Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.191
Filter
1.
Theranostics ; 14(10): 3927-3944, 2024.
Article in English | MEDLINE | ID: mdl-38994017

ABSTRACT

Rationale: Myocardial infarction (MI) is a severe global clinical condition with widespread prevalence. The adult mammalian heart's limited capacity to generate new cardiomyocytes (CMs) in response to injury remains a primary obstacle in developing effective therapies. Current approaches focus on inducing the proliferation of existing CMs through cell-cycle reentry. However, this method primarily elevates cyclin dependent kinase 6 (CDK6) and DNA content, lacking proper cytokinesis and resulting in the formation of dysfunctional binucleated CMs. Cytokinesis is dependent on ribosome biogenesis (Ribo-bio), a crucial process modulated by nucleolin (Ncl). Our objective was to identify a novel approach that promotes both DNA synthesis and cytokinesis. Methods: Various techniques, including RNA/protein-sequencing analysis, Ribo-Halo, Ribo-disome, flow cytometry, and cardiac-specific tumor-suppressor retinoblastoma-1 (Rb1) knockout mice, were employed to assess the series signaling of proliferation/cell-cycle reentry and Ribo-bio/cytokinesis. Echocardiography, confocal imaging, and histology were utilized to evaluate cardiac function. Results: Analysis revealed significantly elevated levels of Rb1, bur decreased levels of circASXL1 in the hearts of MI mice compared to control mice. Deletion of Rb1 induces solely cell-cycle reentry, while augmenting the Ribo-bio modulator Ncl leads to cytokinesis. Mechanically, bioinformatics and the loss/gain studies uncovered that circASXL1/CDK6/Rb1 regulates cell-cycle reentry. Moreover, Ribo-Halo, Ribo-disome and circRNA pull-down assays demonstrated that circASXL1 promotes cytokinesis through Ncl/Ribo-bio. Importantly, exosomes derived from umbilical cord mesenchymal stem cells (UMSC-Exo) had the ability to enhance cardiac function by facilitating the coordinated signaling of cell-cycle reentry and Ribo-bio/cytokinesis. These effects were attenuated by silencing circASXL1 in UMSC-Exo. Conclusion: The series signaling of circASXL1/CDK6/Rb1/cell-cycle reentry and circASXL1/Ncl/Ribo-bio/cytokinesis plays a crucial role in cardiac repair. UMSC-Exo effectively repairs infarcted myocardium by stimulating CM cell-cycle reentry and cytokinesis in a circASXL1-dependent manner. This study provides innovative therapeutic strategies targeting the circASXL1 signaling network for MI and offering potential avenues for enhanced cardiac repair.


Subject(s)
Cell Cycle , Cytokinesis , Mice, Knockout , Myocardial Infarction , Myocytes, Cardiac , Ribosomes , Animals , Mice , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocytes, Cardiac/metabolism , Ribosomes/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , Nucleolin , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Retinoblastoma Protein/metabolism , Retinoblastoma Protein/genetics , Cell Proliferation , Male , Humans
2.
Sci Rep ; 14(1): 16260, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009622

ABSTRACT

The aim of this study was to evaluate the effects of C-type natriuretic peptide (CNP) treatment prior to in vitro maturation (IVM) on mitochondria biogenesis in bovine oocyte matured in vitro and explore the related causes. The results showed that treatment with CNP before IVM significantly improved mitochondrial content, elevated the expression of genes related to mitochondria biogenesis, and increased the protein levels of phosphorylation of cAMP-response element binding protein (p-CREB) in bovine oocytes following IVM. However, further studies revealed that treatment with CNP before IVM could not increased the protein levels of p-CREB in bovine oocytes when natriuretic peptide receptor 2 activities was inhibited using the relative specific inhibitor Gö6976. In addition, treatment with CNP before IVM could not improved mitochondrial content or elevated the expression of genes related to mitochondria biogenesis in bovine oocytes when CREB activities was abolished using the specific inhibitor 666-15. In summary, these results provide evidence that treatment of bovine oocytes with CNP before IVM promotes mitochondrial biogenesis in vitro, possibly by activating CREB.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Mitochondria , Natriuretic Peptide, C-Type , Oocytes , Organelle Biogenesis , Animals , Cattle , Natriuretic Peptide, C-Type/pharmacology , Natriuretic Peptide, C-Type/metabolism , Oocytes/metabolism , Oocytes/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Female , In Vitro Oocyte Maturation Techniques/methods , Phosphorylation/drug effects
3.
Curr Gene Ther ; 24(5): 395-409, 2024.
Article in English | MEDLINE | ID: mdl-39005062

ABSTRACT

Pulmonary fibrosis is a class of fibrosing interstitial lung diseases caused by many pathogenic factors inside and outside the lung, with unknown mechanisms and without effective treatment. Therefore, a comprehensive understanding of the molecular mechanism implicated in pulmonary fibrosis pathogenesis is urgently needed to develop new and effective measures. Although circRNAs have been widely acknowledged as new contributors to the occurrence and development of diseases, only a small number of circRNAs have been functionally characterized in pulmonary fibrosis. Here, we systematically review the biogenesis and functions of circRNAs and focus on how circRNAs participate in pulmonary fibrogenesis by influencing various cell fates. Meanwhile, we analyze the current exploration of circRNAs as a diagnostic biomarker, vaccine, and therapeutic target in pulmonary fibrosis and objectively discuss the challenges of circRNA- based therapy for pulmonary fibrosis. We hope that the review of the implication of circRNAs will provide new insights into the development circRNA-based approaches to treat pulmonary fibrosis.


Subject(s)
Pulmonary Fibrosis , RNA, Circular , RNA, Circular/genetics , Humans , Pulmonary Fibrosis/genetics , Biomarkers , Animals , MicroRNAs/genetics , Lung/pathology , Lung/metabolism
4.
Article in English | MEDLINE | ID: mdl-39005083

ABSTRACT

Ribosomal DNA (rDNA) copies exist across multiple chromosomes and inter-individual variation in copy number is speculated to influence the hypertrophic response to resistance training. Thus, we examined if rDNA copy number was associated with resistance training-induced skeletal muscle hypertrophy. Participants (n=53 males, 21±1 years old; n=29 females, 21±2 years old) performed 10-12 weeks of full-body resistance training. Hypertrophy outcomes were determined, as was relative rDNA copy number from pre-intervention vastus lateralis (VL) biopsies. Pre- and post-intervention VL biopsy total RNA was assayed in all participants, and mRNA/rRNA markers of ribosome content and biogenesis were also assayed in the 29 females prior to training, 24 hours following training bout 1, and in the basal state after 10 weeks of training. Across all participants, no significant associations were evident between relative rDNA copy number and training-induced changes in whole body lean mass (r = -0.034, p=0.764), vastus lateralis thickness (r = 0.093, p=0.408), mean myofiber cross-sectional area (r = -0.128, p=0.259), or changes in muscle RNA concentrations (r = 0.026, p=0.818), and these trends were similar when examining each gender. However, all Pol-I regulon mRNAs as well as 45S pre-rRNA, 28S rRNA and 18S rRNA increased 24 hours following the first training bout in females. Follow-up studies using LHCN-M2 myotubes demonstrated a reduction in relative rDNA copy number induced by bisphenol A (BPA) did not significantly affect insulin-like-growth factor-induced myotube hypertrophy. These findings suggest relative rDNA copy number is not associated with myofiber hypertrophy.

5.
J Ovarian Res ; 17(1): 143, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987824

ABSTRACT

BACKGROUND: This study was designed to examine the effect of resveratrol on mitochondrial biogenesis, oxidative stress (OS), and assisted reproductive technology (ART) outcomes in individuals with polycystic ovary syndrome (PCOS). METHODS: Fifty-six patients with PCOS were randomly assigned to receive 800 mg/day of resveratrol or placebo for 60 days. The primary outcome was OS in follicular fluid (FF). The secondary outcome involved assessing gene and protein expression related to mitochondrial biogenesis, mitochondrial DNA (mtDNA) copy number, and adenosine triphosphate (ATP) content in granulosa cells (GCs). ART outcomes were evaluated at the end of the trial. RESULTS: Resveratrol significantly reduced the total oxidant status (TOS) and oxidative stress index (OSI) in FF (P = 0.0142 and P = 0.0039, respectively) while increasing the total antioxidant capacity (TAC) (P < 0.0009). Resveratrol consumption also led to significant increases in the expression of critical genes involved in mitochondrial biogenesis, including peroxisome proliferator-activated receptor gamma coactivator (PGC-1α) and mitochondrial transcription factor A (TFAM) (P = 0.0032 and P = 0.0003, respectively). However, the effect on nuclear respiratory factor 1 (Nrf-1) expression was not statistically significant (P = 0.0611). Resveratrol significantly affected sirtuin1 (SIRT1) and PGC-1α protein levels (P < 0.0001 and P = 0.0036, respectively). Resveratrol treatment improved the mtDNA copy number (P < 0.0001) and ATP content in GCs (P = 0.0014). Clinically, the resveratrol group exhibited higher rates of oocyte maturity (P = 0.0012) and high-quality embryos (P = 0.0013) than did the placebo group. There were no significant differences between the groups in terms of chemical or clinical pregnancy rates (P > 0.05). CONCLUSIONS: These findings indicate that resveratrol may be a promising therapeutic agent for patients with PCOS undergoing assisted reproduction. TRIAL REGISTRATION NUMBER: http://www.irct.ir ; IRCT20221106056417N1; 2023 February 09.


Subject(s)
Organelle Biogenesis , Polycystic Ovary Syndrome , Reproductive Techniques, Assisted , Resveratrol , Humans , Female , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Resveratrol/pharmacology , Resveratrol/therapeutic use , Adult , Oxidative Stress/drug effects , Pregnancy , Antioxidants/pharmacology , Antioxidants/therapeutic use , DNA, Mitochondrial/genetics , Mitochondria/drug effects , Mitochondria/metabolism , Granulosa Cells/drug effects , Granulosa Cells/metabolism
6.
Exp Gerontol ; 194: 112517, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38986856

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline and memory loss. Imipramine, a tricyclic antidepressant, has potent anti-inflammatory and antioxidant properties in the central nervous system. The aim of this study was to investigate the neuroprotective effects of imipramine on streptozotocin (STZ)-induced memory impairment. Male Wistar rats received an intracerebroventricular injection of STZ (3 mg/kg, 3 µl/ventricle) using the stereotaxic apparatus. The Morris water maze and passive avoidance tests were used to evaluate cognitive functions. 24 h after the STZ injection, imipramine was administered intraperitoneally at doses of 10 or 20 mg/kg for 14 consecutive days. The mRNA and protein levels of neurotrophic factors (BDNF and GDNF) and pro-inflammatory cytokines (IL-6, IL-1ß, and TNF-α) were measured in the hippocampus using real-time PCR and ELISA techniques, respectively. In addition, real-time PCR was used to evaluate the mRNA levels of markers associated with neurogenesis (Nestin, DCX, and Ki67) and mitochondrial biogenesis (PGC-1α, NRF-1, and TFAM). The results showed that imipramine, especially at a dose of 20 mg/kg, effectively improved STZ-induced memory impairment. This improvement was associated with an increase in neurogenesis and neurotrophic factors and a decrease in neuroinflammation and mitochondrial biogenesis dysfunction. Based on these results, imipramine appears to be a promising therapeutic option for improving cognitive functions in neurodegenerative diseases such as AD.

7.
Front Physiol ; 15: 1406635, 2024.
Article in English | MEDLINE | ID: mdl-38974521

ABSTRACT

The rapid development of the COVID-19 pandemic resulted in a closer analysis of cell functioning during ß-coronavirus infection. This review will describe evidence for COVID-19 as a syndrome with a strong, albeit still underestimated, mitochondrial component. Due to the sensitivity of host mitochondria to coronavirus infection, SARS-CoV-2 affects mitochondrial signaling, modulates the immune response, modifies cellular energy metabolism, induces apoptosis and ageing, worsening COVID-19 symptoms which can sometimes be fatal. Various aberrations across human systems and tissues and their relationships with mitochondria were reported. In this review, particular attention is given to characterization of multiple alterations in gene expression pattern and mitochondrial metabolism in COVID-19; the complexity of interactions between SARS-CoV-2 and mitochondrial proteins is presented. The participation of mitogenome fragments in cell signaling and the occurrence of SARS-CoV-2 subgenomic RNA within membranous compartments, including mitochondria is widely discussed. As SARS-CoV-2 severely affects the quality system of mitochondria, the cellular background for aberrations in mitochondrial dynamics in COVID-19 is additionally characterized. Finally, perspectives on the mitigation of COVID-19 symptoms by affecting mitochondrial biogenesis by numerous compounds and therapeutic treatments are briefly outlined.

8.
Front Immunol ; 15: 1417758, 2024.
Article in English | MEDLINE | ID: mdl-38983854

ABSTRACT

Exosomes represent a type of extracellular vesicles derived from the endosomal pathway that transport diverse molecular cargoes such as proteins, lipids, and nucleic acids. These cargoes have emerged as crucial elements impacting disease diagnosis, treatment, and prognosis, and are integral to the process of exosome formation. This review delves into the essential molecular cargoes implicated in the phases of exosome production and release. Emphasis is placed on their significance as cancer biomarkers and potential therapeutic targets, accompanied by an exploration of the obstacles and feasible applications linked to these developments.


Subject(s)
Exosomes , Neoplasms , Exosomes/metabolism , Humans , Neoplasms/diagnosis , Neoplasms/metabolism , Animals , Biomarkers, Tumor/metabolism
9.
Cell ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38981482

ABSTRACT

Cellular senescence is an irreversible state of cell-cycle arrest induced by various stresses, including aberrant oncogene activation, telomere shortening, and DNA damage. Through a genome-wide screen, we discovered a conserved small nucleolar RNA (snoRNA), SNORA13, that is required for multiple forms of senescence in human cells and mice. Although SNORA13 guides the pseudouridylation of a conserved nucleotide in the ribosomal decoding center, loss of this snoRNA minimally impacts translation. Instead, we found that SNORA13 negatively regulates ribosome biogenesis. Senescence-inducing stress perturbs ribosome biogenesis, resulting in the accumulation of free ribosomal proteins (RPs) that trigger p53 activation. SNORA13 interacts directly with RPL23, decreasing its incorporation into maturing 60S subunits and, consequently, increasing the pool of free RPs, thereby promoting p53-mediated senescence. Thus, SNORA13 regulates ribosome biogenesis and the p53 pathway through a non-canonical mechanism distinct from its role in guiding RNA modification. These findings expand our understanding of snoRNA functions and their roles in cellular signaling.

10.
Eur J Appl Physiol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981937

ABSTRACT

Resistance training activates mammalian target of rapamycin (mTOR) pathway of hypertrophy for strength gain, while endurance training increases peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) pathway of mitochondrial biogenesis benefiting oxidative phosphorylation. The conventional view suggests that resistance training-induced hypertrophy signaling interferes with endurance training-induced mitochondrial remodeling. However, this idea has been challenged because acute leg press and knee extension in humans enhance both muscle hypertrophy and mitochondrial remodeling signals. Thus, we first examined the muscle mitochondrial remodeling and hypertrophy signals with endurance training and resistance training, respectively. In addition, we discussed the influence of resistance training on muscle mitochondria, demonstrating that the PGC-1α-mediated muscle mitochondrial adaptation and hypertrophy occur simultaneously. The second aim was to discuss the integrative effects of concurrent training, which consists of endurance and resistance training sessions on mitochondrial remodeling. The study found that the resistance training component does not reduce muscle mitochondrial remodeling signals in concurrent training. On the contrary, concurrent training has the potential to amplify skeletal muscle mitochondrial biogenesis compared to a single exercise model. Concurrent training involving differential sequences of resistance and endurance training may result in varied mitochondrial biogenesis signals, which should be linked to the pre-activation of mTOR or PGC-1α signaling. Our review proposed a mechanism for mTOR signaling that promotes PGC-1α signaling through unidentified pathways. This mechanism may be account for the superior muscle mitochondrial remodeling change following the concurrent training. Our review suggested an interaction between resistance training and endurance training in skeletal muscle mitochondrial adaptation.

11.
Plant Sci ; 347: 112183, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972549

ABSTRACT

The normal progression of mitotic cycles and synchronized development within female reproductive organs are pivotal for sexual reproduction in plants. Nevertheless, our understanding of the genetic regulation governing mitotic cycles during the haploid phase of higher plants remains limited. In this study, we characterized RNA HELICASE 32 (RH32), which plays an essential role in female gametogenesis in Arabidopsis. The rh32 heterozygous mutant was semi-sterile, whereas the homozygous mutant was nonviable. The rh32 mutant allele could be transmitted through the male gametophyte, but not the female gametophyte. Phenotypic analysis revealed impaired mitotic progression, synchronization, and cell specification in rh32 female gametophytes, causing the arrest of embryo sacs. In the delayed pollination test, none of the retarded embryo sacs developed into functional female gametophytes, and the vast majority of rh32 female gametophytes were defective in the formation of the large central vacuole. RH32 is strongly expressed in the embryo sac. Knock-down of RH32 resulted in the accumulation of unprocessed 18 S pre-rRNA, implying that RH32 is involved in ribosome synthesis. Based on these findings, we propose that RH32 plays a role in ribosome synthesis, which is critical for multiple processes in female gametophyte development.

12.
PeerJ ; 12: e17737, 2024.
Article in English | MEDLINE | ID: mdl-39035161

ABSTRACT

Mango is a popular tropical fruit that requires quarantine hot water treatment (QHWT) for postharvest sanitation, which can cause abiotic stress. Plants have various defense mechanisms to cope with stress; miRNAs mainly regulate the expression of these defense responses. Proteins involved in the biogenesis of miRNAs include DICER-like (DCL), ARGONAUTE (AGO), HYPONASTIC LEAVES 1 (HYL1), SERRATE (SE), HUA ENHANCER1 (HEN1), HASTY (HST), and HEAT-SHOCK PROTEIN 90 (HSP90), among others. According to our analysis, the mango genome contains five DCL, thirteen AGO, six HYL, two SE, one HEN1, one HST, and five putative HSP90 genes. Gene structure prediction and domain identification indicate that sequences contain key domains for their respective gene families, including the RNase III domain in DCL and PAZ and PIWI domains for AGOs. In addition, phylogenetic analysis indicates the formation of clades that include the mango sequences and their respective orthologs in other flowering plant species, supporting the idea these are functional orthologs. The analysis of cis-regulatory elements of these genes allowed the identification of MYB, ABRE, GARE, MYC, and MeJA-responsive elements involved in stress responses. Gene expression analysis showed that most genes are induced between 3 to 6 h after QHWT, supporting the early role of miRNAs in stress response. Interestingly, our results suggest that mango rapidly induces the production of miRNAs after heat stress. This research will enable us to investigate further the regulation of gene expression and its effects on commercially cultivated fruits, such as mango, while maintaining sanitary standards.


Subject(s)
Heat-Shock Response , Mangifera , MicroRNAs , Mangifera/genetics , Mangifera/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Heat-Shock Response/genetics , Phylogeny , Multigene Family/genetics , Gene Expression Regulation, Plant , Genome, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
13.
Chem Biol Interact ; : 111158, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39033796

ABSTRACT

Multi-walled carbon nanotube (MWCNT) induced respiratory toxicity has become a growing concern, with ferroptosis emerging as a novel mechanism implicated in various respiratory diseases. However, whether ferroptosis is involved in MWCNT-elicited lung injury and the underlying molecular mechanisms warrant further exploration. In this study, we found that MWCNT-induced ferroptosis is autophagy-dependent, contributing to its cellular toxicity. Inhibiting of autophagy by pharmacological inhibitors 3-MA or ATG5 gene knockdown significantly attenuated MWCNT-induced ferroptosis, concomitant with rescued mitochondrial biogenesis. Rapamycin, the autophagy agonist, exacerbated the mitochondrial damage and MWCNT-induced ferroptosis. Moreover, lentivirus-mediated overexpression of PGC-1α inhibited ferroptosis, while inhibition of PGC-1α aggravated ferroptosis. In summary, our study unveils ferroptosis as a novel mechanism underlying MWCNT-induced respiratory toxicity, with autophagy promoting MWCNTs-induced ferroptosis by hindering PGC-1α-dependent mitochondrial biogenesis.

14.
Front Microbiol ; 15: 1389268, 2024.
Article in English | MEDLINE | ID: mdl-38962137

ABSTRACT

The process of carbohydrate metabolism and genetic information transfer is an important part of the study on the effects of the external environment on microbial growth and development. As one of the most significant environmental parameters, pH has an important effect on mycelial growth. In this study, the effects of environmental pH on the growth and nutrient composition of Aspergillus niger (A. niger) filaments were determined. The pH values of the medium were 5, 7, and 9, respectively, and the molecular mechanism was further investigated by transcriptomics and metabolomics methods. The results showed that pH 5 and 9 significantly inhibited filament growth and polysaccharide accumulation of A. niger. Further, the mycelium biomass of A. niger and the crude polysaccharide content was higher when the medium's pH was 7. The DEGs related to ribosome biogenesis were the most abundant, and the downregulated expression of genes encoding XRN1, RRM, and RIO1 affected protein translation, modification, and carbohydrate metabolism in fungi. The dynamic changes of pargyline and choline were in response to the oxidative metabolism of A. niger SICU-33. The ribophorin_I enzymes and DL-lactate may be important substances related to pH changes during carbohydrate metabolism of A.niger SICU-33. The results of this study provide useful transcriptomic and metabolomic information for further analyzing the bioinformatic characteristics of A. niger and improving the application in ecological agricultural fermentation.

15.
J Cell Physiol ; 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946060

ABSTRACT

Skeletal muscle is crucial for animal movement and posture maintenance, and it serves as a significant source of meat in the livestock and poultry industry. The number of muscle fibers differentiated from myoblast in the embryonic stage is one of the factors determining the content of skeletal muscle. Insulin-like growth factor 2 (IGF2), a well-known growth-promoting hormone, is crucial for embryonic and skeletal muscle growth and development. However, the specific molecular mechanism underlying its impact on chicken embryonic myoblast differentiation remains unclear. To elucidate the molecular mechanism by which IGF2 regulates chicken myoblast differentiation, we manipulated IGF2 expression in chicken embryonic myoblast. The results demonstrated that IGF2 was upregulated during chicken skeletal muscle development and myoblast differentiation. On the one hand, we found that IGF2 promotes mitochondrial biogenesis through the PGC1/NRF1/TFAM pathway, thereby enhancing mitochondrial membrane potential, oxidative phosphorylation, and ATP synthesis during myoblast differentiation. This process is mediated by the PI3K/AKT pathway. On the other hand, IGF2 regulates BNIP3-mediated mitophagy, clearing dysfunctional mitochondria. Collectively, our findings confirmed that IGF2 cooperatively regulates mitochondrial biogenesis and mitophagy to remodel the mitochondrial network and enhance mitochondrial function, ultimately promoting myoblast differentiation.

16.
Br J Haematol ; 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946206

ABSTRACT

Erythroid cells undergo a highly complex maturation process, resulting in dynamic changes that generate red blood cells (RBCs) highly rich in haemoglobin. The end stages of the erythroid cell maturation process primarily include chromatin condensation and nuclear polarization, followed by nuclear expulsion called enucleation and clearance of mitochondria and other organelles to finally generate mature RBCs. While healthy RBCs are devoid of mitochondria, recent evidence suggests that mitochondria are actively implicated in the processes of erythroid cell maturation, erythroblast enucleation and RBC production. However, the extent of mitochondrial participation that occurs during these ultimate steps is not completely understood. This is specifically important since abnormal RBC retention of mitochondria or mitochondrial DNA contributes to the pathophysiology of sickle cell and other disorders. Here we review some of the key findings so far that elucidate the importance of this process in various aspects of erythroid maturation and RBC production under homeostasis and disease conditions.

17.
Curr Nutr Rep ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976215

ABSTRACT

PURPOSE OF REVIEW: The global obesity epidemic has become a major public health concern, necessitating comprehensive research into its adverse effects on various tissues within the human body. Among these tissues, skeletal muscle has gained attention due to its susceptibility to obesity-related alterations. Mitochondria are primary source of energy production in the skeletal muscle. Healthy skeletal muscle maintains constant mitochondrial content through continuous cycle of synthesis and degradation. However, obesity has been shown to disrupt this intricate balance. This review summarizes recent findings on the impact of obesity on skeletal muscle mitochondria structure and function. In addition, we summarize the molecular mechanism of mitochondrial quality control systems and how obesity impacts these systems. RECENT FINDINGS: Recent findings show various interventions aimed at mitigating mitochondrial dysfunction in obese model, encompassing strategies including caloric restriction and various dietary compounds. Obesity has deleterious effect on skeletal muscle mitochondria by disrupting mitochondrial biogenesis and dynamics. Caloric restriction, omega-3 fatty acids, resveratrol, and other dietary compounds enhance mitochondrial function and present promising therapeutic opportunities.

18.
bioRxiv ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38948754

ABSTRACT

Severe invagination of the nuclear envelope is a hallmark of cancers, aging, neurodegeneration, and infections. However, the outcomes of nuclear invagination remain unclear. This work identified a new function of nuclear invagination: regulating ribosome biogenesis. With expansion microscopy, we observed frequent physical contact between nuclear invaginations and nucleoli. Surprisingly, the higher the invagination curvature, the more ribosomal RNA and pre-ribosomes are made in the contacted nucleolus. By growing cells on nanopillars that generate nuclear invaginations with desired curvatures, we can increase and decrease ribosome biogenesis. Based on this causation, we repressed the ribosome levels in breast cancer and progeria cells by growing cells on low-curvature nanopillars, indicating that overactivated ribosome biogenesis can be rescued by reshaping nuclei. Mechanistically, high-curvature nuclear invaginations reduce heterochromatin and enrich nuclear pore complexes, which promote ribosome biogenesis. We anticipate that our findings will serve as a foundation for further studies on nuclear deformation.

19.
Proc Natl Acad Sci U S A ; 121(29): e2409605121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38985768

ABSTRACT

Members of the synaptophysin and synaptogyrin family are vesicle proteins with four transmembrane domains. In spite of their abundance in synaptic vesicle (SV) membranes, their role remains elusive and only mild defects at the cellular and organismal level are observed in mice lacking one or more family members. Here, we show that coexpression with synapsin in fibroblasts of each of the four brain-enriched members of this family-synaptophysin, synaptoporin, synaptogyrin 1, and synaptogyrin 3-is sufficient to generate clusters of small vesicles in the same size range of SVs. Moreover, mice lacking all these four proteins have larger SVs. We conclude that synaptophysin and synaptogyrin family proteins play an overlapping function in the biogenesis of SVs and in determining their small size.


Subject(s)
Synaptic Vesicles , Synaptogyrins , Synaptophysin , Animals , Synaptophysin/metabolism , Synaptophysin/genetics , Synaptic Vesicles/metabolism , Mice , Synaptogyrins/metabolism , Synaptogyrins/genetics , Synapsins/metabolism , Synapsins/genetics , Mice, Knockout , Fibroblasts/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Rats , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics
20.
Arch Biochem Biophys ; 759: 110101, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39029645

ABSTRACT

For diabetic patients it is crucial to constantly monitor blood glucose levels to mitigate complications due to hyperglycaemia, including neurological issues and cognitive impairments. This activity leads to psychological stress, called "diabetes distress," a problem for most patients living with diabetes. Diabetes distress can exacerbate the hyperglycaemia effects on brain and negatively impact the quality of life, but the underlying mechanisms remain poorly explored. We simulated diabetes distress in adult zebrafish by modelling hyperglycaemia, through exposure to dextrose solution, along with chronic unpredictable mild stress (CUMS), and evaluated brain redox homeostasis by assessing reactive oxygen species (ROS) content, the antioxidant system, and effects on mitochondrial biogenesis and fission/fusion processes. We also evaluated the total, cytosolic and nuclear content of nuclear factor erythroid 2-related factor 2 (NRF2), a critical regulator of redox balance, in the whole brain and total NRF2 in specific brain emotional areas. The combined CUMS + Dextrose challenge, but not the individual treatments, reduced total NRF2 levels in the entire brain, but strongly increased its levels in the nuclear fraction. Compensatory upregulation of antioxidant genes appeared inadequate to combat elevated levels of ROS, leading to lowering of the reduced glutathione content and total antioxidant capacity. CUMS + Dextrose treatment also upregulated transcription factors implicated in mitochondrial biogenesis and dynamics with a predominance of fission, which is consistent with increased oxidative stress. In conclusion, this study highlights the close interplay between hyperglycaemia and psychological distress causing overriding oxidative stress in the brain, rendering the organism vulnerable to the development of disease complications.

SELECTION OF CITATIONS
SEARCH DETAIL