Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Geroscience ; 45(1): 85-103, 2023 02.
Article in English | MEDLINE | ID: mdl-35864375

ABSTRACT

Circulating cell-free DNA (cf-DNA) has emerged as a promising biomarker of ageing, tissue damage and cellular stress. However, less is known about health behaviours, ageing phenotypes and metabolic processes that lead to elevated cf-DNA levels. We sought to analyse the relationship of circulating cf-DNA level to age, sex, smoking, physical activity, vegetable consumption, ageing phenotypes (physical functioning, the number of diseases, frailty) and an extensive panel of biomarkers including blood and urine metabolites and inflammatory markers in three human cohorts (N = 5385; 17-82 years). The relationships were assessed using correlation statistics, and linear and penalised regressions (the Lasso), also stratified by sex.cf-DNA levels were significantly higher in men than in women, and especially in middle-aged men and women who smoke, and in older more frail individuals. Correlation statistics of biomarker data showed that cf-DNA level was higher with elevated inflammation (C-reactive protein, interleukin-6), and higher levels of homocysteine, and proportion of red blood cells and lower levels of ascorbic acid. Inflammation (C-reactive protein, glycoprotein acetylation), amino acids (isoleucine, leucine, tyrosine), and ketogenesis (3-hydroxybutyrate) were included in the cf-DNA level-related biomarker profiles in at least two of the cohorts.In conclusion, circulating cf-DNA level is different by sex, and related to health behaviour, health decline and metabolic processes common in health and disease. These results can inform future studies where epidemiological and biological pathways of cf-DNA are to be analysed in details, and for studies evaluating cf-DNA as a potential clinical marker.


Subject(s)
C-Reactive Protein , Cell-Free Nucleic Acids , Male , Humans , Female , Middle Aged , Aged , Aging/genetics , Biomarkers , Phenotype , Inflammation , Health Behavior , DNA
2.
Int J Mol Sci ; 20(12)2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31234328

ABSTRACT

Telomere length has been accepted widely as a biomarker of aging. Recently, a novel candidate biomarker has been suggested to predict an individual's chronological age with high accuracy: The epigenetic clock is based on the weighted DNA methylation (DNAm) fraction of a number of cytosine-phosphate-guanine sites (CpGs) selected by penalized regression analysis. Here, an established methylation-sensitive single nucleotide primer extension method was adapted, to estimate the epigenetic age of the 1005 participants of the LipidCardio Study, a patient cohort characterised by high prevalence of cardiovascular disease, based on a seven CpGs epigenetic clock. Furthermore, we measured relative leukocyte telomere length (rLTL) to assess the relationship between the established and the promising new measure of biological age. Both rLTL (0.79 ± 0.14) and DNAm age (69.67 ± 7.27 years) were available for 773 subjects (31.6% female; mean chronological age= 69.68 ± 11.01 years; mean DNAm age acceleration = -0.01 ± 7.83 years). While we detected a significant correlation between chronological age and DNAm age (n = 779, R = 0.69), we found neither evidence of an association between rLTL and the DNAm age (ß = 3.00, p = 0.18) nor rLTL and the DNAm age acceleration (ß = 2.76, p = 0.22) in the studied cohort, suggesting that DNAm age and rLTL measure different aspects of biological age.


Subject(s)
Aging , DNA Methylation , Telomere Homeostasis , Aged , Aged, 80 and over , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Cohort Studies , CpG Islands , Epigenesis, Genetic , Female , Humans , Male , Middle Aged
3.
Aging (Albany NY) ; 7(12): 1159-70, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26678252

ABSTRACT

Given the dramatic increase in ageing populations, it is of great importance to understand the genetic and molecular determinants of healthy ageing and longevity. Semi-supercentenarians (subjects who reached an age of 105-109 years) arguably represent the gold standard of successful human ageing because they managed to avoid or postpone the onset of major age-related diseases. Relatively few studies have looked at epigenetic determinants of extreme longevity in humans. Here we test whether families with extreme longevity are epigenetically distinct from controls according to an epigenetic biomarker of ageing which is known as "epigenetic clock". We analyze the DNA methylation levels of peripheral blood mononuclear cells (PBMCs) from Italian families constituted of 82 semi-supercentenarians (mean age: 105.6 ± 1.6 years), 63 semi-supercentenarians' offspring (mean age: 71.8 ± 7.8 years), and 47 age-matched controls (mean age: 69.8 ± 7.2 years). We demonstrate that the offspring of semi-supercentenarians have a lower epigenetic age than age-matched controls (age difference=5.1 years, p=0.00043) and that centenarians are younger (8.6 years) than expected based on their chronological age. By contrast, no significant difference could be observed for estimated blood cell counts (such as naïve or exhausted cytotoxic T cells or helper T cells). Future studies will be needed to replicate these findings in different populations and to extend them to other tissues. Overall, our results suggest that epigenetic processes might play a role in extreme longevity and healthy human ageing.


Subject(s)
Aging/physiology , Epigenesis, Genetic , Leukocytes, Mononuclear/physiology , Aged, 80 and over , Biological Clocks , DNA Methylation , Female , Humans , Italy , Male , Models, Biological
4.
J Evol Biol ; 27(10): 2258-64, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25228433

ABSTRACT

Telomeres have recently been suggested to play important role in ageing and are considered to be a reliable ageing biomarkers. The life history theory predicts that costs of reproduction should be expressed in terms of accelerated senescence, and some empirical studies do confirm such presumption. Thus, a link between reproductive effort and telomere dynamics should be anticipated. Recent studies have indeed demonstrated that reproduction may trigger telomere loss, but actual impact of reproductive effort has not received adequate attention in experimental studies. Here, we experimentally manipulated reproductive effort by increasing the brood size in the wild blue tit (Cyanistes caeruleus). We show that parents attending enlarged broods experienced larger yearly telomere decay in comparison to control birds attending unaltered broods. In addition, we demonstrate that the change in telomere length differs between sexes, but this effect was independent from our treatment. To our knowledge, this is the first experimental study in the wild revealing that telomere dynamics may be linked to reproductive effort. Thus, telomere shortening may constitute one of the potential proximate mechanisms mediating the costs of reproduction.


Subject(s)
Clutch Size , Passeriformes/physiology , Reproduction/physiology , Telomere/genetics , Aging , Animals , Female , Linear Models , Longevity , Male , Passeriformes/embryology , Passeriformes/genetics , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL