Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
Bioorg Chem ; 80: 180-188, 2018 10.
Article in English | MEDLINE | ID: mdl-29929079

ABSTRACT

A series of benzofuran-2-carboxamide-N-benzyl pyridinium halide derivatives (6a-o) are synthesized as new cholinesterase inhibitors. The synthetic pathway involves the reaction of salicylaldehyde derivatives and ethyl bromoacetate, followed by hydrolysis and amidation with 3- and 4-picolyl amine. Subsequently, N-((pyridin-4-yl) methyl) benzofuran-2-carboxamide and substituted N-((pyridin-3-yl) methyl) benzofuran-2-carboxamides reacts with benzyl halides to afford target compounds (6a-o). The chemical structures of all derivatives were confirmed by spectroscopic methods. The studies reveal that some of the synthesized compounds are potent butyrylcholinesterase inhibitors with IC50 values in the range of 0.054-2.7 µM. In addition, good inhibitory effects on Aß self-aggregation are observed for 6h and 6k (33.1 and 46.4% at 100 µM, respectively).


Subject(s)
Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Pyridines/chemistry , Acetylcholinesterase/chemistry , Amides/chemistry , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Benzofurans/chemistry , Binding Sites , Butyrylcholinesterase/chemistry , Catalytic Domain , Cholinesterase Inhibitors/metabolism , Drug Design , Molecular Docking Simulation , Pyridines/metabolism , Salts/chemistry , Structure-Activity Relationship
2.
Biomol Ther (Seoul) ; 23(3): 275-82, 2015 May.
Article in English | MEDLINE | ID: mdl-25995827

ABSTRACT

In the present study, we synthesized a series of novel 7-methoxy-N-(substituted phenyl)benzofuran-2-carboxamide derivatives in moderate to good yields and evaluated their neuroprotective and antioxidant activities using primary cultured rat cortical neuronal cells and in vitro cell-free bioassays. Based on our primary screening data with eighteen synthesized derivatives, nine compounds (1a, 1c, 1f, 1i, 1j, 1l, 1p, 1q and 1r) exhibiting considerable protection against the NMDA-induced excitotoxic neuronal cell damage at the concentration of 100 µM were selected for further evaluation. Among the selected derivatives, compound 1f (with -CH3 substitution at R2 position) exhibited the most potent and efficacious neuroprotective action against the NMDA-induced excitotoxicity. Its neuroprotective effect was almost comparable to that of memantine, a well-known NMDA antagonist, at 30 µM concentration. In addition to 1f, compound 1j (with -OH substitution at R3 position) also showed marked anti-excitotoxic effects at both 100 and 300 µM concentrations. These findings suggest that -CH3 substitution at R2 position and, to a lesser degree, -OH substitution at R3 position may be important for exhibiting neuroprotective action against excitotoxic damage. Compound 1j was also found to scavenge 1,1-diphenyl-2-picrylhydrazyl radicals and inhibit in vitro lipid peroxidation in rat brain homogenate in moderate and appreciable degrees. Taken together, our structure-activity relationship studies suggest that the compound with -CH3 substitution at R2 and -OH substitution at R3 positions of the benzofuran moiety might serve as the lead exhibiting potent anti-excitotoxic, ROS scavenging, and antioxidant activities. Further synthesis and evaluation will be necessary to confirm this possibility.

3.
Article in English | WPRIM (Western Pacific) | ID: wpr-178034

ABSTRACT

In the present study, we synthesized a series of novel 7-methoxy-N-(substituted phenyl)benzofuran-2-carboxamide derivatives in moderate to good yields and evaluated their neuroprotective and antioxidant activities using primary cultured rat cortical neuronal cells and in vitro cell-free bioassays. Based on our primary screening data with eighteen synthesized derivatives, nine compounds (1a, 1c, 1f, 1i, 1j, 1l, 1p, 1q and 1r) exhibiting considerable protection against the NMDA-induced excitotoxic neuronal cell damage at the concentration of 100 muM were selected for further evaluation. Among the selected derivatives, compound 1f (with -CH3 substitution at R2 position) exhibited the most potent and efficacious neuroprotective action against the NMDA-induced excitotoxicity. Its neuroprotective effect was almost comparable to that of memantine, a well-known NMDA antagonist, at 30 muM concentration. In addition to 1f, compound 1j (with -OH substitution at R3 position) also showed marked anti-excitotoxic effects at both 100 and 300 muM concentrations. These findings suggest that -CH3 substitution at R2 position and, to a lesser degree, -OH substitution at R3 position may be important for exhibiting neuroprotective action against excitotoxic damage. Compound 1j was also found to scavenge 1,1-diphenyl-2-picrylhydrazyl radicals and inhibit in vitro lipid peroxidation in rat brain homogenate in moderate and appreciable degrees. Taken together, our structure-activity relationship studies suggest that the compound with -CH3 substitution at R2 and -OH substitution at R3 positions of the benzofuran moiety might serve as the lead exhibiting potent anti-excitotoxic, ROS scavenging, and antioxidant activities. Further synthesis and evaluation will be necessary to confirm this possibility.


Subject(s)
Animals , Rats , Antioxidants , Biological Assay , Brain , Lipid Peroxidation , Mass Screening , Memantine , N-Methylaspartate , Neurons , Neuroprotective Agents , Reactive Oxygen Species , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL