Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Autophagy ; : 1-3, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38963025

ABSTRACT

Individual Atg8 (autophagy related 8) paralogs, comprising MAP1LC3A/LC3A, LC3B, LC3C, GABARAP, GABARAPL1 and GABARAPL2/GATE16, play a crucial role in canonical macroautophagy/autophagy. However, their functions remain unclear owing to functional redundancy. In a previous study, we reported that intracellular Streptococcus pneumoniae triggers hierarchical autophagy in response to bacterial infection. This process commences with the induction of conjugation of Atg8 paralogs (Atg8s) to single membranes (CASM), followed by CASM shedding and subsequent induction of xenophagy. In our recent study, we performed functional analysis of Atg8s during pneumococci-induced hierarchical autophagy. Our findings suggest that LC3A and GABARAPL1 are crucial for CASM induction, whereas GABARAPL2 and GABARAP play sequential roles in CASM shedding and subsequent induction of xenophagy, respectively.Abbreviation: Atg8: autophagy related 8; Atg8s: Atg8 paralogs; CASM: conjugation of Atg8s to single membranes; mpi: minutes post-infection; mpi: minutes post-infection; PcAV: pneumococci-containing autophagic vesicles; PcLV: LC3-associated phagosome (LAPosome)-like vacuole; PcV: pneumococci-containing vesicles; Sp: S. pneumoniae.

2.
Cell Rep ; 43(5): 114131, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38656870

ABSTRACT

Atg8 paralogs, consisting of LC3A/B/C and GBRP/GBRPL1/GATE16, function in canonical autophagy; however, their function is controversial because of functional redundancy. In innate immunity, xenophagy and non-canonical single membranous autophagy called "conjugation of Atg8s to single membranes" (CASM) eliminate bacteria in various cells. Previously, we reported that intracellular Streptococcus pneumoniae can induce unique hierarchical autophagy comprised of CASM induction, shedding, and subsequent xenophagy. However, the molecular mechanisms underlying these processes and the biological significance of transient CASM induction remain unknown. Herein, we profile the relationship between Atg8s, autophagy receptors, poly-ubiquitin, and Atg4 paralogs during pneumococcal infection to understand the driving principles of hierarchical autophagy and find that GATE16 and GBRP sequentially play a pivotal role in CASM shedding and subsequent xenophagy induction, respectively, and LC3A and GBRPL1 are involved in CASM/xenophagy induction. Moreover, we reveal ingenious bacterial tactics to gain intracellular survival niches by manipulating CASM-xenophagy progression by generating intracellular pneumococci-derived H2O2.


Subject(s)
Autophagy-Related Protein 8 Family , Streptococcus pneumoniae , Animals , Mice , Autophagy , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Proteins/metabolism , Macroautophagy , Microtubule-Associated Proteins/metabolism , Pneumococcal Infections/microbiology , Pneumococcal Infections/metabolism , Pneumococcal Infections/immunology , Streptococcus pneumoniae/metabolism
3.
Autophagy ; 20(1): 1-3, 2024 01.
Article in English | MEDLINE | ID: mdl-37848407

ABSTRACT

A multifunctional role of Atg8-family proteins (Atg8 from yeast and human LC3 and GABARAP subfamilies, all referred to here as ATG8s) in macroautophagy/autophagy is carried out by two protein domains, the N-terminal helical domain (NHD) and ubiquitin-like (UBL) domain. Previous studies showed that the NHD of PE-conjugated ATG8s mediates membrane hemifusion via a direct interaction with lipids in trans-membrane association, which would require the NHD in lipidated ATG8s to adopt a solvent-oriented, "open", conformation that unmasks a UBL domain surface needed for membrane tethering. A purpose of the "closed" conformation of the NHD masking the tethering surface on the UBL domain, a conformation seen in the most structures of non-lipidated ATG8s, remained elusive. A recent study by Zhang et al. discussed in this article, showed that the N terminus of lipidated human ATG8s adopts the "closed" conformation when it interacts with the membrane in cis-membrane association, i.e. with the same membrane ATG8 is anchored to. This finding suggests functions for two distinct conformations of the NHD in lipidated ATG8s and raises questions about determinants controlling cis- or trans-membrane associations of the NHD in ATG8-PE.Abbreviations: AIM, Atg8-family interacting motif; 3D-CLEM, three-dimensional correlative light and electron microscopy; FRET, Förster/fluorescence resonance energy transfer; LIR, LC3-interacting motif; MD, molecular dynamics; NHD, N-terminal helical domain; UBL, ubiquitin-like.


Subject(s)
Autophagy , Microtubule-Associated Proteins , Humans , Autophagy-Related Protein 8 Family/metabolism , Microtubule-Associated Proteins/metabolism , Macroautophagy
SELECTION OF CITATIONS
SEARCH DETAIL