the absolute mean difference for heart rate was 0.81 ± 6.12 bpm (r = 0.94). There was strong agreement in 658 out of 700 (94%) heart rate measurements. CONCLUSION: Our study indicates that the AW has the potential to detect cardiac rhythms beyond AF. ECG tracings obtained from the AW may help evaluate cardiac rhythms prior to the patient's arrival in the ED. However, further research with a larger patient cohort is essential, especially for specific diagnoses.


Subject(s)
Atrial Fibrillation , Wearable Electronic Devices , Humans , Electrocardiography , Atrial Fibrillation/diagnosis , Heart Rate/physiology , Prospective Studies
9.
Eur Heart J Case Rep ; 8(2): ytae043, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38370399

ABSTRACT

Background: The Apple Watch has the capability to record a lead 1 electrocardiogram (ECG) and can identify and report atrial fibrillation. The use for detecting myocardial ischaemia is not endorsed by Apple but is documented in this case. Case summary: A 76-year-old man made a lead 1 ECG with his Apple Watch immediately after exercising on a cross trainer. He was fully asymptomatic. The ECG showed an unusual negative T-wave in this lead 1 that deepened in a few minutes and returned to normal after 22 min. He consulted a cardiologist and a standard exercise ECG confirmed the negative T-wave in lead 1 after maximal exercise and in addition showed widespread ST-depression indicating myocardial ischaemia, again without any clinical symptoms. Further studies revealed severe obstructive three-vessel coronary artery disease that was considered not suitable for percutaneous intervention. A coronary artery bypass operation on all involved vessels was performed successfully. Recovery was uneventful and an exercise ECG repeated 11 weeks later was normal. Discussion: We demonstrated that the lead 1 ECG made with the Apple Watch can reliably record T-wave changes indicating myocardial ischaemia. The use of the Apple Watch to document ischaemic changes should be studied systematically for its potential to identify myocardial ischaemia, mainly triggered by symptoms but maybe for asymptomatic persons as well.

10.
Heart Rhythm ; 21(5): 581-589, 2024 May.
Article in English | MEDLINE | ID: mdl-38246569

ABSTRACT

BACKGROUND: The Apple Watch™ (AW) offers heart rate (HR) tracking by photoplethysmography (PPG) and single-lead electrocardiographic (ECG) recordings. The accuracy of AW-HR and diagnostic performance of AW-ECGs among children during both sinus rhythm and arrhythmias have not been explored. OBJECTIVE: The purposes of this study were to assess the accuracy of AW-HR measurements compared to gold standard modalities in children during sinus rhythm and arrhythmias and to identify non-sinus rhythms using AW-ECGs. METHODS: Subjects ≤18 years wore an AW during (1) telemetry admission, (2) electrophysiological study (EPS), or (3) exercise stress test (EST). AW-HRs were compared to gold standard modality values. Recorded AW-ECGs were reviewed by 3 blinded pediatric electrophysiologists. RESULTS: Eighty subjects (median age 13 years; interquartile range 1.0-16.0 years; 50% female) wore AW (telemetry 41% [n = 33]; EPS 34% [n = 27]; EST 25% [n = 20]). A total of 1090 AW-HR measurements were compared to time-synchronized gold standard modality HR values. Intraclass correlation coefficient (ICC) was high 0.99 (0.98-0.99) for AW-HR during sinus rhythm compared to gold standard modalities. ICC was poor comparing AW-HR to gold standard modality HR in tachyarrhythmias (ICC 0.24-0.27) due to systematic undercounting of AW-HR values. A total of 126 AW-ECGs were reviewed. Identification of non-sinus rhythm by AW-ECG showed sensitivity of 89%-96% and specificity of 78%-87%. CONCLUSIONS: We found high levels of agreement for AW-HR values with gold standard modalities during sinus rhythm and poor agreement during tachyarrhythmias, likely due to hemodynamic effects of tachyarrhythmias on PPG-based measurements. AW-ECGs had good sensitivity and moderate specificity in identification of non-sinus rhythm in children.


Subject(s)
Arrhythmia, Sinus , Electrocardiography , Heart Rate , Photoplethysmography , Wearable Electronic Devices , Humans , Male , Female , Infant , Child, Preschool , Child , Adolescent , Photoplethysmography/instrumentation , Photoplethysmography/methods , Electrocardiography/instrumentation , Electrocardiography/methods , Wearable Electronic Devices/standards , Arrhythmia, Sinus/diagnosis , Data Accuracy
11.
Ir J Med Sci ; 193(1): 477-483, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37440093

ABSTRACT

BACKGROUND: Smartwatches have gained tremendous attention in recent years and have become widely accepted by patients, despite not being intended for medical diagnosis. OBJECTIVE: This study aimed to determine the accuracy of Apple Watch oxygen saturation measurement in patients with acute exacerbation of COPD by comparing it with medical-grade pulse oximetry and ABG. METHOD: This single-center, prospective, cross-sectional study involved 167 patients. Patients presenting with cardiac arrest, life-threatening symptoms, severe hypoxia, or obvious jaundice were excluded. Additionally, patients whose SpO2 measurements with the Apple Watch took more than 2 min or required eight attempts were also excluded. Vital signs were measured simultaneously using the IntelliVue MX500 monitor with the Masimo Rainbow Set pulse oximeter and the Apple Watch. Concurrently, arterial blood gas (ABG) samples were drawn. RESULTS: A strong correlation between the Apple Watch 6 and medical-grade pulse oximetry (r = 0.89, ICC = 0.940) was noted. The Bland-Altman analysis revealed a mean error of 0.458% between the Apple Watch 6 and ABG (SD: 2.78, level of agreement: - 5.912 to 4.996). The mean error between pulse oximetry and ABG (SD: 5.086, level of agreement; - 10.983 to 8.953) was 1.015%. There was a correlation between respiratory rate and the number of attempts to measure SpO2 with the Apple Watch 6 (r = 0.75, p < 0.05). CONCLUSION: Apple Watch 6 is an accurate and reliable method for measuring SpO2 levels in emergency patients who presented with acute exacerbation of COPD. However, tachypneic patients may encounter challenges due to the potential need for multiple attempts to measure their oxygen saturation.


Subject(s)
Oxygen Saturation , Pulmonary Disease, Chronic Obstructive , Humans , Prospective Studies , Cross-Sectional Studies , Oximetry/methods , Oxygen
13.
JMIR Aging ; 6: e41549, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38147371

ABSTRACT

BACKGROUND: The Apple Watch is not a medical device per se; it is a smart wearable device that is increasingly being used for health monitoring. Evidence exists that the Apple Watch Series 6 can reliably measure blood oxygen saturation (SpO2) in patients with chronic obstructive pulmonary disease under controlled circumstances. OBJECTIVE: This study aimed to better understand older adults' acceptance of the Watch as a part of telemonitoring, even with these advancements. METHODS: This study conducted content analysis on data collected from 10 older adults with chronic obstructive pulmonary disease who consented to wear the Watch. RESULTS: Using the Extended Unified Theory of Acceptance and Use of Technology model, results showed that participants experienced potential health benefits; however, the inability of the Watch to reliably measure SpO2 when in respiratory distress was concerning. Participants' level of tech savviness varied, which caused some fear and frustration at the start, yet all felt supported by family and would have explored more features if they owned the Watch. All agreed that the Watch is mainly a medical tool and not a gadget. CONCLUSIONS: To conclude, although the Watch may enhance their physical health and well-being, results indicated that participants are more likely to accept the Watch if it ultimately proves to be useful when experiencing respiratory distress.

14.
JMIR Hum Factors ; 10: e50891, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37910162

ABSTRACT

BACKGROUND: Health care professionals, particularly those in surgical settings, face high stress levels, impacting their well-being. Traditional monitoring methods, like using Holter electrocardiogram monitors, are impractical in the operating room, limiting the assessment of physicians' health. Wrist-worn heart rate monitors, like the Apple Watch, offer promise but are restricted in surgeries due to sterility issues. OBJECTIVE: This study aims to assess the feasibility and accuracy of using an upper arm-worn Apple Watch for heart rate monitoring during robotic-assisted surgeries, comparing its performance with that of a wrist-worn device to establish a reliable alternative monitoring site. METHODS: This study used 2 identical Apple Watch Series 8 devices to monitor the heart rate of surgeons during robotic-assisted surgery. Heart rate data were collected from the wrist-worn and the upper arm-worn devices. Statistical analyses included calculating the mean difference and SD of difference between the 2 devices, constructing Bland-Altman plots, assessing accuracy based on mean absolute error and mean absolute percentage error, and calculating the intraclass correlation coefficient. RESULTS: The mean absolute errors for the whole group and for participants A, B, C, and D were 3.63, 3.58, 2.70, 3.93, and 4.28, respectively, and the mean absolute percentage errors were 3.58%, 3.34%, 2.42%, 4.58%, and 4.00%, respectively. Bland-Altman plots and scatter plots showed no systematic error when comparing the heart rate measurements obtained from the upper arm-worn and the wrist-worn Apple Watches. The intraclass correlation coefficients for participants A, B, C, and D were 0.559, 0.651, 0.508, and 0.563, respectively, with a significance level of P<.001, indicating moderate reliability. CONCLUSIONS: The findings of this study suggest that the upper arm is a viable alternative site for monitoring heart rate during surgery using an Apple Watch. The agreement and reliability between the measurements obtained from the upper arm-worn and the wrist-worn devices were good, with no systematic error and a high level of accuracy. These findings have important implications for improving data collection and management of the physical and mental demands of operating room staff during surgery, where wearing a watch on the wrist may not be feasible.


Subject(s)
Robotic Surgical Procedures , Surgeons , Humans , Arm , Heart Rate Determination , Feasibility Studies , Reproducibility of Results , Heart Rate
15.
JMIR Aging ; 6: e41539, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37917147

ABSTRACT

BACKGROUND: Amid the rise in mobile health, the Apple Watch now has the capability to measure peripheral blood oxygen saturation (SpO2). Although the company indicated that the Watch is not a medical device, evidence suggests that SpO2 measurements among patients with chronic obstructive pulmonary disease (COPD) are accurate in controlled settings. Yet, to our knowledge, the SpO2 function has not been validated for patients with COPD in naturalistic settings. OBJECTIVE: This qualitative study explored the experiences of patients with COPD using the Apple Watch Series 6 versus a traditional finger pulse oximeter for home SpO2 self-monitoring. METHODS: We conducted individual semistructured interviews with 8 female and 2 male participants with moderate to severe COPD, and transcripts were qualitatively analyzed. All received a watch to monitor their SpO2 for 5 months. RESULTS: Due to respiratory distress, the watch was unable to collect reliable SpO2 measurements, as it requires the patient to remain in a stable position. However, despite the physical limitations and lack of reliable SpO2 values, participants expressed a preference toward the watch. Moreover, participants' health needs and their unique accessibility experiences influenced which device was more appropriate for self-monitoring purposes. Overall, all shared the perceived importance of prioritizing their physical COPD symptoms over device selection to manage their disease. CONCLUSIONS: Differing results between participant preferences and smartwatch limitations warrant further investigation into the reliability and accuracy of the SpO2 function of the watch and the balance among self-management, medical judgment, and dependence on self-monitoring technology.

16.
Sensors (Basel) ; 23(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38005669

ABSTRACT

Smartwatches equipped with automatic atrial fibrillation (AF) detection through electrocardiogram (ECG) recording are increasingly prevalent. We have recently reported the limitations of the Apple Watch (AW) in correctly diagnosing AF. In this study, we aim to apply a data science approach to a large dataset of smartwatch ECGs in order to deliver an improved algorithm. We included 723 patients (579 patients for algorithm development and 144 patients for validation) who underwent ECG recording with an AW and a 12-lead ECG (21% had AF and 24% had no ECG abnormalities). Similar to the existing algorithm, we first screened for AF by detecting irregularities in ventricular intervals. However, as opposed to the existing algorithm, we included all ECGs (not applying quality or heart rate exclusion criteria) but we excluded ECGs in which we identified regular patterns within the irregular rhythms by screening for interval clusters. This "irregularly irregular" approach resulted in a significant improvement in accuracy compared to the existing AW algorithm (sensitivity of 90% versus 83%, specificity of 92% versus 79%, p < 0.01). Identifying regularity within irregular rhythms is an accurate yet inclusive method to detect AF using a smartwatch ECG.


Subject(s)
Atrial Fibrillation , Humans , Atrial Fibrillation/diagnosis , Electrocardiography/methods , Heart Rate , Algorithms
17.
Article in English | MEDLINE | ID: mdl-37985539

ABSTRACT

BACKGROUND: The advancements in wearable technology have made the detection of arrhythmias more accessible. While smartwatches are commonly used to detect patients with atrial fibrillation, their effectiveness in the differential diagnosis of supraventricular tachycardias (SVT) lacks consensus. METHODS: A study was conducted on 47 patients with documented SVTs on a 12-lead ECG. All patients in the cohort underwent electrophysiology study with induction of SVT. A 6th generation Apple Watch was used to record ECG tracings during baseline sinus rhythm and during induced SVT. Cardiology residents and attending cardiologists evaluated these recordings to diagnose the differential diagnosis of SVT. RESULTS: The evaluation revealed 27 cases of typical atrioventricular nodal reentrant tachycardia (AVNRT), 11 cases of atrioventricular reentrant tachycardia (AVRT), and 9 cases of atrial tachycardia/atrial flutter (AT/AFL) among the induced tachycardias. Attending physicians achieved an accuracy of 66.0 to 76.6%, and residents demonstrated accuracy rates between 68.1 and 74.5%. Interrater reliability was assessed using Fleiss's Kappa method, resulting in a moderate level of agreement between residents (Kappa = 0.465, p < 0.001, 95% CI 0.30-0.63) and attendings (Kappa = 0.519, p < 0.001, 95% CI 0.35-0.68). The overall Kappa value was 0.417 (p < 0.001, 95% CI 0.34-0.49). CONCLUSIONS: Smartwatch recordings demonstrate moderate feasibility in diagnosing SVT when following a pre-specified algorithm. However, this diagnostic performance was lower than the accuracy obtained from 12-lead ECG tracings when blinded to procedure outcomes.

18.
Eur Heart J Digit Health ; 4(5): 411-419, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37794870

ABSTRACT

Aims: Physical activity is associated with decreased incidence of the chronic diseases associated with aging. We previously demonstrated that digital interventions delivered through a smartphone app can increase short-term physical activity. Methods and results: We offered enrolment to community-living iPhone-using adults aged ≥18 years in the USA, UK, and Hong Kong who downloaded the MyHeart Counts app. After completion of a 1-week baseline period, e-consented participants were randomized to four 7-day interventions. Interventions consisted of: (i) daily personalized e-coaching based on the individual's baseline activity patterns, (ii) daily prompts to complete 10 000 steps, (iii) hourly prompts to stand following inactivity, and (iv) daily instructions to read guidelines from the American Heart Association (AHA) website. After completion of one 7-day intervention, participants subsequently randomized to the next intervention of the crossover trial. The trial was completed in a free-living setting, where neither the participants nor investigators were blinded to the intervention. The primary outcome was change in mean daily step count from baseline for each of the four interventions, assessed in a modified intention-to-treat analysis (modified in that participants had to complete 7 days of baseline monitoring and at least 1 day of an intervention to be included in analyses). This trial is registered with ClinicalTrials.gov, NCT03090321. Conclusion: Between 1 January 2017 and 1 April 2022, 4500 participants consented to enrol in the trial (a subset of the approximately 50 000 participants in the larger MyHeart Counts study), of whom 2458 completed 7 days of baseline monitoring (mean daily steps 4232 ± 73) and at least 1 day of one of the four interventions. Personalized e-coaching prompts, tailored to an individual based on their baseline activity, increased step count significantly (+402 ± 71 steps from baseline, P = 7.1⨯10-8). Hourly stand prompts (+292 steps from baseline, P = 0.00029) and a daily prompt to read AHA guidelines (+215 steps from baseline, P = 0.021) were significantly associated with increased mean daily step count, while a daily reminder to complete 10 000 steps was not (+170 steps from baseline, P = 0.11). Digital studies have a significant advantage over traditional clinical trials in that they can continuously recruit participants in a cost-effective manner, allowing for new insights provided by increased statistical power and refinement of prior signals. Here, we present a novel finding that digital interventions tailored to an individual are effective in increasing short-term physical activity in a free-living cohort. These data suggest that participants are more likely to react positively and increase their physical activity when prompts are personalized. Further studies are needed to determine the effects of digital interventions on long-term outcomes.

19.
Digit Health ; 9: 20552076231203957, 2023.
Article in English | MEDLINE | ID: mdl-37766907

ABSTRACT

Objective: Increasing the physical activity of frail, older patients before surgery through prehabilitation (prehab) can hasten return to autonomy and reduce complications postoperatively. However, prehab participation is low in the clinical setting. In this study, we re-design an existing prehab smartphone application (BeFitMe™) using a novel standalone Apple Watch platform to increase accessibility and usability for vulnerable patients. Methods: Design Science Research Methodology was used to (1) develop an approach to clinical research using standalone Apple Watches, (2) re-design BeFitMe™ for the Apple Watch platform, and (3) incorporate user feedback into app design. In phase 3, beta and user testers gave feedback via a follow-up phone call. Exercise data was extracted from the watch after testing. Descriptive statistics were used to summarize accessibility and usability. Results: BeFitMe™ was redesigned for the Apple Watch with full functionality without requiring patients to have an iPhone or internet connectivity and the ability to passively collect exercise data without patient interaction. Three study staff participated in beta testing over 3 weeks. Six randomly chosen thoracic surgery patients participated in user testing over 12 weeks. Feedback from beta and user testers was addressed with updated software (versions 1.0-1.10), improved interface and notification schemes, and the development of educational materials used during enrollment. The majority of users (5/6, 83%) participated by responding to at least one notification and data was able to be collected for 54/82 (68%) of the days users had the watches. The amount of data collected in BeFitMe™ Watch app increased from 2/11 (16%) days with the first patient tester to 13/13 (100%) days with the final patient tester. Conclusions: The BeFitMe™ Watch app is accessible and usable. The BeFitMe™ Watch app may help older patients, particularly those from vulnerable backgrounds with fewer resources, participate in prehab prior to surgery.

SELECTION OF CITATIONS
SEARCH DETAIL
...