Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
Heliyon ; 10(14): e34328, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39108884

ABSTRACT

A major portion of Bangladesh is currently experiencing a scarcity of safe drinking water because of arsenic contamination, high salinity and human-induced pollution. The objectives of this study were to identify locations with a high scarcity of drinking water and suitability of harvesting rainwater. Kriging interpolation algorithms of Geographical Information System (GIS) was employed to identify the probable water scarce zones as well as suitable zones of harvesting rain water from the available data of secondary sources. Statistical methods were employed to cluster, correlate, and regress variables such as rainfall, salinity, and As. The results showed that groundwater quality in the southwestern parts of Bangladesh is saline with high concentration (>10000 µS/cm). On the other hand, the northeastern and southwestern parts of Bangladesh are also vulnerable to arsenic contamination (60 %-97 % of tubewells), compared to other regions. The rainfall zonation map, covering the years 1951-2022, indicated that the Sylhet division had the highest potential for rainfall (ranging from 2600 to 3900 mm). From this study it was demonstrated that Sylhet, Noakhali, Bhola, Barishall, Patuakhali, Bagerhat, and Khulna were identified as suitable places for sustainable rainwater harvesting (RWH). The findings of this study may play significant role towards achieving sustainable potable water supply in vulnerable zones, if they receive attention from policymakers.

2.
Article in English | MEDLINE | ID: mdl-39143385

ABSTRACT

Potentially toxic elements (PTEs), especially arsenic in drinking water, pose significant global health risks, including cancer. This study evaluates the groundwater quality in Giresun province on the Black Sea coast of Türkiye by analyzing twelve groundwater resources. The mean concentrations of macronutrients (mg/L) were: Ca (10.53 ± 6.63), Na (6.81 ± 3.47), Mg (3.39 ± 2.27), and K (2.05 ± 1.10). The mean levels of PTEs (µg/L) were: Al (40.02 ± 15.45), Fe (17.65 ± 14.35), Zn (5.63 ± 2.59), V (4.74 ± 5.85), Cu (1.57 ± 0.81), Mn (1.02 ± 0.76), As (0.93 ± 0.73), Cr (0.75 ± 0.57), Ni (0.41 ± 0.18), Pb (0.36 ± 0.23), and Cd (0.10 ± 0.05). All PTE levels complied with WHO drinking water safety guidelines, and overall water quality was excellent. The heavy metal evaluation index (HEI < 10) and heavy metal pollution index (HPI < 45) indicate low pollution levels across all stations. Irrigation water quality was largely adequate, as shown by the magnesium hazard (MH), sodium adsorption ratio (SAR), Na%, and Kelly's ratio (KR). The total hazard index (THI) values consistently remained below 1, indicating no non-carcinogenic health risks. However, at station 10 (city center), the cancer risk (CR) for adults due to arsenic was slightly above the threshold (1.44E-04). Using principal component analysis (PCA), positive matrix factorization (PMF), and geographic information system (GIS) mapping, the study determined that most PTEs originated from natural geological formations or a combination of natural and human sources, with minimal impact from human activities. These findings highlight the safety and reliability of the groundwater sources studied, emphasizing their potential as a long-term, safe water supply for nearby populations.

3.
Heliyon ; 10(12): e33078, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988560

ABSTRACT

The issue of arsenic (As) contamination in the environment has become a critical concern, impacting both human health and ecological equilibrium. Addressing this challenge requires a comprehensive strategy encompassing water treatment technologies, regulatory measures for industrial effluents, and the implementation of sustainable agricultural practices. In this study, diverse strategies were explored to enhance As accumulation in the presence of Acinetobacter bouvetii while safeguarding the host from the toxic effects of arsenate exposure. The sunflower seedlings associated with A. bouvetii demonstrated a favorable relative growth rate (RGR) and net assimilation rate (NAR) even less than 100 ppm of As stress. Remarkably, the NAR and RGR of A. bouvetii-associated seedlings outperformed those of control seedlings cultivated without A. bouvetii in As-free conditions. Additionally, a markedly greater buildup of bio-transformed As was observed in A. bouvetii-associated seedlings (P = 0.05). An intriguing observation was the normal levels of reactive oxygen species (ROS) in A. bouvetii-associated seedlings, along with elevated activities of key enzymatic antioxidants like catalases (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and peroxidases (POD), along with non-enzymatic antioxidants (phenols and flavonoids). This coordinated antioxidant defense system likely contributed to the improved survival and growth of the host plant species amidst As stress. A. bouvetii not only augmented the growth of the host plants but also facilitated the uptake of bio-transformed As in the contaminated medium. The rhizobacterium's modulation of various biochemical and physiological parameters indicates its role in ensuring the better survival and progression of the host plants under As stress.

4.
Sensors (Basel) ; 24(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38931673

ABSTRACT

Arsenic, existing in various chemical forms such as arsenate (As(V)) and arsenite (As(III)), demands serious attention in water and environmental contexts due to its significant health risks. It is classified as "carcinogenic to humans" by the International Agency for Research on Cancer (IARC) and is listed by the World Health Organization (WHO) as one of the top 10 chemicals posing major public health concerns. This widespread contamination results in millions of people globally being exposed to dangerous levels of arsenic, making it a top priority for the WHO. Chronic arsenic toxicity, known as arsenicosis, presents with specific skin lesions like pigmentation and keratosis, along with systemic manifestations including chronic lung diseases, liver issues, vascular problems, hypertension, diabetes mellitus, and cancer, often leading to fatal outcomes. Therefore, it is crucial to explore novel, cost-effective, and reliable methods with rapid response and improved sensitivities (detection limits). Most of the traditional detection techniques often face limitations in terms of complexity, cost, and the need for sophisticated equipment requiring skilled analysts and procedures, which thereby impedes their practical use, particularly in resource-constrained settings. Colorimetric methods leverage colour changes which are observable and quantifiable using simple instrumentation or even visual inspection. This review explores the colorimetric techniques designed to detect arsenite and arsenate in water. It covers recent developments in colorimetric techniques, and advancements in the role of nanomaterials in colorimetric arsenic detection, followed by discussion on current challenges and future prospects. The review emphasizes efforts to improve sensitivity, selectivity, cost, and portability, as well as the role of advanced materials/nanomaterials to boost the performance of colorimetric assays/sensors towards combatting this pervasive global health concern.


Subject(s)
Arsenic , Colorimetry , Nanostructures , Water Pollutants, Chemical , Colorimetry/methods , Arsenic/analysis , Nanostructures/chemistry , Humans , Water Pollutants, Chemical/analysis , Water/chemistry
5.
BMC Plant Biol ; 24(1): 545, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872089

ABSTRACT

The accumulation of arsenic (As) in rice (Oryza sativa L.) grain poses a significant health concern in Bangladesh. To address this, we investigated the efficacy of various organic amendments and phytoremediation techniques in reducing As buildup in O. sativa. We evaluated the impact of five doses of biochar (BC; BC0.1: 0.1%, BC0.28: 0.28%, BC0.55: 0.55%, BC0.82: 0.82% and BC1.0: 1.0%, w/w), vermicompost (VC; VC1.0: 1.0%, VC1.8: 1.8%, VC3.0: 3.0%, VC4.2: 4.2% and VC5.0: 5.0%, w/w), and floating duckweed (DW; DW100: 100, DW160: 160, DW250: 250, DW340: 340 and DW400: 400 g m- 2) on O. sativa cultivated in As-contaminated soil. Employing a three-factor five-level central composite design and response surface methodology (RSM), we optimized the application rates of BC-VC-DW. Our findings revealed that As contamination in the soil negatively impacted O. sativa growth. However, the addition of BC, VC, and DW significantly enhanced plant morphological parameters, SPAD value, and grain yield per pot. Notably, a combination of moderate BC-DW and high VC (BC0.55VC5DW250) increased grain yield by 44.4% compared to the control (BC0VC0DW0). As contamination increased root, straw, and grain As levels, and oxidative stress in O. sativa leaves. However, treatment BC0.82VC4.2DW340 significantly reduced grain As (G-As) by 56%, leaf hydrogen peroxide by 71%, and malondialdehyde by 50% compared to the control. Lower doses of BC-VC-DW (BC0.28VC1.8DW160) increased antioxidant enzyme activities, while moderate to high doses resulted in a decline in these activities. Bioconcentration and translocation factors below 1 indicated limited As uptake and translocation in plant tissues. Through RSM optimization, we determined that optimal doses of BC (0.76%), VC (4.62%), and DW (290.0 g m- 2) could maximize grain yield (32.96 g pot- 1, 44% higher than control) and minimize G-As content (0.189 mg kg- 1, 54% lower than control). These findings underscore effective strategies for enhancing yield and reducing As accumulation in grains from contaminated areas, thereby ensuring agricultural productivity, human health, and long-term sustainability. Overall, our study contributes to safer food production and improved public health in As-affected regions.


Subject(s)
Arsenic , Biodegradation, Environmental , Charcoal , Oryza , Soil Pollutants , Oryza/metabolism , Oryza/growth & development , Arsenic/metabolism , Soil Pollutants/metabolism , Composting/methods , Araceae/metabolism , Araceae/drug effects , Araceae/growth & development , Soil/chemistry
6.
Environ Res ; 257: 119239, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38810825

ABSTRACT

Groundwater contamination with arsenic and nitrate poses a pressing concern for the safety of local communities. Bioremediation, utilizing Fe(II)-oxidizing nitrate reducing bacteria, shows promise as a solution to this problem. However, the relatively weak environmental adaptability of a single bacterium hampers practical application. Therefore, this study explored the feasibility and characteristics of a mixed iron-dependent autotrophic denitrifying (IDAD) culture for effectively removing arsenic and nitrate from synthetic groundwater. The IDAD biosystem exhibited stable performace and arsenic resistance, even at a high As(III) concentration of 800 µg/L. Although the nitrogen removal efficiency of the IDAD biosystem decreased from 71.4% to 64.7% in this case, the arsenic concentration in the effluent remained below the standard (10 µg/L) set by WHO. The crystallinity of the lepidocrocite produced by the IDAD culture decreased with increasing arsenic concentration, but the relative abundance of the key iron-oxidizing bacteria norank_f_Gallionellaceae in the culture showed an opposite trend. Metagenomic analysis revealed that the IDAD culture possess arsenic detoxification pathways, including redox, methylation, and efflux of arsenic, which enable it to mitigate the adverse impact of arsenic stress. This study provides theoretical understanding and technical support for the remediation of arsenic and nitrate-contaminated groundwater using the IDAD culture.


Subject(s)
Arsenic , Autotrophic Processes , Biodegradation, Environmental , Denitrification , Groundwater , Iron , Nitrates , Water Pollutants, Chemical , Groundwater/microbiology , Groundwater/chemistry , Nitrates/metabolism , Arsenic/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Iron/metabolism , Bacteria/metabolism , Bacteria/genetics , Gallionellaceae/metabolism
7.
J Hazard Mater ; 470: 134232, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38593666

ABSTRACT

In a 120-day microcosm incubation experiment, we investigated the impact of arsenic contamination on soil microbial nutrient metabolism, focusing on carbon cycling processes. Our study encompassed soil basal respiration, key enzyme activities (particularly, ß-1,4-N-acetylglucosaminidase and phosphatases), microbial biomass, and community structure. Results revealed a substantial increase (1.21-2.81 times) in ß-1,4-N-acetylglucosaminidase activities under arsenic stress, accompanied by a significant decrease (9.86%-45.20%) in phosphatase activities (sum of acid and alkaline phosphatases). Enzymatic stoichiometry analysis demonstrated the mitigation of microbial C and P requirements in response to arsenic stress. The addition of C-sources alleviated microbial C requirements but exacerbated P requirements, with the interference amplitude increasing with the complexity of the C-source. Network analysis unveiled altered microbial nutrient requirements and an increased resistance process of microbes under arsenic stress. Microbial carbon use efficiency (CUE) and basal respiration significantly increased (1.17-1.59 and 1.18-3.56 times, respectively) under heavy arsenic stress (500 mg kg-1). Arsenic stress influenced the relative abundances of microbial taxa, with Gemmatimonadota increasing (5.5-50.5%) and Bacteroidota/ Nitrospirota decreasing (31.4-47.9% and 31.2-63.7%). Application of C-sources enhanced microbial resistance to arsenic, promoting cohesion among microorganisms. These findings deepen our understanding of microbial nutrient dynamics in arsenic-contaminated areas, which is crucial for developing enzyme-based toxicity assessment systems for soil arsenic contamination.


Subject(s)
Arsenic , Carbon , Soil Microbiology , Soil Pollutants , Arsenic/metabolism , Arsenic/toxicity , Carbon/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Bacteria/metabolism , Bacteria/drug effects , Phosphorus/metabolism , Soil/chemistry
8.
Heliyon ; 10(5): e26530, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38434320

ABSTRACT

Agricultural soils naturally enriched with Arsenic (As) represent a significant global human health risk. In the present investigation, a series of pot experiments were conducted to study the efficacy of three levels of Yellow Gypsum (YG) application on bioavailability of As to kharif groundnut followed by boro-rice grown under 17 different levels of soil As contamination for two consecutive years. The results revealed that application of YG @ 60 kg ha-1 effectuated the lowest soil As content and the highest percent decline in soil extractable As at pegging (9.42 mg kg-1 and 9.81%) and harvesting (8.81 mg kg-1 and 11.85%) in groundnut, maximum tillering (7.52 mg kg-1 and 16.95%) and harvesting (6.77 mg kg-1 and 19.85%) in boro-rice respectively. It was also observed that irrespective of its level, the extractable As content of soil decreased significantly (P < 0.05) with increasing dosage of YG. Increase in YG dose effectuated a significant (P < 0.05) increasing trend and increase in As content in soil indicated a decreasing trend of Ca:As, Fe:As and S:As ratios which pointed out the potentiality of YG for reducing As bio-availability in contaminated soils and thus could be a good option for mitigating the risk of As contamination in food chain.

9.
Sci Total Environ ; 925: 171729, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38492589

ABSTRACT

Stabilization of arsenic-contaminated soils with ferrous sulfate has been reported in many studies, but there are few stabilization effects assessments simultaneously combined chemical extraction methods and in vitro methods, and further explored the corresponding alternative relationships. In this study, ferrous sulfate was added at FeAs molar ratio of 0, 5, 10 and 20 to stabilize As in 10 As spiked soils. Stabilization effects were assessed by 6 chemical extraction methods (toxicity characteristic leaching procedures (TCLP), HCl, diethylenetriamine pentaacetic acid (DTPA), CaCl2, CH3COONH4, (NH4)2SO4), and 4 in vitro methods (physiologically based extraction test (PBET), in vitro gastrointestinal method (IVG), Solubility Bioaccessibility Research Consortium (SBRC) method, and the Unified Bioaccessibility Research Group of Europe method (UBM)). The results showed that the HCl method provides the most conservative assessment results in non-calcareous soils, and in alkaline calcareous soils, (NH4)2SO4 method provides a more conservative assessment. In vitro methods provided significantly higher As concentrations than chemical extraction methods. The components of the simulated digestion solution as well as the parameters may have contributed to this result. The small intestinal phase of PBET and SBRC method produced the highest and lowest ranges of As concentrations, and in the range of 127-462 mg/kg and 68-222 mg/kg when the FeAs molar ratio was 5. So the small intestinal phase of PBET method may provide the most conservative assessment results, while the same phase of SBRC may underestimate the human health risks of As in stabilized soil by 51 %(at a FeAs molar ratio of 5). Spearman correlation analysis indicated that the small intestinal phase of PBET method correlated best with HCl method (correlation coefficient: 0.71). This study provides ideas for the assessment of stabilization efforts to ensure that stabilization meets ecological needs while also being less harmful to humans.


Subject(s)
Arsenic , Ferrous Compounds , Soil Pollutants , Humans , Arsenic/analysis , Soil Pollutants/analysis , Environmental Pollution/analysis , Soil , Biological Availability
10.
Heliyon ; 10(6): e27917, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38533039

ABSTRACT

One of the biggest environmental worries in the world today is the risk of arsenic (As) contamination in groundwater. The Atomic Absorption Spectrometer (AAS) was used in this work to assess the As content in groundwater samples from 38 shallow (27 m) tubewells in northwest Bangladesh to determine the existing situation, potential source(s), and likely health risk of As and other important water quality parameters. The range of arsenic concentrations (µgL-1) was troublesome and greater than the WHO recommended level for drinking water, ranging from 0.50 to 164 (mean ± SD: 20.22 ± 36.46). In groundwater, the concentrations of Fe, and Mn vary from 0.04 to 52.75 mgL-1 (mean ± SD: 4.23 ± 9.68), and 0.23 to 3.27 mgL-1 (mean ± SD: 1.10 ± 0.67). The obtained groundwater samples have pH values ranging from 5.9 to 7.1, which indicates a somewhat acidic to neutral character. Major cations have an average abundance that is as follows: Ca2+ > Mg2+ > Na+ > K+, while major anions have an average abundance that is as follows: HCO3- > Cl- > SO42- > NO3-; Ca2+ and HCO3- are the main cation and anion, respectively. The groundwater in the Rajarampur village was deemed unfit for drinking or irrigation based on analyses of water quality performed using the entropy water quality index. The Ca-HCO3 type of water, in which Ca2+ and HCO3- are the main positive ions and negative ions, is suggested by the Piper tri-linear diagram. It was discovered that silicate weathering regulates the hydro-geochemical activities in groundwater using a bi-variate examination of several hydro-chemical variables. Four major clusters were observed for the water sample. According to reductive dissolution processes and principal component analysis, the arsenic in groundwater is geogenic in origin. Arsenic is discharged from sediment to groundwater by reductive dissolution of FeOOH and MnOOH, as shown by the modest connection between As, Fe, and Mn. The United Nations Environmental Protection Agency's (USEPA) suggested value for probable cancer risk assessment was 10-6, however the probable cancer risk assessment found a higher value, indicating that the population in the study region was at high risk for cancer. Remedial measures for arsenic mitigation include removing arsenic from groundwater after it is extracted, searching for alternative aquifers, and implementing various water-supply technologies such as dugwells, deep tubewells, pond-sand filters, and rainwater harvesting systems.

11.
J Environ Manage ; 352: 120112, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38244408

ABSTRACT

The spatial heterogeneity of arsenic (As) concentration exceeding the 10 µg/L WHO limit at the field scale poses significant challenges for groundwater utilization, but it remains poorly understood. To address this knowledge gap, the Daying site was selected as a representative case (As concentration ranged from 1.55 to 2237 µg/L within a 250 × 150 m field), and a total of 28 groundwater samples were collected and analyzed for hydrochemistry, As speciation, and stable hydrogen and oxygen isotope. Principal component analysis was employed to identify the primary factors controlling groundwater hydrochemistry. Results indicate that the spatial heterogeneity of groundwater As concentration is primarily attributed to vertical recharge and competitive adsorption. Low vertical recharge introduces reductive substances, such as dissolved organic matter, which enhances the reductive environment and facilitates microbial-induced reduction and mobilization of As. Conversely, areas with high vertical recharge introduce oxidizing agents like SO42- and DO, which act as preferred electron acceptors over Fe(III), thus inhibiting the reductive dissolution of Fe(III) oxides and the mobilization of As. PCA and hydrochemistry jointly indicate that spatial variability of P and its competitive adsorption with As are important factors leading to spatial heterogeneity of groundwater As concentration. However, the impacts of pH, Si, HCO3-, and F- on As adsorption are insignificant. Specifically, low vertical recharge can increase the proportion of As(III) and promote P release through organic matter mineralization. This process further leads to the desorption of As, indicating a synergistic effect between low vertical recharge and competitive adsorption. This field-scale spatial heterogeneity underscores the critical role of hydrogeological conditions. Sites with close hydraulic connections to surface water often exhibit low As concentrations in groundwater. Therefore, when establishing wells in areas with widespread high-As groundwater, selecting sites with open hydrogeological conditions can prove beneficial.


Subject(s)
Arsenic , Groundwater , Water Pollutants, Chemical , Arsenic/analysis , Ferric Compounds , Water Pollutants, Chemical/analysis , Environmental Monitoring , Groundwater/chemistry , Oxidants
12.
Integr Environ Assess Manag ; 20(1): 159-168, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37430429

ABSTRACT

The coast of Espírito Santo state (Southeast Brazil) is recognized for its environmental arsenic (As) enrichment and, over the years, mining operations have potentialized it. We aimed to evaluate the effect of Rio Doce discharge on As inputs and the role of iron ore tailings from the Fundão dam disaster in enhancing As contamination in the marine sediment. Two scenarios were evaluated: Predisaster and Postdisaster; dry and wet conditions were considered in each period. High As concentrations were found in the Predisaster (28.44 ± 13.53 µg g-1 ), but a significant increase in As was remarkable during the Postdisaster in the wet season, one year after the disaster (maximum of 58.39 µg g-1 ; geoaccumulation index (Igeo ) Class 3, moderately severe pollution). On that occasion, iron (Fe) oxy-hydroxides from tailings were remobilized from the Rio Doce channel and deposited on the continental shelf bottom. Therefore, chemical interactions among Fe, As, and carbonates were enhanced, resulting in As and Fe coprecipitation and the trapping by carbonate adsorption. Rio Doce discharge seems to be the main factor in As inputs to the inner continental shelf when flooding do not occur previously in samplings, which allows further dispersion of contaminants, although this hypothesis should be tested further. Integr Environ Assess Manag 2024;20:159-168. © 2023 SETAC.


Subject(s)
Arsenic , Disasters , Water Pollutants, Chemical , Rivers , Environmental Monitoring , Iron , Brazil , Water Pollutants, Chemical/analysis
13.
Biol Trace Elem Res ; 202(5): 1948-1964, 2024 May.
Article in English | MEDLINE | ID: mdl-37632687

ABSTRACT

The present study was carried out in the village Kaliprasad of Bhagalpur district of Bihar to know the arsenic exposure effect in the exposed population. A total of n = 102 households were studied, and their water and biological samples such as urine and hair were collected and analyzed in a graphite furnace atomic absorption spectrophotometer (GF-AAS). The assessment of arsenic-exposed village population reveals that the villagers were suffering from serious health-related problems such as skin manifestations (hyperkeratosis and melanosis in their palm and soles), breathlessness, general body weakness, mental disorders, diabetes, hypertension (raised blood pressure), hormonal imbalance, neurological disorders, and few cancer cases. About 77% of household hand pump water had arsenic level more than the WHO recommended level of 10 µg/L, with highest level of 523 µg/L. Moreover, in 60% individual's urine samples, arsenic concentration was very high with maximum 374 µg/L while in hair 64% individuals had arsenic concentration above the permissible limit with maximum arsenic concentration of 11,398 µg/kg. The hazard quotient (HQ) was also calculated to know the arsenic risk percentage in children as 87.11%, in females as 83.15%, and in males as 82.27% by groundwater. This has surpassed the threshold value of 1 × 10 - 6 for carcinogenic risk (CR) in children, female, and male population group in the village. Hence, the exposed population of Kaliprasad village are at very high risk of the disease burden.


Subject(s)
Arsenic Poisoning , Arsenic , Groundwater , Water Pollutants, Chemical , Child , Humans , Male , Female , Arsenic/analysis , Population Groups , Water Pollutants, Chemical/analysis , Arsenic Poisoning/epidemiology , India/epidemiology , Water
14.
Environ Geochem Health ; 46(1): 19, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38147168

ABSTRACT

Antimony (Sb) and arsenic (As) contamination in agricultural soil poses human health risks through agricultural products. Soil washing with degradable low molecular weight organic acids (LMWOAs) is an eco-friendly strategy to remediate agricultural soils. In this study, three eco-friendly LMWOAs, oxalic acid (OA), tartaric acid (TA), and citric acid (CA), were used to treat Sb and As co-contaminated agricultural soil from Xikuangshan mine area. The OA, TA, and CA washed out 18.4, 16.8, and 26.6% of Sb and 15.3, 19.9, and 23.8% of As from the agricultural soil, with CA being the most efficient reagent for the soil washing. These organic acids also led to pH decline and macronutrients losses. Fraction analysis using a sequential extraction procedure showed that the three organic acids targeted and decreased the specifically sorbed (F2) (by 19.3-37.6% and 2.41-23.5%), amorphous iron oxide associated (F3) (by 49.1-61.2% and 51.2-70.2%), and crystallized iron oxide associated (F4) (by 12.3-26.0% and 26.1-29.1%) Sb and As. The leachability of Sb and As, as well as their concentrations and bioconcentration factor (BCF) in vegetables reduced due to the soil washing. It demonstrated that the bioavailability of both the elements was decreased by the organic acids washing. The concentrations of Sb and As in typical vegetable species cultivated in CA washed soil were less than the threshold value for consumption safety, while those in OA and TA washed soils were still higher than the value, suggesting that only CA is a potential washing reagent in soil washing for Sb- and As-contaminated agricultural soil.


Subject(s)
Arsenic , Soil , Humans , Antimony , Biological Availability , Organic Chemicals , Oxalic Acid , Citric Acid
15.
Environ Sci Pollut Res Int ; 30(57): 120805-120819, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37945954

ABSTRACT

High concentrations of arsenic in soil and plant systems are a threat to human health and ecosystems. The levels of phosphate ions in the soil strongly influence the soil efficacy and arsenic absorption by plants. This study investigated the effects of phosphate-solubilizing fungi (PSF) on environmental factors and structural changes in microbial community in soils contaminated with arsenic. Four experimental groups were created: control (CK), Penicillium GYAHH-CCT186 (W186), Aspergillus AHBB-CT196 (W196), and Penicillium GYAHH-CCT186 + Aspergillus AHBB-CT196 (W186 + W196), with Pakchoi (Brassica chinensis L.) as the test plant. Analysis of altered nutrient levels, enzyme activities and microbial community structure in the soil as well as the growth and physiological characteristics of Pakchoi, revealed a significant increase in the available phosphorus (AP), organic matter (OM), cation exchange capacity (CEC) and available arsenic (AAs) content of the soil following W186 + W196, W196 and W186 treatments. All experimental treatments enhanced the activity of soil ß-glucosidase (ß-GC) and soil catalase (S-CAT). W186 + W196 and W196 treatments significantly enhanced soil acid phosphatase (S-ACP) activity. Besides, W186 + W196 treatment significantly induced dehydrogenase (S-DHA) activity. Further, of the treatment with PSF increased the fresh weight, root length, plant height and chlorophyll levels while decreasing the arsenic accumulation in Pakchoi. Exposure to PSF also increased the activity of Ascomycota, Basidiomycota, Chytridiomycota, unclassified_Fungi, Mortierellomycota, Cryptomycota and Rozellomycota in the soil. The relative abundance of Ascomycota, Basidiomycota, and Mortierellomycota was positively correlated with the available nutrients (except iron) in the soil as well as enzyme activities. Consequently, the PSF improved the quality of soil and the safety of Pakchoi, suggesting that PSF can be utilized for the remediation of arsenic-contaminated soil.


Subject(s)
Arsenic , Brassica , Microbiota , Soil Pollutants , Humans , Phosphates/analysis , Arsenic/analysis , Rhizosphere , Fungi , Soil/chemistry , Soil Microbiology , Soil Pollutants/analysis
16.
J Environ Manage ; 348: 119381, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37864938

ABSTRACT

World's highest arsenic (As) contamination is well-documented for the groundwater system of southwestern region (mainly Jashore district) of Bangladesh, where the majority of inhabitants are underprivileged. To mitigate As poisoning in southwestern Bangladesh, numerous steps have been taken so far by the government and non-governmental organizations (NGOs). Among them, digging deep tube wells and As removal by naturally deposited Fe(OH)3 species are being widely practiced in the contaminated areas. However, these actions have been left unmonitored for decades, making people unaware of this naturally occurring deadly poison in their drinking water. Hence, water samples (n = 63, both treated and untreated) and soil samples (n = 4) were collected from different spots in Jashore district to assess the safety level of drinking water and to understand the probable reasons for high As(III) contamination. About 93.7% of samples were found to contain As(III) above 10 µg/L; among them, 38% contained above 50 µg/L. The study shows that current As(III) removal strategies in the study area are ineffective. In this connection, a simple low-cost As(III) removal adsorbent is proposed that can be prepared with very cheap and locally available materials like iron sludge and charcoal. The adsorbent was characterized in terms of SEM, EDX, and XPS. The optimal dosage of the adsorbent was investigated for real-life application concerning several vital water quality parameters. The Fe-C adsorbent exhibited a maximum As(III) removal efficiency of 92% in real groundwater samples. The study will allow policymakers for informed decision-making regarding water body management as well as enable the local people to avail As-safe water in a way that aligns with their economic factors.


Subject(s)
Arsenic , Drinking Water , Groundwater , Water Pollutants, Chemical , Water Purification , Humans , Environmental Monitoring , Arsenic/analysis , Bangladesh , Cost-Benefit Analysis , Water Pollutants, Chemical/analysis
17.
Sci Total Environ ; 902: 166096, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37558067

ABSTRACT

This work aimed to test the hypothesis that rainwater-borne hydrogen peroxide (H2O2) can affect arsenic uptake by rice plants and emission of greenhouse gases in paddy rice systems. A mesocosm rice plant growth experiment, in conjunction with rainwater monitoring, was conducted to examine the effects of rainwater input on functional groups of soil microorganisms related to transformation of arsenic, carbon and nitrogen as well as various arsenic species in the soil and plant systems. The fluxes of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) were measured during selected rainfall events. The results showed that rainwater-borne H2O2 effectively reacted with Fe2+ present in paddy soil to trigger a Fenton-like reaction to produce •OH. Both H2O2 and •OH inhibited As(V)-reducing microbes but promoted As(III)-oxidizing microbes, leading to a net increase in arsenate-As that is less phytoavailable compared to arsenite-As. This impeded uptake of soil-borne As by the rice plant roots, and consequently reduced the accumulation of As in the rice grains. The input of H2O2 into the soil caused more inhibition to methanogens than to methane-oxidizing microbes, resulting in a reduction in CH4 flux. The microbes mediating the transformation of inorganic nitrogen were also under oxidative stresses upon exposure to the rainwater-derived H2O2. And the limited conversion of NO3- to NO played a crucial role in reducing N2O emission from the paddy soils. The results also indicated that the rainwater-borne H2O2 could significantly affect other biogeochemical processes that shape the wider ecosystems, which is worth further investigations.


Subject(s)
Arsenic , Greenhouse Gases , Oryza , Greenhouse Gases/analysis , Ecosystem , Hydrogen Peroxide , Soil/chemistry , Nitrogen , Methane/analysis , Nitrous Oxide/analysis , Agriculture/methods
18.
Environ Sci Technol ; 57(36): 13473-13486, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37639510

ABSTRACT

Dissimilatory arsenate-respiring prokaryotes (DARPs) are considered to be a key impetus of the reductive dissolution of solid-phase arsenic. However, little is known about the interaction between nitrate and DARPs so far. In this study, we showed that nitrate either inhibited or promoted the DARP population-catalyzed reductive mobilization of As in sediments. Metagenomic analysis of the microbial communities in the microcosms after seven days of As release assays suggested that microbes mainly consisted of: Type-I DARPs having potential to reduce NO3- into NO2- and Type-II DARPs having potential to reduce NO3- to NH4+. We further isolated two cultivable DARPs, Neobacillus sp. A01 and Paenibacillus sp. A02, which represent Type-I and -II DARPs, respectively. We observed that nitrate suppressed A01-mediated release of As(III) but promoted A02-mediated release of As(III). Furthermore, we demonstrated that this observation was due to the fact that nitrite, the end product of incomplete denitrification by Type-I DARPs, suppressed the arrA gene expression per cell and growth of all DARPs, whereas ammonium, the end product of dissimilatory nitrate reduction to ammonium (DNRA) by Type-II DARPs, enhanced the arrA gene expression per cell and significantly promoted the growth of all DARPs. These findings suggest that the actual effects of nitrate on DARP population-catalyzed reductive mobilization of arsenic, largely depend on the ratio of Type-I to Type-II DARPs in sediments.


Subject(s)
Arsenic , Nitrates , Arsenates , Nitrites
19.
J Contam Hydrol ; 257: 104221, 2023 07.
Article in English | MEDLINE | ID: mdl-37421762

ABSTRACT

Accurate evaluation of groundwater chemistry, quality, and human health risk could provide detailed and robust evidence of groundwater utilization. Gaer County is an important residential area in western Tibet. A total of 52 samples were collected from the Shiquan River Basin in Gaer County in 2021. Principal component analysis, ratiometric analysis of major ions, and geochemical modeling were conducted to clarify the characteristics of hydrogeochemical compositions and the controlling factors. The groundwater chemistry type is dominated by HCO3-Ca, and its ion concentration from high to low is Ca2+ > Na+ > Mg2+ > K+ and HCO3- > SO42- > Cl- > NO3- > F-. The groundwater compositions were determined by calcite and dolomite dissolution with cation exchange reaction. The human activity causes nitrate contamination, while arsenic contamination is attributed to surface water recharge. According to the Water Quality Index, 99% of the samples meet the requirements of drinking water. Groundwater quality is affected by the arsenic, fluoride, and nitrate concentrations. According to the human health risk assessment model, the cumulative noncarcinogenic risk (HITotal) values for children and the CR values of arsenic (CRArsenic) for adults are higher than 1 and 1E-6, respectively, which are unacceptable risk values. Therefore, appropriate remedial measures are recommended to reduce nitrate and arsenic concentrations in groundwater sources for protecting against further health risks. This study can provide theoretical support and effective groundwater management experience for ensuring groundwater safety in Gaer County and other similar regions around the world.


Subject(s)
Arsenic , Groundwater , Water Pollutants, Chemical , Child , Adult , Humans , Environmental Monitoring , Nitrates/analysis , Tibet , Arsenic/analysis , Groundwater/chemistry , Water Quality , Risk Assessment , Water Pollutants, Chemical/analysis
20.
Environ Res ; 234: 116607, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37429402

ABSTRACT

With the development of industry, heavy metal (HM) pollution of soil has become an increasingly serious problem. Using passivators made of industrial by-products to immobilize HMs in contaminated soil is a promising in-situ remediation technology. In this study, the electrolytic manganese slag (EMS) was modified into a passivator (named M-EMS) by ball milling, and the effects of M-EMS on adsorption of As(V) in aquatic samples and on immobilization of As(V) and other HMs in soil samples were investigated under different conditions. Results demonstrated that M-EMS had a maximum As(V) adsorption capacity of 65.3 mg/g in the aquatic samples. Adding M-EMS to the soil reduced the leaching of As (from 657.2 to 319.8 µg/L) and other HMs after 30 d of incubation, reduced the bioavailability of As(V) and improved the quality and microbial activity of the soil. The mechanism for M-EMS to immobilize As in the soil are complex reactions, ion exchange reaction with As and electrostatic adsorption. This work provides new ideas of using waste residue matrix composites for sustainable remediation of Arsenic in the aquatic environment and soil.


Subject(s)
Arsenic , Environmental Restoration and Remediation , Metals, Heavy , Soil Pollutants , Arsenic/analysis , Manganese , Soil/chemistry , Soil Pollutants/analysis , Metals, Heavy/chemistry , Electrolytes , Water Pollution , Water
SELECTION OF CITATIONS
SEARCH DETAIL