Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.867
Filter
1.
J Microbiol Methods ; 224: 107012, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39106934

ABSTRACT

A method for separating M. oryzae from rice samples infected with multiple pathogens using basic laboratory equipment is described. We conducted a series of experiments to obtain a single spore of M. oryzae. This method can also be used to isolate spores from other fungal species.

2.
J Environ Manage ; 367: 122013, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39098069

ABSTRACT

Leachate emanating from landfills contains ammonia which may cause serious health effects on living things. An effectively designed clay barrier should not allow the contaminant to infiltrate the soil and groundwater systems. The utilization of certain industrial by-products in engineered landfill barriers, not only reduces the need for conventional liner materials but also helps in sustainable waste management. This study investigated the hydraulic conductivity, unconfined compressive strength, compaction, and adsorption characteristics of lithomargic clay blended with an optimum percentage of bentonite (10%) and granulated blast furnace slag (15%) permeated with ammonia. The results revealed that increasing the content of granulated blast furnace slag decreased the maximum dry density while increasing the optimum moisture content. In comparison to lithomargic clay, the hydraulic conductivity of the amended soil liner permeated with ammonia decreased from a value of 3 × 10-8 m/s to 5 × 10-10 m/s. The unconfined compressive strength of the amended soil specimens showed an increasing trend with curing times (i.e., 0, 14, 28, and 56 days). The batch adsorption results revealed that Freundlich and Langmuir's isotherm fits the equilibrium adsorption data and the adsorption of ammonia on clay liner follows non-linear behaviour. Overall, the experimental results implied that lithomargic clay blended with 10% bentonite and 15% granulated blast furnace slag can be used as an impermeable soil reactive barrier in engineered landfills.

3.
J Environ Radioact ; 278: 107510, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39088873

ABSTRACT

The Irish Sea and the Baltic Sea are nowadays still the two most Cs-137 contaminated Seas worldwide. However, the origins of this contaminations are completely different. While the Baltic Sea was unintentionally contaminated due to global fallout after the accident in the Chernobyl nuclear powerplant in 1986, the Irish sea was intentionally used for low level liquid radioactive waste discharges from the Sellafield nuclear reprocessing facility (called Windscale until 1981) between the 1950s and 1990s. Nowadays, more than 30 years later, it is still possible to detect these contaminations in fish, water and sediments of both seas. Since fish are an important part of the human diet, monitoring Cs-137 levels in fish is essential for assessing the potential radiation exposure to humans. In 2019 and 2020 two surveys were dedicated to study the current levels of radioactive contamination in fish species from both Seas. During both surveys, fish samples were collected and analysed by gamma spectrometry later on. The results show that the average Cs-137 activity in benthic, demersal and pelagic fish species from the Baltic Sea are 2.7, 4.6 and 4.2, respectively, times higher than the corresponding values of the Irish Sea. Based on this and two other comparisons, it is concluded that the Baltic Sea is the most contaminated with Cs-137.

4.
NeuroRehabilitation ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39093081

ABSTRACT

BACKGROUND: A significant factor for the high prevalence of traumatic brain injury (TBI) among U.S. service members is their exposure to explosive munitions leading to blast-related TBI. Our understanding of the specific clinical effects of mild TBI having a component of blast mechanism remains limited compared to pure blunt mechanisms. OBJECTIVE: The purpose of this review is to provide a synopsis of clinical research findings on the long-term effects of blast-related mild TBI derived to date from the Long-Term Impact of Military-Relevant Brain Injury Consortium - Chronic Effects of Neurotrauma Consortium (LIMBIC-CENC). METHODS: Publications on blast-related mild TBI from LIMBIC-CENC and the LIMBIC-CENC prospective longitudinal study (PLS) cohort were reviewed and their findings summarized. Findings from the broader literature on blast-related mild TBI that evaluate similar outcomes are additionally reviewed for a perspective on the state of the literature. RESULTS: The most consistent and compelling evidence for long-term effects of blast-related TBI is for poorer psychological health, greater healthcare utilization and disability levels, neuroimaging impacts on brain structure and function, and greater headache impact on daily life. To date, evidence for chronic cognitive performance deficits from blast-related mild TBI is limited, but futher research including crucial longitudinal data is needed. CONCLUSION: Commentary is provided on: how LIMBIC-CENC findings assimilate with the broader literature; ongoing research gaps alongside future research needs and priorities; how the scientific community can utilize the LIMBIC-CENC database for independent or collaborative research; and how the evidence from the clinical research should be assimilated into clinical practice.

5.
Plants (Basel) ; 13(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39124252

ABSTRACT

Rice blast caused by the pathogenic fungus Magnaporthe oryzae poses a significant threat to rice cultivation. The identification of robust resistance germplasm is crucial for breeding resistant varieties. In this study, we employed functional molecular markers for 10 rice blast resistance genes, namely Pi1, Pi2, Pi5, Pi9, Pia, Pid2, Pid3, Pigm, Pikh, and Pita, to assess blast resistance across 91 indica rice backbone varieties in South China. The results showed a spectrum of resistance levels ranging from highly resistant (HR) to highly susceptible (HS), with corresponding frequencies of 0, 19, 40, 27, 5, and 0, respectively. Yearly correlations in blast resistance genes among the 91 key indica rice progenitors revealed Pid2 (60.44%), Pia (50.55%), Pita (45.05%), Pi2 (32.97%), Pikh (4.4%), Pigm (2.2%), Pi9 (2.2%), and Pi1 (1.1%). Significant variations were observed in the distribution frequencies of these 10 resistance genes among these progenitors across different provinces. Furthermore, as the number of aggregated resistance genes increased, parental resistance levels correspondingly improved, though the efficacy of different gene combinations varied significantly. This study provides the initial steps toward strategically distributing varieties of resistant indica rice genotypes across South China.

6.
Materials (Basel) ; 17(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39124324

ABSTRACT

By reutilizing industrial byproducts, inorganic cementitious alkali-activated materials (AAMs) contribute to reduced energy consumption and carbon dioxide (CO2) emissions. In this study, coal gangue (CG) blended with ground granulated blast furnace slag (GGBFS) was used to prepare AAMs. The research focused on analyzing the effects of the GGBFS content and alkali activator (i.e., Na2O mass ratio and alkali modulus [SiO2/Na2O]) on the mechanical properties and microstructures of the AAMs. Through a series of spectroscopic and microscopic tests, the results showed that the GGBFS content had a significant influence on AAM compressive strength and paste fluidity; the optimal replacement of CG by GGBFS was 40-50%, and the optimal Na2O mass ratio and alkali modulus were 7% and 1.3, respectively. AAMs with a 50% GGBFS content exhibited a compact microstructure with a 28 d compressive strength of 54.59 MPa. Increasing the Na2O mass ratio from 6% to 8% promoted the hardening process and facilitated the formation of AAM gels; however, a 9% Na2O mass ratio inhibited the condensation of SiO4 and AlO4 ions, which decreased the compressive strength. Increasing the alkali modulus facilitated geopolymerization, which increased the compressive strength. Microscopic analysis showed that pore size and volume increased due to lower Na2O concentrations or alkali modulus. The results provide an experimental and theoretical basis for the large-scale utilization of AAMs in construction.

7.
Materials (Basel) ; 17(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39124521

ABSTRACT

Low-heat Portland cement and ground granulated blast furnace slag are widely used for the preparation of hydraulic concrete. Nevertheless, the effect and mechanism of corrosion on low-heat Portland cement paste mixed with ground granulated blast furnace slag need to be further explored. This paper investigated the impact of ground granulated blast furnace slag on the calcium leaching of low-heat Portland cement paste by evaluating its mass loss, porosity, leaching depth, compressive strength, and Vickers hardness, and comparing it with the leaching performance of ordinary Portland cement paste. Furthermore, the phase composition and morphology of low-heat Portland cement paste containing ground granulated blast furnace slag were analyzed by X-ray diffraction, mercury intrusion porosimetry, and scanning electron microscopy. The results indicate that, after 180 days of soaking in ammonium chloride solution, the mass loss rate, growth rate of porosity, leaching depth, and compressive strength loss rate of low-heat Portland cement paste were 8.0%, 43.6%, 9.1 mm, and 27.7%, respectively, while those of ordinary Portland cement paste were 7.4%, 37.8%, 8.4 mm, and 30.1%, indicating that low-heat Portland cement paste is slightly more damaging than ordinary Portland cement. The addition of ground granulated blast furnace slag could significantly improve the leaching resistance of low-heat Portland cement. For instance, after adding 20% ground granulated blast furnace slag, the above test values were 2.4%, 28.5%, 5.6 mm, and 20.8%, respectively. The reason for this is that ground granulated blast furnace slag has the potential to reduce the porosity of low-heat Portland cement paste, and it can also undergo the secondary hydration reaction with its hydration product Ca(OH)2 to enhance the paste structure. Considering the cost performance, the suitable dosage of low-heat Portland cement paste for satisfactory leaching resistance is about 20%.

8.
Diagnostics (Basel) ; 14(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39125507

ABSTRACT

The International Consensus Classification of Myeloid Neoplasms and Acute Leukemias (ICC) and the 5th edition of the WHO classification (WHO 2022) have refined the diagnosis of myelodysplastic syndromes (MDS). Both classifications segregate MDS subtypes based on molecular or cytogenetic findings but rely on the subjective assessment of blast cell percentage and dysplasia in hematopoietic cell lineages. This study aimed to evaluate interobserver concordance among 13 cytomorphologists from eight hospitals in assessing blast percentages and dysplastic features in 44 MDS patients. The study found fair interobserver agreement for the PB blast percentage and moderate agreement for the BM blast percentage, with the best concordance in cases with <5% BM blasts and >10% BM blasts. Monocyte count agreement was fair, and dysplasia assessment showed moderate concordance for megakaryocytic lineage but lower concordance for erythroid and granulocytic lineages. Overall, interobserver concordance for MDS subtypes was moderate across all classifications, with slightly better results for WHO 2022. These findings highlight the ongoing need for morphological evaluation in MDS diagnosis despite advances in genetic and molecular techniques. The study supports the blast percentage ranges established by the ICC but suggests refining BM blast cutoffs. Given the moderate interobserver concordance, a unified classification approach for MDS is recommended.

9.
Mol Biol Evol ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107250

ABSTRACT

Crop disease pandemics are often driven by asexually reproducing clonal lineages of plant pathogens that reproduce asexually. How these clonal pathogens continuously adapt to their hosts despite harboring limited genetic variation, and in absence of sexual recombination remains elusive. Here, we reveal multiple instances of horizontal chromosome transfer within pandemic clonal lineages of the blast fungus Magnaporthe (Syn. Pyricularia) oryzae. We identified a horizontally transferred 1.2Mb accessory mini-chromosome which is remarkably conserved between M. oryzae isolates from both the rice blast fungus lineage and the lineage infecting Indian goosegrass (Eleusine indica), a wild grass that often grows in the proximity of cultivated cereal crops. Furthermore, we show that this mini-chromosome was horizontally acquired by clonal rice blast isolates through at least nine distinct transfer events over the past three centuries. These findings establish horizontal mini-chromosome transfer as a mechanism facilitating genetic exchange among different host-associated blast fungus lineages. We propose that blast fungus populations infecting wild grasses act as genetic reservoirs that drive genome evolution of pandemic clonal lineages that afflict cereal crops.

10.
J Environ Manage ; 367: 122065, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39111012

ABSTRACT

In this study, low-cost tubular ceramic membranes were fabricated by using waste slag and natural raw materials in order to decrease the manufacturing carbon footprints. The effects of incorporation of phosphorus slag (PS) and blast furnace slag (BFS) in the mullite-zeolite membrane body were investigated. The structural characteristics of the fabricated membranes were evaluated using X-ray diffraction (XRD), field emission-scanning electron microscopy (FESEM), atomic force microscopy (AFM), contact angle, porosity and average pore size analyses. Thermal and mechanical stability were studied by thermogravimetric analysis (TGA) and three-point bending test, respectively. The oily wastewater treatment tests revealed that an increase in the slag percentage from 0 to 30% leads to enhancing the permeate flux from 99 l m-2 h-1 to 349 l m-2 h-1 for PS-based tubular membrane and to 244 l m-2 h-1 for BFS-based tubular membrane under 1 bar applied. The chemical oxygen demand (COD) removal percentage of all membranes was reported almost 99% for oily wastewater feed with a COD concentration of 612 mg l-1. In addition, the investigation of membrane fouling mechanisms was carried out using Hermia models indicating that the best correlation with the experimental data is observed for the complete pore blocking model. This study presents experimental foundations aimed at enhancing the performance of affordable slag-based membranes, thus fostering their applicability in engineering contexts.

11.
Sci Rep ; 14(1): 17944, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39095388

ABSTRACT

This study demonstrates that root-associated Kosakonia oryziphila NP19, isolated from rice roots, is a promising plant growth-promoting bioagent and biopesticide for combating rice blast caused by Pyricularia oryzae. In vitro experiments were conducted on fresh leaves of Khao Dawk Mali 105 (KDML105) jasmine rice seedlings. The results showed that NP19 effectively inhibited the germination of P. oryzae fungal conidia. Fungal infection was suppressed across three different treatment conditions: rice colonized with NP19 and inoculated by fungal conidia, a mix of NP19 and fungal conidia concurrently inoculated on the leaves, and fungal conidia inoculation first followed by NP19 inoculation after 30 h. Additionally, NP19 reduced fungal mycelial growth by 9.9-53.4%. In pot experiments, NP19 enhanced the activities of peroxidase (POD) and superoxide dismutase (SOD) by 6.1-63.0% and 3.0-67.7%, respectively, indicating a boost in the plant's defense mechanisms. Compared to the uncolonized control, the NP19-colonized rice had 0.3-24.7% more pigment contents, 4.1% more filled grains per panicle, 26.3% greater filled grain yield, 34.4% higher harvest index, and 10.1% more content of the aroma compound 2-acetyl-1-pyrroline (2AP); for rice colonized with NP19 and infected with P. oryzae, these increases were 0.2-49.2%, 4.6%, 9.1%, 54.4%, and 7.5%, respectively. In field experiments, blast-infected rice that was colonized and/or inoculated with NP19 treatments had 15.1-27.2% more filled grains per panicle, 103.6-119.8% greater filled grain yield, and 18.0-35.8% higher 2AP content. A higher SOD activity (6.9-29.5%) was also observed in the above-mentioned rice than in the blast-infected rice that was not colonized and inoculated with NP19. Following blast infection, NP19 applied to leaves decreased blast lesion progression. Therefore, K. oryziphila NP19 was demonstrated to be a potential candidate for use as a plant growth-promoting bioagent and biopesticide for suppressing rice blast.


Subject(s)
Oryza , Plant Diseases , Oryza/microbiology , Oryza/growth & development , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Roots/microbiology , Plant Roots/growth & development , Spores, Fungal , Plant Leaves/microbiology , Ascomycota/pathogenicity , Seedlings/microbiology , Seedlings/growth & development , Biological Control Agents/pharmacology , Peroxidase/metabolism
12.
J Environ Manage ; 366: 121748, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38991352

ABSTRACT

This study was based on an industrial sludge landfill with a scale of 1 million cubic meters, which had been filled for more than 10 years. It focused on the secondary dewatering of industrial textile landfill sludge (LS) with a total organic carbon (TOC) content greater than 50% and a volatile suspended solids to suspended solids (VSS/SS) ratio of 0.59. A response surface methodology (RSM) model was established using the coagulant ferrous sulfate (FeSO4) and conditioning agents such as hydrated magnesium oxide (MgO), blast furnace slag (BFS), and calcium oxide (CaO). By solving the RSM equations for the respective indicators, the optimal dosages of FeSO4, MgO, and BFS were determined to be 90 mg/g of dry sludge (DS), and for CaO 174.85 mg/g DS. Further examinations of the dewatering performance, apparent properties, extracellular polymeric substances (EPS) components, rheological characteristics, moisture distribution, and pollutant content variation led to the development of a green waste-based dewatering agent composed of FeSO4 and BFS. In small-scale diaphragm plate and frame filter press tests, the optimal water content (WC) was 69.11%. In the final production-scale experiments, it was 65.72%, with the actual application cost being only 13.07 $/ton DS. Additionally, when FeSO4 and BFS were used together, the combined action of Fe and Si could significantly reduce the biotoxicity of heavy metals (HMs), cut down 75.2% of the LS's TOC, and effectively reduced the leaching of organic substances from the leachate, which was beneficial for subsequent disposal. In conclusion, the combined use of FeSO4 and BFS for the secondary dewatering of industrial textile LS was economically efficient, effective in dewatering, and had significant harm reduction effects, making it a worthwhile for waste treatment.


Subject(s)
Ferrous Compounds , Sewage , Ferrous Compounds/chemistry , Sewage/chemistry , Textiles , Waste Disposal, Fluid/methods , Industrial Waste/analysis
13.
PeerJ ; 12: e17668, 2024.
Article in English | MEDLINE | ID: mdl-39076776

ABSTRACT

To better understand RNA-binding proteins in rice, a comprehensive investigation was conducted on the RRM1 gene family of rice. It encompassed genome-wide identification and exploration of its role in rice blast resistance. The physicochemical properties of the rice OsRRM1 gene family were analyzed. There genes were also analyzed for their conserved domains, motifs, location information, gene structure, phylogenetic trees, collinearity, and cis-acting elements. Furthermore, alterations in the expression patterns of selected OsRRM1 genes were assessed using quantitative real-time PCR (qRT-PCR). A total of 212 members of the OsRRM1 gene family were identified, which were dispersed across 12 chromosomes. These genes all exhibit multiple exons and introns, all of which encompass the conserved RRM1 domain and share analogous motifs. This observation suggests a high degree of conservation within the encoded sequence domain of these genes. Phylogenetic analysis revealed the existence of five subfamilies within the OsRRM1 gene family. Furthermore, investigation of the promoter region identified cis-regulatory elements that are involved in nucleic acid binding and interaction with multiple transcription factors. By employing GO and KEGG analyses, four RRM1 genes were tentatively identified as crucial contributors to plant immunity, while the RRM1 gene family was also found to have a significant involvement in the complex of alternative splicing. The qRT-PCR results revealed distinct temporal changes in the expression patterns of OsRRM1 genes following rice blast infection. Additionally, gene expression analysis indicates that the majority of OsRRM1 genes exhibited constitutive expressions. These findings enrich our understanding of the OsRRM1 gene family. They also provide a foundation for further research on immune mechanisms rice and the management of rice blast.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family , Oryza , Phylogeny , Plant Diseases , Plant Proteins , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/genetics , Plant Diseases/immunology , Multigene Family/genetics , Disease Resistance/genetics , Chromosomes, Plant/genetics
14.
mBio ; : e0099624, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980036

ABSTRACT

Regulator of G-protein signaling (RGS) proteins exhibit GTPase-accelerating protein activities to govern G-protein function. In the rice blast fungus Magnaporthe oryzae, there is a family of at least eight RGS and RGS-like proteins (MoRgs1 to MoRgs8), each exhibiting distinct or shared functions in the growth, appressorium formation, and pathogenicity. MoRgs3 recently emerged as one of the crucial regulators that senses intracellular oxidation during appressorium formation. To explore this unique regulatory mechanism of MoRgs3, we identified the nucleoside diphosphate kinase MoNdk1 that interacts with MoRgs3. MoNdk1 phosphorylates MoRgs3 under induced intracellular reactive oxygen species levels, and MoRgs3 phosphorylation is required for appressorium formation and pathogenicity. In addition, we showed that MoRgs3 phosphorylation determines its interaction with MoCrn1, a coronin-like actin-binding protein homolog, which regulates MoRgs3 internalization. Finally, we provided evidence demonstrating that MoRgs3 functions in MoMagA-mediated cAMP signaling to regulate normal appressorium induction. By revealing a novel signal perception mechanism, our studies highlighted the complexity of regulation during the appressorium function and pathogenicity of the blast fungus. IMPORTANCE: We report that MoRgs3 becomes phosphorylated in an oxidative intracellular environment during the appressorium formation stage. We found that this phosphorylation is carried out by MoNdk1, a nucleoside diphosphate kinase. In addition, this phosphorylation leads to a higher binding affinity between MoRgs3 and MoCrn1, a coronin-like actin-binding protein that was implicated in the endocytic transport of several other RGS proteins of Magnaporthe oryzae. We further found that the internalization of MoRgs3 is indispensable for its GTPase-activating protein function toward the Gα subunit MoMagA. Importantly, we characterized how such cellular regulatory events coincide with cAMP signaling-regulated appressorium formation and pathogenicity in the blast fungus. Our studies uncovered a novel intracellular reactive oxygen species signal-transducing mechanism in a model pathogenic fungus with important basic and applied implications.

15.
Physiol Mol Biol Plants ; 30(6): 1003-1019, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974353

ABSTRACT

Bacterial Leaf Blight (Xanthomonas oryzae pv. oryzae) and blast (Magnaporthe oryzae) are the major biotic stresses around the rice-growing zones of the world. The development of resistant varieties through Marker Assisted Backcross Breeding is the utmost economical and eco-friendly method for achieving stable yield. Amongst the resistance genes recognized, Xa21 and Pi54 possess broad-spectrum resistance to many Xoo and blast strains around the world. In the present study, we have effectively introgressed a Bacterial Blight resistance gene (Xa21) and a blast resistance gene (Pi54) into susceptible variety ADT43 from RP-Bio-Patho-2 coupled with phenotypic selection for agronomic, cooking quality and grain traits through MABC. MABC was sustained till BC2F2 generation with specific markers pTA248 for Xa21 and Pi54MAS for Pi54 resistance genes. A set of SSR markers for parental polymorphism were utilized for maximum regaining of recurrent parent genome in each backcrossing. "Positive plants" from BC2F1 were selfed to generate BC2F2 and the homozygous lines for bacterial leaf blight and blast resistance genes were identified for further assessment.

16.
Leuk Res ; 144: 107546, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38986173

ABSTRACT

Acute myeloid leukemia with antecedent hematologic disorder (AHD-AML) and therapy related AML (t-AML) constitute a heterogenous disease with inferior outcomes. It is often characterized by high-risk cytogenetic and molecular alterations associated with AHD or prior cancer therapy. Historically, the standard of care treatment has been intensive induction with "7 + 3", with an improved overall response rate and survival with CPX-351. Results from large registry-based studies suggested that allogeneic hematopoietic stem cell transplant is preferable to consolidation chemotherapy alone for achieving long-term survival in patients with AHD-AML. Prevalence of high-risk genetic features and advanced age and comorbidities in patients make AHD-AML and t-AML clinically challenging subgroups to treat with intensive approaches. Recent reports on less intensive treatment options, particularly the hypomethylating agent-venetoclax combination, have shown encouraging response rates in these patients. However, emerging resistance mechanisms compromise duration of response and overall survival. Several novel agents targeting apoptotic machinery, signaling pathways, and immune checkpoints are under clinical investigation, with an aim to truly improve overall outcomes in this subgroup. We reviewed updates in biology, classification, and clinical data comparing safety and efficacy of intensive and less intensive treatment options, and summarized ongoing studies with promising novel therapies in AHD-AML and t-AML.

17.
Article in English | MEDLINE | ID: mdl-38984918

ABSTRACT

OBJECTIVE: Examine associations between military blast exposures on hearing loss and self-reported hearing difficulties among Active-Duty Service Members (ADSM) and Veterans from the Noise Outcomes in Servicemembers Epidemiology (NOISE) study. STUDY DESIGN: Cross-sectional. SETTING: Multi-institutional tertiary referral centers. METHODS: Blast exposure was assessed with a comprehensive blast questionnaire. Outcome measures included pure-tone hearing thresholds; Speech Recognition in Noise Test; Hearing Handicap Inventory for Adults (HHIA); and Speech, Spatial and Qualities of Hearing Scale (SSQ)-12. RESULTS: Twenty-one percent (102/494) of ADSM and 36.8% (196/533) of Veterans self-reported blast exposure. Compared to ADSM without blast exposure, blast-exposed ADSM had increased odds of high frequency (3-8 kHz) and extended-high frequency (9-16 kHz) hearing loss (odds ratio [OR] = 2.5, CI: 1.3, 4.7; OR = 3.7, CI: 1.9, 7.0, respectively). ADSM and Veterans with blast exposure were more likely than their nonblast exposed counterparts to report hearing difficulty on the HHIA (OR = 1.9, CI: 1.1, 3.3; OR = 2.1, CI: 1.4, 3.2, respectively). Those with self-reported blast exposure also had lower SSQ-12 scores (ADSM mean difference = -0.6, CI: -1.0, -0.1; Veteran mean difference: -0.9, CI: -1.3, -0.5). CONCLUSION: Results suggest that blast exposure is a prevalent source of hearing injury in the military. We found that among ADSM, blast exposure was associated with hearing loss, predominately in the higher frequencies. Blast exposure was associated with poorer self-perceived hearing ability in ADSM and Veterans. IRB: #FWH20180143H Joint Base San Antonio (JBSA) Military Healthcare System; #3159/9495 Joint VA Portland Health Care System (VAPORHCS) Oregon Health and Science University (OHSU).

18.
Inj Prev ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002975

ABSTRACT

OBJECTIVES: State laws dictate firework access in the USA, and the association between state laws and paediatric firework injuries has not been investigated. We hypothesise that states with fewer firework restrictions will have a higher incidence of paediatric firework injuries. METHODS: A retrospective review (2012-2020) of paediatric patients who sustained a fireworks-related injury was conducted using the Pediatric Health Information System. Inclusion criteria were age less than 18 years and International Classification of Diseases code for fireworks-related injury. States were classified as 'unrestrictive' or 'restrictive' based on permitted fireworks. Case number, demographics and injury severity were evaluated. A negative binomial regression was used to evaluate independent variables predictive of firework injuries, with the dependent variable being the number of injuries. Independent variables that were predictive of number of injuries were subsequently evaluated with a Mann-Whitney test to determine the significance of the differences between 'unrestrictive' and 'restrictive' states. RESULTS: During the study period, 2299 fireworks-related injuries were reported. Mean age was 9.2±4.8 years (range 0-17). Most injuries, based on raw numbers, were in 'unrestrictive' states (72.6%). When normalised measures were used for comparison, based on paediatric state population, there was a statistically significant difference with a higher percentage of injuries in unrestricted states (p=0.002). The mean number of cases per million pediatric-aged individuals was higher in the 'unrestrictive' states versus the 'restrictive' states (p=0.003). CONCLUSIONS: States with fewer firework restrictions had a higher incidence of fireworks-related injuries in children. Restricting fireworks may protect children from fireworks-related injuries.

19.
J Environ Manage ; 365: 121685, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38963964

ABSTRACT

Ternary alkali-activated binder was prepared by blast furnace slag (GGBS), recycled powder (RP) and waste glass powder (WGP) using simplex centroid design method. By measuring the fluidity, setting time, drying shrinkage and mechanical property of specimen, the complementary effect of GGBS, RP and WGP was discussed. The reaction mechanism and microstructure were explored by X-ray diffraction and scanning electron microscopy. The results reveal that the addition of RP could significantly reduce the fluidity and setting time of paste, while WGP can obviously improve the rheological property and play a retarding role. The workability of paste can be effectively regulated by mixing RP and WGP together. Whether added alone or in combination, RP and WGP can effectively improve the shrinkage performance. In the ternary system, GGBS can be rapidly activated and form a skeleton structure. The fine RP particles can play a good role in filling the structure, and the pozzolanic reaction of WGP gradually occurs, which makes the microstructure more compact. The incorporation of GGBS, RP and WGP can promote the growth of hydration products, improve the density of microstructure, and form a certain complementary effect.


Subject(s)
Alkalies , Glass , Powders , Recycling , Glass/chemistry , Alkalies/chemistry , X-Ray Diffraction , Microscopy, Electron, Scanning
20.
Front Cell Neurosci ; 18: 1397046, 2024.
Article in English | MEDLINE | ID: mdl-38948027

ABSTRACT

Mild traumatic brain injury (mTBI) resulting from low-intensity blast (LIB) exposure in military and civilian individuals is linked to enduring behavioral and cognitive abnormalities. These injuries can serve as confounding risk factors for the development of neurodegenerative disorders, including Alzheimer's disease-related dementias (ADRD). Recent animal studies have demonstrated LIB-induced brain damage at the molecular and nanoscale levels. Nevertheless, the mechanisms linking these damages to cognitive abnormalities are unresolved. Challenges preventing the translation of preclinical studies into meaningful findings in "real-world clinics" encompass the heterogeneity observed between different species and strains, variable time durations of the tests, quantification of dosing effects and differing approaches to data analysis. Moreover, while behavioral tests in most pre-clinical studies are conducted at the group level, clinical tests are predominantly assessed on an individual basis. In this investigation, we advanced a high-resolution and sensitive method utilizing the CognitionWall test system and applying reversal learning data to the Boltzmann fitting curves. A flow chart was developed that enable categorizing individual mouse to different levels of learning deficits and patterns. In this study, rTg4510 mice, which represent a neuropathology model due to elevated levels of tau P301L, together with the non-carrier genotype were exposed to LIB. Results revealed distinct and intricate patterns of learning deficits and patterns within each group and in relation to blast exposure. With the current findings, it is possible to establish connections between mice with specific cognitive deficits to molecular changes. This approach can enhance the translational value of preclinical findings and also allow for future development of a precision clinical treatment plan for ameliorating neurologic damage of individuals with mTBI.

SELECTION OF CITATIONS
SEARCH DETAIL