Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters











Publication year range
1.
J Bone Miner Res ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39348436

ABSTRACT

Recent studies in mice have indicated that the gut microbiome can regulate bone tissue strength. However, prior work involved modifications to the gut microbiome in growing animals and it is unclear if the same changes in the microbiome, applied later in life, would change matrix strength. Here we changed the composition of the gut microbiome before and/or after skeletal maturity (16 weeks of age) using oral antibiotics (ampicillin + neomycin). Male and female mice (n = 143 total, n = 12-17/group/sex) were allocated into five study groups:1) Unaltered, 2) Continuous (dosing 4-24 weeks of age), 3) Delayed (dosing only 16-24 weeks of age), 4) Initial (dosing 4-16 weeks of age, suspended at 16 weeks), and 5) Reconstituted (dosing from 4-16 weeks following by fecal microbiota transplant from Unaltered donors). Animals were euthanized at 24 weeks of age. In males, bone matrix strength in the femur was 25-35% less than expected by geometry in mice from the Continuous (P=.001), Delayed (P=.005), and Initial (P=.040) groups as compared to Unaltered. Reconstitution of the gut microbiota led to a bone matrix strength similar to Unaltered animals (P=.929). In females, microbiome-induced changes in bone matrix strength followed the same trend as males but were not significantly different, demonstrating a sex-dependent response of bone matrix to the gut microbiota. Minor differences in chemical composition of bone matrix were observed with Raman spectroscopy. Our findings indicate that microbiome-induced impairment of bone matrix in males can be initiated and/or reversed after skeletal maturity. The portion of the femoral cortical bone formed after skeletal maturity (16 weeks) was small; suggesting that microbiome-induced changes in bone matrix occurred without osteoblast/osteoclast turnover through a yet unidentified mechanism. These findings provide evidence that the mechanical properties of bone matrix can be altered in the adult skeleton.


This study looked at how changes in the gut microbiome affect bone strength in adult mice. The gut microbiome of male and female mice was altered either before or after skeletal maturity. In male mice, those with altered microbiomes had weaker bones (a 25-35% reduction). Alterations to the gut microbiome after skeletal maturity had the same effect as lifelong changes, and restoration of an altered gut microbiome after skeletal maturity reversed the effect. Female mice showed a similar trend, but the changes were not statistically significant. The study concluded that changes in the gut microbiome can weaken bone strength in adult male mice in as short as two months, but this effect can be reversed by restoring the microbiome. These changes seem to occur without removal and replacement of bone tissue using the common bone remodeling processes, suggesting an unknown mechanism. This research provides new evidence that gut bacteria can affect bone strength suggesting the possibility that the microbiome can influence bone fragility.

2.
J Bone Miner Res ; 39(8): 1188-1199, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-38995944

ABSTRACT

Calorie restriction (CR) can lead to weight loss and decreased substrate availability for bone cells. Ultimately, this can lead to impaired peak bone acquisition in children and adolescence and bone loss in adults. But the mechanisms that drive diet-induced bone loss in humans are not well characterized. To explore those in greater detail, we examined the impact of 30% CR for 4 and 8 wk in both male and female 8-wk-old C57BL/6 J mice. Body composition, areal bone mineral density (aBMD), skeletal microarchitecture by micro-CT, histomorphometric parameters, and in vitro trajectories of osteoblast and adipocyte differentiation were examined. After 8 wk, CR mice lost weight and exhibited lower femoral and whole-body aBMD vs ad libitum (AL) mice. By micro-CT, CR mice had lower cortical bone area fraction vs AL mice, but males had preserved trabecular bone parameters and females showed increased bone volume fraction compared to AL mice. Histomorphometric analysis revealed that CR mice had a profound suppression in trabecular as well as endocortical and periosteal bone formation in addition to reduced bone resorption compared to AL mice. Bone marrow adipose tissue was significantly increased in CR mice. In vitro, the pace of adipogenesis in bone marrow stem cells was greatly accelerated with higher markers of adipocyte differentiation and more oil red O staining, whereas osteogenic differentiation was reduced. qRT-PCR and western blotting suggested that the expression of Wnt16 and the canonical ß-catenin pathway was compromised during CR. In sum, CR causes impaired peak cortical bone mass due to a profound suppression in bone remodeling. The increase in marrow adipocytes in vitro and in vivo is related to both progenitor recruitment and adipogenesis in the face of nutrient insufficiency. Long-term CR may lead to lower bone mass principally in the cortical envelope, possibly due to impaired Wnt signaling.


Calorie restriction led to impaired bone mass and increased accumulation of bone marrow adipose tissue. During the development of bone-fat imbalance due to calorie restriction, bone remodeling was notably inhibited. Calorie restriction may shift the differentiation of bone marrow stem cells toward adipocytes instead of osteoblasts. This process involves a disruption in the canonical Wnt signaling pathway.


Subject(s)
Bone Density , Bone Remodeling , Caloric Restriction , Cancellous Bone , Cortical Bone , Animals , Cortical Bone/pathology , Cortical Bone/metabolism , Cortical Bone/diagnostic imaging , Female , Cancellous Bone/pathology , Cancellous Bone/metabolism , Cancellous Bone/diagnostic imaging , Male , Mice, Inbred C57BL , Mice , Osteoblasts/metabolism , Osteoblasts/pathology , Adipogenesis , Adipocytes/metabolism , Adipocytes/pathology , Osteogenesis , Organ Size , Cell Differentiation , Wnt Signaling Pathway , X-Ray Microtomography
3.
JBMR Plus ; 8(5): ziae012, 2024 May.
Article in English | MEDLINE | ID: mdl-38577520

ABSTRACT

Calcitriol circulates at low levels in normal human and rodent fetuses, in part due to increased 24-hydroxylation of calcitriol and 25-hydroxyvitamin D by 24-hydroxylase (CYP24A1). Inactivating mutations of CYP24A1 cause high postnatal levels of calcitriol and the human condition of infantile hypercalcemia type 1, but whether the fetus is disturbed by the loss of CYP24A1 is unknown. We hypothesized that loss of Cyp24a1 in fetal mice will cause high calcitriol, hypercalcemia, and increased placental calcium transport. The Cyp24a1+/- mice were mated to create pregnancies with wildtype, Cyp24a1+/-, and Cyp24a1 null fetuses. The null fetuses were hypercalcemic, modestly hypophosphatemic (compared to Cyp24a1+/- fetuses only), with 3.5-fold increased calcitriol, 4-fold increased fibroblast growth factor 23 (FGF23), and unchanged parathyroid hormone. The quantitative RT-PCR confirmed the absence of Cyp24a1 and 2-fold increases in S100g, sodium-calcium exchanger type 1, and calcium-sensing receptor in null placentas but not in fetal kidneys; these changes predicted an increase in placental calcium transport. However, placental 45Ca and 32P transport were unchanged in null fetuses. Fetal ash weight and mineral content, placental weight, crown-rump length, and skeletal morphology did not differ among the genotypes. Serum procollagen 1 intact N-terminal propeptide and bone expression of sclerostin and Blgap were reduced while calcitonin receptor was increased in nulls. In conclusion, loss of Cyp24a1 in fetal mice causes hypercalcemia, modest hypophosphatemia, and increased FGF23, but no alteration in skeletal development. Reduced incorporation of calcium into bone may contribute to the hypercalcemia without causing a detectable decrease in the skeletal mineral content. The results predict that human fetuses bearing homozygous or compound heterozygous inactivating mutations of CYP24A1 will also be hypercalcemic in utero but with normal skeletal development.

4.
J Bone Miner Res ; 39(3): 357-372, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38477738

ABSTRACT

Sphingosine-1-phosphate (S1P) plays multiple roles in bone metabolism and regeneration. Here, we have identified a novel S1P-regulated osteoanabolic mechanism functionally connecting osteoblasts (OBs) to the highly specialized bone vasculature. We demonstrate that S1P/S1PR3 signaling in OBs stimulates vascular endothelial growth factor a (VEGFa) expression and secretion to promote bone growth in an autocrine and boost osteogenic H-type differentiation of bone marrow endothelial cells in a paracrine manner. VEGFa-neutralizing antibodies and VEGF receptor inhibition by axitinib abrogated OB growth in vitro and bone formation in male C57BL/6J in vivo following S1P stimulation and S1P lyase inhibition, respectively. Pharmacological S1PR3 inhibition and genetic S1PR3 deficiency suppressed VEGFa production, OB growth in vitro, and inhibited H-type angiogenesis and bone growth in male mice in vivo. Together with previous work on the osteoanabolic functions of S1PR2 and S1PR3, our data suggest that S1P-dependent bone regeneration employs several nonredundant positive feedback loops between OBs and the bone vasculature. The identification of this yet unappreciated aspect of osteoanabolic S1P signaling may have implications for regular bone homeostasis as well as diseases where the bone microvasculature is affected such as age-related osteopenia and posttraumatic bone regeneration.


Sphingosine-1-phosphate (S1P) is a signaling lipid that regulates bone growth and regeneration. In the present study, a novel regenerative mechanism was connected to S1P signaling within the bone. Activation of its receptor S1PR3 in bone-forming osteoblasts led to secretion of vascular endothelial growth factor a (VEGFa), the most potent vessel-stimulating factor. This stimulated the development of specialized vessels of the bone marrow, the H-type vessels, that supported overall bone regeneration. These findings foster our understanding of regular bone metabolism and suggest that S1P-based drugs may help treat diseases such as age-related osteopenia and posttraumatic bone regeneration, conditions crucially dependent on functional bone microvasculature.


Subject(s)
Lysophospholipids , Receptors, Lysosphingolipid , Sphingosine/analogs & derivatives , Vascular Endothelial Growth Factor A , Male , Mice , Animals , Receptors, Lysosphingolipid/metabolism , Sphingosine-1-Phosphate Receptors , Vascular Endothelial Growth Factor A/metabolism , Osteogenesis , Endothelial Cells/metabolism , Mice, Inbred C57BL , Osteoblasts/metabolism
5.
bioRxiv ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38260539

ABSTRACT

Recent studies in mice have indicated that the gut microbiome can regulate bone tissue strength. However, prior work involved modifications to the gut microbiome in growing animals and it is unclear if the same changes in the microbiome, applied later in life, would change matrix strength. Here we changed the composition of the gut microbiome before and/or after skeletal maturity (16 weeks of age) using oral antibiotics (ampicillin + neomycin). Male and female mice (n=143 total, n=12-17/group/sex) were allocated into five study groups:1) Unaltered, 2) Continuous (dosing 4-24 weeks of age), 3) Delayed (dosing only 16-24 weeks of age), 4) Initial (dosing 4-16 weeks of age, suspended at 16 weeks), and 5) Reconstituted (dosing from 4-16 weeks following by fecal microbiota transplant from Unaltered donors). Animals were euthanized at 24 weeks of age. In males, bone matrix strength in the femur was 25-35% less than expected from geometry in mice from the Continuous (p= 0.001), Delayed (p= 0.005), and Initial (p=0.040) groups as compared to Unaltered. Reconstitution of the gut microbiota, however, led to a bone matrix strength similar to Unaltered animals (p=0.929). In females, microbiome-induced changes in bone matrix strength followed the same trend as males but were not significantly different, demonstrating sex-related differences in the response of bone matrix to the gut microbiota. Minor differences in chemical composition of bone matrix were observed (Raman spectroscopy). Our findings indicate that microbiome-induced impairment of bone matrix in males can be initiated and/or reversed after skeletal maturity. The portion of the femoral cortical bone formed after skeletal maturity (16 weeks) is small; however, this suggests that microbiome-induced changes in bone matrix occur without osteoblast/osteoclast turnover using an, as of yet unidentified mechanism. These findings add to evidence that the mechanical properties of bone matrix can be altered in the adult skeleton.

6.
JBMR Plus ; 7(12): e10810, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38130751

ABSTRACT

Astronauts have an increased risk of back pain and disc herniation upon returning to Earth. Thus, it is imperative to understand the effects of spaceflight and readaptation to gravity on the musculoskeletal tissues of the spine. Here we investigated whether ~6 months of spaceflight led to regional differences in bone loss within the vertebral body. Additionally, we evaluated the relationships between vertebral bone density and paraspinal muscle morphology before flight, after flight, and after readaptation on Earth. We measured vertebral trabecular bone mineral density (Tb.BMD), paraspinal muscle cross-sectional area (CSA), and muscle density in 17 astronauts using computed tomography (CT) images of the lumbar spine obtained before flight (before flight, n = 17), after flight (spaceflight, n = 17), and ~12 months of readaptation to gravitational loading on Earth (follow-up, n = 15). Spaceflight-induced declines in Tb.BMD were greater in the superior region of the vertebral body (-6.7%) than the inferior (-3.1%, p = 0.052 versus superior region) and transverse regions (-4.3%, p = 0.057 versus superior region). After a year of readaptation to Earth's gravity, Tb.BMD in the transverse region remained significantly below preflight levels (-4.66%, p = 0.0094). Paraspinal muscle CSA and muscle density declined -1.0% (p = 0.005) and -0.83% (p = 0.001) per month of spaceflight, respectively. Ultimately, bone loss in the superior vertebral body, along with fatty infiltration of paraspinal muscles and incomplete recovery even after a year of readaptation on Earth, may contribute to spinal pathology in long-duration astronauts. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

7.
JBMR Plus ; 7(6): e10746, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37283651

ABSTRACT

The L-enantiomer of ß-aminoisobutyric acid (BAIBA) is secreted by contracted muscle in mice, and exercise increases serum levels in humans. In mice, L-BAIBA reduces bone loss with unloading, but whether it can have a positive effect with loading is unknown. Since synergism can be more easily observed with sub-optimal amounts of factors/stimulation, we sought to determine whether L-BAIBA could potentiate the effects of sub-optimal loading to enhance bone formation. L-BAIBA was provided in drinking water to C57Bl/6 male mice subjected to either 7 N or 8.25 N of sub-optimal unilateral tibial loading for 2 weeks. The combination of 8.25 N and L-BAIBA significantly increased the periosteal mineral apposition rate and bone formation rate compared to loading alone or BAIBA alone. Though L-BAIBA alone had no effect on bone formation, grip strength was increased, suggesting a positive effect on muscle function. Gene expression analysis of the osteocyte-enriched bone showed that the combination of L-BAIBA and 8.25 N induced the expression of loading-responsive genes such as Wnt1, Wnt10b, and the TGFb and BMP signaling pathways. One dramatic change was the downregulation of histone genes in response to sub-optimal loading and/or L-BAIBA. To determine early gene expression, the osteocyte fraction was harvested within 24 hours of loading. A dramatic effect was observed with L-BAIBA and 8.25 N loading as genes were enriched for pathways regulating the extracellular matrix (Chad, Acan, Col9a2), ion channel activity (Scn4b, Scn7a, Cacna1i), and lipid metabolism (Plin1, Plin4, Cidec). Few changes in gene expression were observed with sub-optimal loading or L-BAIBA alone after 24 hours. These results suggest that these signaling pathways are responsible for the synergistic effects between L-BAIBA and sub-optimal loading. Showing that a small muscle factor can enhance the effects of sub-optimal loading of bone may be of relevance for individuals unable to benefit from optimal exercise. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

8.
JBMR Plus ; 6(7): e10636, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35866149

ABSTRACT

Cyclic adenosine monophosphate (cAMP)-dependent phosphodiesterase (PDE) inhibitors such as pentoxifylline (PTX) suppress cAMP degradation and promote cAMP-dependent signal transduction. PDE inhibitors increase bone formation and bone mass in preclinical models and are used clinically to treat psoriatic arthritis by targeting inflammatory mediators including activated T cells. T cell activation requires two signals: antigen-dependent CD3-activation, which stimulates cAMP production; and CD28 co-stimulation, which downregulates cAMP-signaling, through PDE activation. PDE-inhibitors consequently suppress T cell activation by disrupting CD28 co-stimulation. Interestingly, we have reported that when CD8+ T cells are activated in the absence of CD28 co-stimulation, they secrete Wnt-10b, a bone anabolic Wnt ligand that promotes bone formation. In the present study, we investigated whether the bone anabolic activity of the PDE-inhibitor PTX, has an immunocentric basis, involving Wnt-10b production by CD8+ T cells. When wild-type (WT) mice were administered PTX, biochemical markers of both bone resorption and formation were significantly increased, with net bone gain in the axial skeleton, as quantified by micro-computed tomography (µCT). By contrast, PTX increased only bone resorption in T cell knockout (KO) mice, causing net bone loss. Reconstituting T cell-deficient mice with WT, but not Wnt-10b knockout (KO) CD8+ T cells, rescued bone formation and prevented bone loss. To study the role of cAMP signaling in Wnt-10b expression, reverse-transcription polymerase chain reaction (RT-PCR) and luciferase-reporter assays were performed using primary T cells. PDE inhibitors intensified Wnt-10b promoter activity and messenger RNA (mRNA) accumulation in CD3 and CD28 activated CD8+ T cells. In contrast, inhibiting the cAMP pathway mediators protein kinase A (PKA) and cAMP response element-binding protein (CREB), suppressed Wnt-10b expression by T cells activated in the absence of CD28 co-stimulation. In conclusion, the data demonstrate a key role for Wnt-10b production by CD8+ T cells in the bone anabolic response to PDE-inhibitors and reveal competing T cell-independent pro-resorptive properties of PTX, which dominate under T cell-deficient conditions. Selective targeting of CD8+ T cells by PDE inhibitors may be a beneficial approach for promoting bone regeneration in osteoporotic conditions. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

9.
JBMR Plus ; 6(7): e10635, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35866148

ABSTRACT

Macrophages are important for repair of injured tissues, but their role in healing after surgical repair of musculoskeletal tissues is not well understood. We used single-cell RNA sequencing (RNA-seq), flow cytometry, and transcriptomics to characterize functional phenotypes of macrophages in a mouse anterior cruciate ligament reconstruction (ACLR) model that involves bone injury followed by a healing phase of bone and fibrovascular interface tissue formation that results in bone-to-tendon attachment. We identified a novel "surgery-induced" highly inflammatory CD9+ IL1+ macrophage population that expresses neutrophil-related genes, peaks 1 day after surgery, and slowly resolves while transitioning to a more homeostatic phenotype. In contrast, CX3CR1+ CCR2+ macrophages accumulated more slowly and unexpectedly expressed an interferon signature, which can suppress bone formation. Deletion of Ccr2 resulted in an increased amount of bone in the surgical bone tunnel at the tendon interface, suggestive of improved healing. The "surgery-induced macrophages" identify a new cell type in the early phase of inflammation related to bone injury, which in other tissues is dominated by blood-derived neutrophils. The complex patterns of macrophage and inflammatory pathway activation after ACLR set the stage for developing therapeutic strategies to target specific cell populations and inflammatory pathways to improve surgical outcomes. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

10.
J Bone Miner Res ; 37(7): 1213-1220, 2022 07.
Article in English | MEDLINE | ID: mdl-35253257

ABSTRACT

The relation between a novel measure of total skeletal muscle mass (assessed by D3 -creatine dilution [D3 Cr]) and incident fracture is unknown. In 1363 men (mean age 84.2 years), we determined D3 Cr muscle mass; Fracture Risk Assessment Tool (FRAX) 10-year probability of hip and major osteoporotic (hip, humerus, vertebral, forearm) fracture; and femoral neck bone mineral density (BMD) (by dual-energy X-ray absorptiometry [DXA]). Incident fractures were centrally adjudicated by review of radiology reports over 4.6 years. Correlations adjusted for weight and height were calculated between femoral neck BMD and D3 Cr muscle mass. Across quartiles of D3 Cr muscle mass/weight, proportional hazards models calculated hazard ratios (HRs) for any (n = 180); nonspine (n = 153); major osteoporotic fracture (n = 85); and hip fracture (n = 40) after adjustment for age, femoral neck BMD, recurrent fall history, and FRAX probability. Models were then adjusted to evaluate the mediating influence of physical performance (walking speed, chair stands, and grip strength). D3 Cr muscle mass was weakly correlated with femoral BMD (r = 0.10, p < 0.001). Compared to men in the highest quartile, those in the lowest quartile of D3 Cr muscle mass/weight had an increased risk of any clinical fracture (HR 1.8; 95% confidence interval [CI], 1.1-2.8); nonspine fracture (HR 1.8; 95% CI, 1.1-3.0), major osteoporotic fracture (HR 2.3; 95% CI, 1.2-4.6), and hip fracture (HR 5.9; 95% CI, 1.6-21.1). Results were attenuated after adjustment for physical performance, but associations remained borderline significant for hip and major osteoporotic fractures (p ≥ 0.05 to 0.10). Low D3 Cr muscle mass/weight is associated with a markedly high risk of hip and potentially other fractures in older men; this association is partially mediated by physical performance. © 2022 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Hip Fractures , Osteoporotic Fractures , Absorptiometry, Photon , Aged , Aged, 80 and over , Bone Density , Creatine , Hip Fractures/epidemiology , Humans , Male , Muscles , Osteoporotic Fractures/epidemiology , Prospective Studies , Risk Assessment , Risk Factors
11.
J Bone Miner Res ; 37(5): 876-884, 2022 05.
Article in English | MEDLINE | ID: mdl-35118705

ABSTRACT

Mouse models suggest that undercarboxylated osteocalcin (ucOC), produced by the skeleton, protects against type 2 diabetes development, whereas human studies have been inconclusive. We aimed to determine if ucOC or total OC is associated with incident type 2 diabetes or changes in fasting glucose, insulin resistance (HOMA-IR), or beta-cell function (HOMA-Beta). A subcohort (n = 338; 50% women; 36% black) was identified from participants without diabetes at baseline in the Health, Aging, and Body Composition Study. Cases of incident type 2 diabetes (n = 137) were defined as self-report at an annual follow-up visit, use of diabetes medication, or elevated fasting glucose during 8 years of follow-up. ucOC and total OC were measured in baseline serum. Using a case-cohort design, the association between biomarkers and incident type 2 diabetes was assessed using robust weighted Cox regression. In the subcohort, linear regression models analyzed the associations between biomarkers and changes in fasting glucose, HOMA-IR, and HOMA-Beta over 9 years. Higher levels of ucOC were not statistically associated with increased risk of incident type 2 diabetes (adjusted hazard ratio = 1.06 [95% confidence interval, 0.84-1.34] per 1 standard deviation [SD] increase in ucOC). Results for %ucOC and total OC were similar. Adjusted associations of ucOC, %ucOC, and total OC with changes in fasting glucose, HOMA-IR, and HOMA-Beta were modest and not statistically significant. We did not find evidence of an association of baseline undercarboxylated or total osteocalcin with risk of incident type 2 diabetes or with changes in glucose metabolism in older adults. © 2022 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Osteocalcin , Aged , Animals , Biomarkers/metabolism , Diabetes Mellitus, Type 2/metabolism , Female , Glucose/metabolism , Humans , Male , Mice , Osteocalcin/metabolism
12.
J Bone Miner Res ; 37(5): 954-971, 2022 05.
Article in English | MEDLINE | ID: mdl-35122666

ABSTRACT

Although the nonselective ß-blocker, propranolol, improves bone density with parathyroid hormone (PTH) treatment in mice, the mechanism of this effect is unclear. To address this, we used a combination of in vitro and in vivo approaches to address how propranolol influences bone remodeling in the context of PTH treatment. In female C57BL/6J mice, intermittent PTH and propranolol administration had complementary effects in the trabecular bone of the distal femur and fifth lumbar vertebra (L5 ), with combination treatment achieving microarchitectural parameters beyond that of PTH alone. Combined treatment improved the serum bone formation marker, procollagen type 1 N propeptide (P1NP), but did not impact other histomorphometric parameters relating to osteoblast function at the L5 . In vitro, propranolol amplified the acute, PTH-induced, intracellular calcium signal in osteoblast-like cells. The most striking finding, however, was suppression of PTH-induced bone resorption. Despite this, PTH-induced receptor activator of nuclear factor κ-B ligand (RANKL) mRNA and protein levels were unaltered by propranolol, which led us to hypothesize that propranolol could act directly on osteoclasts. Using in situ methods, we found Adrb2 expression in osteoclasts in vivo, suggesting ß-blockers may directly impact osteoclasts. Consistent with this, we found propranolol directly suppresses osteoclast differentiation in vitro. Taken together, this work suggests a strong anti-osteoclastic effect of nonselective ß-blockers in vivo, indicating that combining propranolol with PTH could be beneficial to patients with extremely low bone density. © 2022 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bone Resorption , Parathyroid Hormone , Animals , Bone Resorption/drug therapy , Bone Resorption/metabolism , Bone and Bones , Female , Humans , Mice , Mice, Inbred C57BL , Osteoblasts , Osteoclasts/metabolism , Osteogenesis , Parathyroid Hormone/metabolism , Parathyroid Hormone/pharmacology , Propranolol/metabolism , Propranolol/pharmacology
13.
J Bone Miner Res ; 37(4): 687-699, 2022 04.
Article in English | MEDLINE | ID: mdl-35038187

ABSTRACT

Sclerostin is a negative regulator of the Wnt/ß-catenin signaling and is, therefore, an important inhibitor of bone formation and turnover. Because ectopic vascular calcification develops in a similar way to bone formation, one might reasonably attribute a role to sclerostin in this pathological process. Ectopic calcification, especially vascular calcification, importantly contributes to mortality in elderly and patients with diabetes, osteoporosis, chronic kidney disease (CKD), and hypertension. The central players in this ectopic calcification process are the vascular smooth muscle cells that undergo dedifferentiation and thereby acquire characteristics of bonelike cells. Therefore, we hypothesize that depletion/deactivation of the Wnt/ß-catenin signaling inhibitor sclerostin may promote the development of ectopic calcifications through stimulation of bone-anabolic effects at the level of the arteries. We investigated the role of sclerostin (encoded by the Sost gene) during vascular calcification by using either Sost-/- mice or anti-sclerostin antibody. Sost-/- and wild-type (WT) mice (C57BL/6J background) were administered an adenine-containing diet to promote the development of CKD-induced vascular calcification. Calcifications developed more extensively in the cardiac vessels of adenine-exposed Sost-/- mice, compared to adenine-exposed WT mice. This could be concluded from the cardiac calcium content as well as from cardiac tissue sections on which calcifications were visualized histochemically. In a second experiment, DBA/2J mice were administered a warfarin-containing diet to induce vascular calcifications in the absence of CKD. Here, warfarin exposure led to significantly increased aortic and renal tissue calcium content. Calcifications, which were present in the aortic medial layer and renal vessels, were significantly more pronounced when warfarin treatment was combined with anti-sclerostin antibody treatment. This study demonstrates a protective effect of sclerostin during vascular calcification. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Renal Insufficiency, Chronic , Vascular Calcification , Adaptor Proteins, Signal Transducing/metabolism , Adenine/adverse effects , Aged , Animals , Calcium , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Warfarin/adverse effects , beta Catenin
14.
JBMR Plus ; 5(10): e10541, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34693191

ABSTRACT

Atypical antipsychotic (AA) drugs, such as risperidone, are associated with endocrine and metabolic side effects, including impaired bone mineral density (BMD) acquisition and increased fracture risk. We have previously shown that risperidone causes bone loss through the sympathetic nervous system and that bone loss is associated with elevated markers of thermogenesis in brown and white adipose tissue. Because rodents are normally housed in sub-thermoneutral conditions, we wanted to test whether increasing housing temperature would protect against bone loss from risperidone. Four weeks of risperidone treatment in female C57BL/6J mice at thermoneutral (28°C) housing attenuated risperidone-induced trabecular bone loss and led to a low-turnover bone phenotype, with indices of both bone formation and resorption suppressed in mice with risperidone treatment at thermoneutrality, whereas indices of bone resorption were elevated by risperidone at room temperature. Protection against trabecular bone loss was not absolute, however, and additional evidence of cortical bone loss emerged in risperidone-treated mice at thermoneutrality. Taken together, these findings suggest thermal challenge may be in part responsible for bone loss with risperidone treatment and that housing temperature should be considered when assessing bone outcomes of treatments that impact thermogenic pathways. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

15.
J Bone Miner Res ; 36(10): 1957-1966, 2021 10.
Article in English | MEDLINE | ID: mdl-34173270

ABSTRACT

Serum 25-hydroxyvitamin D (S-25OHD) is used to assess vitamin D status and is known to be affected by season and fat mass. Because these factors are often ignored when interpreting S-25OHD, assessment of vitamin D associations with disease outcomes may be distorted. We aimed to investigate the impact of season of blood draw and fat mass on the association of S25OHD with fracture risk. We enrolled 5000 women, mean ± SD age 68 ± 7 years, with dual-energy x-ray absorptiometry (DXA) scans and blood collection in a population-based cohort. Proportional hazards regression, stratified by season and fat mass, was used to determine hazard ratios (HRs) of fracture according to categories of S-25OHD. Our secondary exposures were serum 1,25-dihydroxycholecalciferol (1,25-(OH)2 D3 ), the most active vitamin D metabolite and plasma parathyroid hormone (P-PTH). During an average of 9.2 years of follow-up, 1080 women had a fracture. Women with S-25OHD <30 nmol/L drawn during sunny months (May-October) had a multivariable-adjusted fracture HR of 2.06 (95% CI, 1.27-3.35) compared with those with S-25OHD >60 nmol/L; those with S-25OHD 30-40 nmol/L had an HR of 1.59 (95% CI, 1.12-2.26). In contrast, S-25OHD drawn during November through April was unrelated to fracture risk. The increased risk with low sunny season S-25OHD was seen only among women with body mass index (BMI) ≥25 kg/m2 or fat mass index (FMI) ≥9.8 kg/m2 . High fat mass and low S-25OHD were independently related to lower S-1,25-dihydroxycholecalciferol, which itself predicted fracture risk with samples collected during the sunny season. Irrespective of season, P-PTH was unrelated to fracture risk. We conclude that S-25OHD is associated with fracture risk only if drawn during periods of seasonally high levels in women with a high BMI. These results have implications for the evaluation of vitamin D status and can explain the lack of effect seen with vitamin D supplementation in many fracture trials. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bone Density , Vitamin D Deficiency , Aged , Body Mass Index , Calcifediol , Female , Fibroblast Growth Factor-23 , Humans , Middle Aged , Parathyroid Hormone , Vitamin D/analogs & derivatives
16.
J Bone Miner Res ; 36(9): 1823-1834, 2021 09.
Article in English | MEDLINE | ID: mdl-33999456

ABSTRACT

Modifications to the constituents of the gut microbiome influence bone density and tissue-level strength, but the specific microbial components that influence tissue-level strength in bone are not known. Here, we selectively modify constituents of the gut microbiota using narrow-spectrum antibiotics to identify components of the microbiome associated with changes in bone mechanical and material properties. Male C57BL/6J mice (4 weeks) were divided into seven groups (n = 7-10/group) and had taxa within the gut microbiome removed through dosing with: (i) ampicillin; (ii) neomycin; (iii) vancomycin; (iv) metronidazole; (v) a cocktail of all four antibiotics together (with zero-calorie sweetener to ensure intake); (vi) zero-calorie sweetener only; or (vii) no additive (untreated) for 12 weeks. Individual antibiotics remove only some taxa from the gut, while the cocktail of all four removes almost all microbes. After accounting for differences in geometry, whole bone strength was reduced in animals with gut microbiome modified by neomycin (-28%, p = 0.002) and was increased in the group in which the gut microbiome was altered by sweetener alone (+39%, p < 0.001). Analysis of the fecal microbiota detected seven lower-ranked taxa differentially abundant in animals with impaired tissue-level strength and 14 differentially abundant taxa associated with increased tissue-level strength. Histological and serum markers of bone turnover and trabecular bone volume per tissue volume (BV/TV) did not differ among groups. These findings demonstrate that modifications to the taxonomic components of the gut microbiome have the potential to decrease or increase tissue-level strength of bone independent of bone quantity and without noticeable changes in bone turnover. © 2021 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Gastrointestinal Microbiome , Animals , Bone Density , Bone and Bones , Feces , Male , Mice , Mice, Inbred C57BL
17.
JBMR Plus ; 5(4): e10477, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33869993

ABSTRACT

The development of the musculoskeletal system and its maintenance depends on the reciprocal relationship between muscle and bone. The size of skeletal muscles and the forces generated during muscle contraction are potent sources of mechanical stress on the developing skeleton, and they shape bone structure during growth. This is particularly evident in hypermuscular global myostatin (Mstn)-null mice, where larger muscles during development increase bone mass and alter bone shape. However, whether muscle hypertrophy can similarly influence the shape of bones after the embryonic and prepubertal period is unknown. To address this issue, bone structure was assessed after inducing muscle hypertrophy in the lower hindlimbs of young-adult C57BL/6J male mice by administering intramuscular injections of recombinant adeno-associated viral vectors expressing follistatin (FST), a potent antagonist of Mstn. Two FST isoforms were used: the full-length 315 amino acid isoform (FST-315) and a truncated 288 amino acid isoform (FST-288). In both FST-treated cohorts, muscle hypertrophy was observed, and the anterior crest of the tibia, adjacent to the tibialis anterior muscle, was lengthened. Hypertrophy of the muscles surrounding the tibia caused the adjacent cortical shell to recede inward toward the central axis: an event driven by bone resorption adjacent to the hypertrophic muscle. The findings reveal that inducing muscle hypertrophy in mice can confer changes in bone shape in early adulthood. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

18.
J Bone Miner Res ; 36(3): 510-522, 2021 03.
Article in English | MEDLINE | ID: mdl-33301619

ABSTRACT

An association between lower bone mineral density (BMD) and presence of vascular calcification (VC) has been reported in several studies. Chronic kidney disease (CKD) causes detrimental disturbances in the mineral balance, bone turnover, and development of severe VC. Our group has previously demonstrated expression of Wnt inhibitors in calcified arteries of CKD rats. Therefore, we hypothesized that the CKD-induced VC via this pathway signals to bone and induces bone loss. To address this novel hypothesis, we developed a new animal model using isogenic aorta transplantation (ATx). Severely calcified aortas from uremic rats were transplanted into healthy rats (uremic ATx). Transplantation of normal aortas into healthy rats (normal ATx) and age-matched rats (control) served as control groups. Trabecular tissue mineral density, as measured by µCT, was significantly lower in uremic ATx rats compared with both control groups. Uremic ATx rats showed a significant upregulation of the mineralization inhibitors osteopontin and progressive ankylosis protein homolog in bone. In addition, we found significant changes in bone mRNA levels of several genes related to extracellular matrix, bone turnover, and Wnt signaling in uremic ATx rats, with no difference between normal ATx and control. The bone histomorphometry analysis showed significant lower osteoid area in uremic ATx compared with normal ATx along with a trend toward fewer osteoblasts as well as more osteoclasts in the erosion lacunae. Uremic ATx and normal ATx had similar trabecular number and thickness. The bone formation rate did not differ between the three groups. Plasma biochemistry, including sclerostin, kidney, and mineral parameters, were similar between all three groups. ex vivo cultures of aorta from uremic rats showed high secretion of the Wnt inhibitor sclerostin. In conclusion, the presence of VC lowers BMD, impairs bone metabolism, and affects several pathways in bone. The present results prove the existence of a vasculature to bone tissue cross-talk. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Renal Insufficiency, Chronic , Vascular Calcification , Animals , Bone and Bones , Kidney , Rats , Wnt Signaling Pathway
19.
J Bone Miner Res ; 35(2): 326-332, 2020 02.
Article in English | MEDLINE | ID: mdl-31618468

ABSTRACT

Bone marrow adiposity (BMA) is associated with aging and osteoporosis, but whether BMA can predict bone loss and fractures remains unknown. Using data from the Age Gene/Environment Susceptibility (AGES)-Reykjavik study, we investigated the associations between 1 H-MRS-based measures of vertebral bone marrow adipose tissue (BMAT), annualized change in bone density/strength by quantitative computed tomography (QCT) and DXA, and secondarily, with incident clinical fractures and radiographic vertebral fractures among older adults. The associations between BMAT and annualized change in bone density/strength were evaluated using linear regression models, adjusted for age, body mass index (BMI), diabetes, estradiol, and testosterone. Cox proportional hazards models were used to evaluate the associations between baseline BMAT and incident clinical fractures, and logistic regression models for incident vertebral fractures. At baseline, mean ± SD age was 80.9 ± 4.2 and 82.6 ± 4.2 years in women (n = 148) and men (n = 150), respectively. Mean baseline BMAT was 55.4% ± 8.1% in women and 54.1% ± 8.2% in men. Incident clinical fractures occurred in 7.4% of women over 2.8 years and in 6.0% of men over 2.2 years. Incident vertebral fractures occurred in 12% of women over 3.3 years and in 17% of men over 2.7 years. Each 1 SD increase in baseline BMAT was associated with a 3.9 mg2 /cm4 /year greater loss of spine compressive strength index (p value = .003), a 0.9 mg/cm3 /year greater loss of spine trabecular BMD (p value = .02), and a 1.2 mg/cm3 /year greater loss of femoral neck trabecular BMD (p value = .02) in women. Among men, there were no associations between BMAT and changes in bone density/strength. There were no associations between BMAT and incident fractures in women or men. In conclusion, we found greater BMAT is associated with greater loss of trabecular bone at the spine and femoral neck, and greater loss of spine compressive strength, in older women. © 2019 American Society for Bone and Mineral Research.


Subject(s)
Bone Diseases, Metabolic , Adipocytes , Adiposity , Aged , Aged, 80 and over , Bone Density , Bone Marrow/diagnostic imaging , Female , Humans , Male , Spinal Fractures
20.
J Bone Miner Res ; 34(10): 1780-1788, 2019 10.
Article in English | MEDLINE | ID: mdl-31441962

ABSTRACT

Primary malignant bone tumors are rare, occur in all age groups, and include distinct entities such as osteosarcoma, Ewing sarcoma, and chondrosarcoma. Traditional treatment with some combination of chemotherapy, surgery, and radiation has reached the limit of efficacy, with substantial room for improvement in patient outcome. Furthermore, genomic characterization of these tumors reveals a paucity of actionable molecular targets. Against this backdrop, recent advances in cancer immunotherapy represent a silver lining in the treatment of primary bone cancer. Major strategies in cancer immunotherapy include stimulating naturally occurring anti-tumor T cells and adoptive transfer of tumor-specific cytotoxic T cells. Chimeric antigen receptor T cells (CAR-T cells) belong to the latter strategy and are an impressive application of both insights into T cell biology and advances in genetic engineering. In this review, we briefly describe the CAR-T approach and discuss its applications in primary bone tumors. © 2019 American Society for Bone and Mineral Research.


Subject(s)
Bone Neoplasms/therapy , Immunotherapy, Adoptive , Receptors, Chimeric Antigen/therapeutic use , Bone Neoplasms/immunology , Humans , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL