Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 390
Filter
1.
Plants (Basel) ; 13(18)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39339561

ABSTRACT

The Multidrug and Toxic Compound Extrusion (MATE) proteins serve as pivotal transporters responsible for the extrusion of metabolites, thereby playing a significant role in both plant development and the detoxification of toxins. The MATE gene family within the Brachypodium distachyon, which is an important model organism of the Poaceae family, remains largely unexplored. Here, a comprehensive identification and analysis of MATE genes that complement B. distachyon were conducted. The BdMATE genes were systematically categorized into five distinct groups, predicated on an assessment of their phylogenetic affinities and protein structure. Furthermore, our investigation revealed that dispersed duplication has significantly contributed to the expansion of the BdMATE genes, with tandem and segmental duplications showing important roles, suggesting that the MATE genes in Poaceae species have embarked on divergent evolutionary trajectories. Examination of ω values demonstrated that BdMATE genes underwent purifying selection throughout the evolutionary process. Furthermore, collinearity analysis has confirmed a high conservation of MATE genes between B. distachyon and rice. The cis-regulatory elements analysis within BdMATEs promoters, coupled with expression patterns, suggests that BdMATEs play important roles during plant development and in response to phytohormones. Collectively, the findings presented establish a foundational basis for the subsequent detailed characterization of the MATE gene family members in B. distachyon.

2.
J Exp Bot ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39292826

ABSTRACT

Nitrogen (N) fertilization is essential to maximize crop production. However, around half of the applied N is lost to the environment causing water and air pollution and contributing to climate change. Understanding the natural genetic and metabolic basis underlying plants N use efficiency is of great interest to reach an agriculture with less N demand and thus, more sustainable. The study of ammonium (NH4+) nutrition is of particular interest, because it mitigates N losses due to nitrate (NO3-) leaching or denitrification. In this work, we studied Brachypodium distachyon, the model plant for C3 grasses, grown with NH4+ or NO3- supply. We performed gene expression analysis in the root of the B. distachyon reference accession Bd21 and examined the phenotypic variation across 52 natural accessions through analysing plant growth and a panel of 22 metabolic traits in leaf and root. We found that the adjustment of primary metabolism to ammonium nutrition is essential for the natural variation of NH4+ tolerance, notably involving NH4+ assimilation and PEPC activity. Additionally, genome-wide association studies (GWAS) indicated several loci associated with B. distachyon growth and metabolic adaptation to NH4+ nutrition. For instance, we found that the GDH2 gene was associated with the induction of root GDH activity under NH4+ nutrition and that two genes encoding malic enzyme were associated with leaf PEPC activity. Altogether, our work underlines the value of natural variation and the key role of primary metabolism to improve NH4+ tolerance.

3.
Biol Open ; 13(9)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39158386

ABSTRACT

The root system of plants is a vital part for successful development and adaptation to different soil types and environments. A major determinant of the shape of a plant root system is the formation of lateral roots, allowing for expansion of the root system. Arabidopsis thaliana, with its simple root anatomy, has been extensively studied to reveal the genetic program underlying root branching. However, to get a more general understanding of lateral root development, comparative studies in species with a more complex root anatomy are required. Here, by combining optimized clearing methods and histology, we describe an atlas of lateral root development in Brachypodium distachyon, a wild, temperate grass species. We show that lateral roots initiate from enlarged phloem pole pericycle cells and that the overlying endodermis reactivates its cell cycle and eventually forms the root cap. In addition, auxin signaling reported by the DR5 reporter was not detected in the phloem pole pericycle cells or young primordia. In contrast, auxin signaling was activated in the overlying cortical cell layers, including the exodermis. Thus, Brachypodium is a valuable model to investigate how signaling pathways and cellular responses have been repurposed to facilitate lateral root organogenesis.


Subject(s)
Brachypodium , Plant Roots , Brachypodium/growth & development , Brachypodium/genetics , Plant Roots/growth & development , Plant Roots/genetics , Signal Transduction , Indoleacetic Acids/metabolism , Gene Expression Regulation, Plant
4.
Development ; 151(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39166983

ABSTRACT

Grasses form morphologically derived, four-celled stomata, where two dumbbell-shaped guard cells (GCs) are flanked by two lateral subsidiary cells (SCs). This innovative form enables rapid opening and closing kinetics and efficient plant-atmosphere gas exchange. The mobile bHLH transcription factor MUTE is required for SC formation in grasses. Yet whether and how MUTE also regulates GC development and whether MUTE mobility is required for SC recruitment is unclear. Here, we transgenically impaired BdMUTE mobility from GC to SC precursors in the emerging model grass Brachypodium distachyon. Our data indicate that reduced BdMUTE mobility severely affected the spatiotemporal coordination of GC and SC development. Furthermore, although BdMUTE has a cell-autonomous role in GC division orientation, complete dumbbell morphogenesis of GCs required SC recruitment. Finally, leaf-level gas exchange measurements showed that dosage-dependent complementation of the four-celled grass morphology was mirrored in a gradual physiological complementation of stomatal kinetics. Together, our work revealed a dual role of grass MUTE in regulating GC division orientation and SC recruitment, which in turn is required for GC morphogenesis and the rapid kinetics of grass stomata.


Subject(s)
Brachypodium , Plant Stomata , Brachypodium/growth & development , Brachypodium/genetics , Brachypodium/metabolism , Plant Stomata/growth & development , Plant Stomata/metabolism , Plant Stomata/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified , Plant Leaves/growth & development , Plant Leaves/metabolism
5.
Mol Ecol ; : e17513, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39188107

ABSTRACT

Brachypodium stacei is the most ancestral lineage in the genus Brachypodium, a model system for grass functional genomics. B. stacei shows striking and sometimes contradictory biological and evolutionary features, including a high selfing rate yet extensive admixture, an ancient Miocene origin yet with recent evolutionary radiation, and adaptation to different dry climate conditions in its narrow distribution range. Therefore, it constitutes an ideal system to study these life history traits. We studied the phylogeography of 17 native circum-Mediterranean B. stacei populations (39 individuals) using genome-wide RADseq SNP data and complete plastome sequences. Nuclear SNP data revealed the existence of six distinct genetic clusters, low levels of intra-population genetic diversity and high selfing rates, albeit with signatures of admixture. Coalescence-based dating analysis detected a recent split between crown lineages in the Late Quaternary. Plastome sequences showed incongruent evolutionary relationships with those recovered by the nuclear data, suggesting interbreeding and chloroplast capture events between genetically distant populations. Demographic and population dispersal coalescent models identified an ancestral origin of B. stacei in the western-central Mediterranean islands, followed by an early colonization of the Canary Islands and two independent colonization events of the eastern Mediterranean region through long-distance dispersal and bottleneck events as the most likely evolutionary history. Climate niche data identified three arid niches of B. stacei in the southern Mediterranean region. Our findings indicate that the phylogeography of B. stacei populations was shaped by recent radiations, frequent extinctions, long-distance dispersal events, occasional interbreeding, and adaptation to local climates.

6.
Front Plant Sci ; 15: 1419255, 2024.
Article in English | MEDLINE | ID: mdl-39049853

ABSTRACT

Brachypodium grass species have been selected as model plants for functional genomics of grass crops, and to elucidate the origins of allopolyploidy and perenniality in monocots, due to their small genome sizes and feasibility of cultivation. However, genome sizes differ greatly between diploid or polyploid Brachypodium lineages. We have used genome skimming sequencing data to uncover the composition, abundance, and phylogenetic value of repetitive elements in 44 representatives of the major Brachypodium lineages and cytotypes. We also aimed to test the possible mechanisms and consequences of the "polyploid genome shock hypothesis" (PGSH) under three different evolutionary scenarios of variation in repeats and genome sizes of Brachypodium allopolyploids. Our data indicated that the proportion of the genome covered by the repeatome in the Brachypodium species showed a 3.3-fold difference between the highest content of B. mexicanum-4x (67.97%) and the lowest of B. stacei-2x (20.77%), and that changes in the sizes of their genomes were a consequence of gains or losses in their repeat elements. LTR-Retand and Tekay retrotransposons were the most frequent repeat elements in the Brachypodium genomes, while Ogre retrotransposons were found exclusively in B. mexicanum. The repeatome phylogenetic network showed a high topological congruence with plastome and nuclear rDNA and transcriptome trees, differentiating the ancestral outcore lineages from the recently evolved core-perennial lineages. The 5S rDNA graph topologies had a strong match with the ploidy levels and nature of the subgenomes of the Brachypodium polyploids. The core-perennial B. sylvaticum presents a large repeatome and characteristics of a potential post-polyploid diploidized origin. Our study evidenced that expansions and contractions in the repeatome were responsible for the three contrasting responses to the PGSH. The exacerbated genome expansion of the ancestral allotetraploid B. mexicanum was a consequence of chromosome-wide proliferation of TEs and not of WGD, the additive repeatome pattern of young allotetraploid B. hybridum of stabilized post-WGD genome evolution, and the genomecontraction of recent core-perennials polyploids (B. pinnatum, B. phoenicoides) of repeat losses through recombination of these highly hybridizing lineages. Our analyses have contributed to unraveling the evolution of the repeatome and the genome size variation in model Brachypodium grasses.

7.
J Fungi (Basel) ; 10(7)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39057371

ABSTRACT

The model organism Neurospora crassa has been cultivated in laboratories since the 1920s and its saprotrophic lifestyle has been established for decades. However, beyond their role as saprotrophs, fungi engage in intricate relationships with plants, showcasing diverse connections ranging from mutualistic to pathogenic. Although N. crassa has been extensively investigated under laboratory conditions, its ecological characteristics remain largely unknown. In contrast, Brachypodium distachyon, a sweet grass closely related to significant crops, demonstrates remarkable ecological flexibility and participates in a variety of fungal interactions, encompassing both mutualistic and harmful associations. Through a comprehensive microscopic analysis using electron, fluorescence, and confocal laser scanning microscopy, we discovered a novel endophytic interaction between N. crassa and B. distachyon roots, where fungal hyphae not only thrive in the apoplastic space and vascular bundle but also may colonize plant root cells. This new and so far hidden trait of one of the most important fungal model organisms greatly enhances our view of N. crassa, opening new perspectives concerning the fungus' ecological role. In addition, we present a new tool for studying plant-fungus interspecies communication, combining two well-established model systems, which improves our possibilities of experimental design on the molecular level.

8.
Plant Mol Biol ; 114(4): 81, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940986

ABSTRACT

In higher plants, the shift from vegetative to reproductive development is governed by complex interplay of internal and external signals. TERMINALFLOWER1 (TFL1) plays a crucial role in the regulation of flowering time and inflorescence architecture in Arabidopsis thaliana. This study aimed to explore the function of BdRCN4, a homolog of TFL1 in Brachypodium distachyon, through functional analyses in mutant and transgenic plants. The results revealed that overexpression of BdRCN4 in B. distachyon leads to an extended vegetative phase and reduced production of spikelets. Similar results were found in A. thaliana, where constitutive expression of BdRCN4 promoted a delay in flowering time, followed by the development of hypervegetative shoots, with no flowers or siliques produced. Our results suggest that BdRCN4 acts as a flowering repressor analogous to TFL1, negatively regulating AP1, but no LFY expression. To further validate this hypothesis, a 35S::LFY-GR co-transformation approach on 35::BdRCN4 lines was performed. Remarkably, AP1 expression levels and flower formation were restored to normal in co-transformed plants when treated with dexamethasone. Although further molecular studies will be necessary, the evidence in B. distachyon support the idea that a balance between LFY and BdRCN4/TFL1 seems to be essential for activating AP1 expression and initiating floral organ identity gene expression. This study also demonstrates interesting conservation through the molecular pathways that regulate flowering meristem transition and identity across the evolution of monocot and dicot plants.


Subject(s)
Brachypodium , Flowers , Gene Expression Regulation, Plant , Meristem , Plant Proteins , Plants, Genetically Modified , Brachypodium/genetics , Brachypodium/growth & development , Meristem/genetics , Meristem/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/genetics , Flowers/growth & development , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
9.
Ann Bot ; 134(2): 195-204, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38757189

ABSTRACT

BACKGROUND: Like all plant cells, the guard cells of stomatal complexes are encased in cell walls that are composed of diverse, interacting networks of polysaccharide polymers. The properties of these cell walls underpin the dynamic deformations that occur in guard cells as they expand and contract to drive the opening and closing of the stomatal pore, the regulation of which is crucial for photosynthesis and water transport in plants. SCOPE: Our understanding of how cell wall mechanics are influenced by the nanoscale assembly of cell wall polymers in guard cell walls, how this architecture changes over stomatal development, maturation and ageing and how the cell walls of stomatal guard cells might be tuned to optimize stomatal responses to dynamic environmental stimuli is still in its infancy. CONCLUSION: In this review, we discuss advances in our ability to probe experimentally and to model the structure and dynamics of guard cell walls quantitatively across a range of plant species, highlighting new ideas and exciting opportunities for further research into these actively moving plant cells.


Subject(s)
Cell Wall , Plant Stomata , Poaceae , Cell Wall/metabolism , Cell Wall/physiology , Plant Stomata/physiology , Poaceae/physiology , Poaceae/growth & development
10.
Plant Cell Rep ; 43(6): 143, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750149

ABSTRACT

Key message BdDREB-39 is a DREB/CBF transcription factor, localized in the nucleus with transactivation activity, and BdDREB-39-overexpressing transgenic yeasts and tobacco enhanced the tolerance to oxidative stress.Abstract The DREB/CBF transcription factors are generally recognized to play an important factor in plant growth, development and response to various abiotic stresses. However, the mechanism of DREB/CBFs in oxidative stress response is largely unknown. This study isolated a DREB/CBF gene BdDREB-39 from Brachypodium distachyon (B. distachyon). Multiple sequence alignment and phylogenetic analysis showed that BdDREB-39 was closely related to the DREB proteins of oats, barley, wheat and rye and therefore its study can provide a reference for the excavation and genetic improvement of BdDREB-39 or its homologs in its closely related species. The transcript levels of BdDREB-39 were significantly up-regulated under H2O2 stress. BdDREB-39 was localised in the nucleus and functioned as a transcriptional activator. Overexpression of BdDREB-39 enhanced H2O2 tolerance in yeast. Transgenic tobaccos with BdDREB-39 had higher germination rates, longer root, better growth status, lesser reactive oxygen species (ROS) and malondialdehyde (MDA), and higher superoxide dismutase (SOD) and peroxidase (POD) activities than wild type (WT). The expression levels of ROS-related and stress-related genes were improved by BdDREB-39. In summary, these results revealed that BdDREB-39 can improve the viability of tobacco by regulating the expression of ROS and stress-related genes, allowing transgenic tobacco to accumulate lower levels of ROS and reducing the damage caused by ROS to cells. The BdDREB-39 gene has the potential for developing plant varieties tolerant to stress.


Subject(s)
Brachypodium , Gene Expression Regulation, Plant , Hydrogen Peroxide , Nicotiana , Oxidative Stress , Plant Proteins , Plants, Genetically Modified , Transcription Factors , Nicotiana/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Oxidative Stress/genetics , Brachypodium/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Hydrogen Peroxide/metabolism , Reactive Oxygen Species/metabolism , Phylogeny
11.
Plant Commun ; 5(9): 100982, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-38816993

ABSTRACT

Brassinosteroids (BRs) are important regulators that control myriad aspects of plant growth and development, including biotic and abiotic stress responses, such that modulating BR homeostasis and signaling presents abundant opportunities for plant breeding and crop improvement. Enzymes and other proteins involved in the biosynthesis and signaling of BRs are well understood from molecular genetics and phenotypic analysis in Arabidopsis thaliana; however, knowledge of the molecular functions of these genes in other plant species, especially cereal crop plants, is minimal. In this manuscript, we comprehensively review functional studies of BR genes in Arabidopsis, maize, rice, Setaria, Brachypodium, and soybean to identify conserved and diversified functions across plant species and to highlight cases for which additional research is in order. We performed phylogenetic analysis of gene families involved in the biosynthesis and signaling of BRs and re-analyzed publicly available transcriptomic data. Gene trees coupled with expression data provide a valuable guide to supplement future research on BRs in these important crop species, enabling researchers to identify gene-editing targets for BR-related functional studies.


Subject(s)
Brassinosteroids , Signal Transduction , Brassinosteroids/metabolism , Brassinosteroids/biosynthesis , Signal Transduction/genetics , Gene Expression Regulation, Plant , Genes, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/genetics , Plants/metabolism
12.
Plants (Basel) ; 13(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38611516

ABSTRACT

The Tubby-like proteins (TLPs) gene family is a group of transcription factors found in both animals and plants. In this study, we identified twelve B. distachyon TLPs, divided into six groups based on conserved domains and evolutionary relationships. We predicted cis-regulatory elements involved in light, hormone, and biotic and abiotic stresses. The expression patterns in response to light and hormones revealed that BdTLP3, 4, 7, and 14 are involved in light responses, and BdTLP1 is involved in ABA responses. Furthermore, BdTLP2, 7, 9, and 13 are expressed throughout vegetative and reproductive stages, whereas BdTLP1, 3, 5, and 14 are expressed at germinating grains and early vegetative development, and BdTLP4, 6, 8, and 10 are expressed at the early reproduction stage. The natural variation in the eleven most diverged B. distachyon lines revealed high conservation levels of BdTLP1-6 to high variation in BdTLP7-14 proteins. Based on diversifying selection, we identified amino acids in BdTLP1, 3, 8, and 13, potentially substantially affecting protein functions. This analysis provided valuable information for further functional studies to understand the regulation, pathways involved, and mechanism of BdTLPs.

13.
Elife ; 122024 Apr 12.
Article in English | MEDLINE | ID: mdl-38606833

ABSTRACT

Understanding how plants adapt to changing environments and the potential contribution of transposable elements (TEs) to this process is a key question in evolutionary genomics. While TEs have recently been put forward as active players in the context of adaptation, few studies have thoroughly investigated their precise role in plant evolution. Here, we used the wild Mediterranean grass Brachypodium distachyon as a model species to identify and quantify the forces acting on TEs during the adaptation of this species to various conditions, across its entire geographic range. Using sequencing data from more than 320 natural B. distachyon accessions and a suite of population genomics approaches, we reveal that putatively adaptive TE polymorphisms are rare in wild B. distachyon populations. After accounting for changes in past TE activity, we show that only a small proportion of TE polymorphisms evolved neutrally (<10%), while the vast majority of them are under moderate purifying selection regardless of their distance to genes. TE polymorphisms should not be ignored when conducting evolutionary studies, as they can be linked to adaptation. However, our study clearly shows that while they have a large potential to cause phenotypic variation in B. distachyon, they are not favored during evolution and adaptation over other types of mutations (such as point mutations) in this species.


Subject(s)
Brachypodium , DNA Transposable Elements , DNA Transposable Elements/genetics , Brachypodium/genetics , Polymorphism, Genetic , Genomics , Evolution, Molecular
14.
Genome Biol ; 25(1): 63, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38439049

ABSTRACT

BACKGROUND: Centromeres are critical for maintaining genomic stability in eukaryotes, and their turnover shapes genome architectures and drives karyotype evolution. However, the co-evolution of centromeres from different species in allopolyploids over millions of years remains largely unknown. RESULTS: Here, we generate three near-complete genome assemblies, a tetraploid Brachypodium hybridum and its two diploid ancestors, Brachypodium distachyon and Brachypodium stacei. We detect high degrees of sequence, structural, and epigenetic variations of centromeres at base-pair resolution between closely related Brachypodium genomes, indicating the appearance and accumulation of species-specific centromere repeats from a common origin during evolution. We also find that centromere homogenization is accompanied by local satellite repeats bursting and retrotransposon purging, and the frequency of retrotransposon invasions drives the degree of interspecies centromere diversification. We further investigate the dynamics of centromeres during alloploidization process, and find that dramatic genetics and epigenetics architecture variations are associated with the turnover of centromeres between homologous chromosomal pairs from diploid to tetraploid. Additionally, our pangenomes analysis reveals the ongoing variations of satellite repeats and stable evolutionary homeostasis within centromeres among individuals of each Brachypodium genome with different polyploidy levels. CONCLUSIONS: Our results provide unprecedented information on the genomic, epigenomic, and functional diversity of highly repetitive DNA between closely related species and their allopolyploid genomes at both coarse and fine scale.


Subject(s)
Brachypodium , Diploidy , Humans , Tetraploidy , Brachypodium/genetics , Retroelements , Centromere/genetics
15.
Plant J ; 118(6): 1955-1971, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491864

ABSTRACT

Photoperiod employs complicated networks to regulate various developmental processes in plants, including flowering transition. However, the specific mechanisms by which photoperiod affects epigenetic modifications and gene expression variations in plants remain elusive. In this study, we conducted a comprehensive analysis of DNA methylation, small RNA (sRNA) accumulation, and gene expressions under different daylengths in facultative long-day (LD) grass Brachypodium distachyon and short-day (SD) grass rice. Our results showed that while overall DNA methylation levels were minimally affected by different photoperiods, CHH methylation levels were repressed under their favorable light conditions, particularly in rice. We identified numerous differentially methylated regions (DMRs) that were influenced by photoperiod in both plant species. Apart from differential sRNA clusters, we observed alterations in the expression of key components of the RNA-directed DNA methylation pathway, DNA methyltransferases, and demethylases, which may contribute to the identified photoperiod-influenced CHH DMRs. Furthermore, we identified many differentially expressed genes in response to different daylengths, some of which were associated with the DMRs. Notably, we discovered a photoperiod-responsive gene MYB11 in the transcriptome of B. distachyon, and further demonstrated its role as a flowering inhibitor by repressing FT1 transcription. Together, our comparative and functional analysis sheds light on the effects of daylength on DNA methylation, sRNA accumulation, and gene expression variations in LD and SD plants, thereby facilitating better designing breeding programs aimed at developing high-yield crops that can adapt to local growing seasons.


Subject(s)
DNA Methylation , Gene Expression Regulation, Plant , Oryza , Photoperiod , RNA, Plant , Oryza/genetics , Oryza/metabolism , Oryza/physiology , RNA, Plant/genetics , RNA, Plant/metabolism , Brachypodium/genetics , Brachypodium/metabolism , Brachypodium/physiology , Epigenesis, Genetic , Flowers/genetics , Flowers/physiology , Plant Proteins/genetics , Plant Proteins/metabolism
16.
Appl Microbiol Biotechnol ; 108(1): 212, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38358431

ABSTRACT

The development of novel biotechnologies that promote a better use of N to optimize crop yield is a central goal for sustainable agriculture. Phytostimulation, biofertilization, and bioprotection through the use of bio-inputs are promising technologies for this purpose. In this study, the plant growth-promoting rhizobacteria Pseudomonas koreensis MME3 was genetically modified to express a nitric oxide synthase of Synechococcus SyNOS, an atypical enzyme with a globin domain that converts nitric oxide to nitrate. A cassette for constitutive expression of synos was introduced as a single insertion into the genome of P. koreensis MME3 using a miniTn7 system. The resulting recombinant strain MME3:SyNOS showed improved growth, motility, and biofilm formation. The impact of MME3:SyNOS inoculation on Brachypodium distachyon growth and N uptake and use efficiencies under different N availability situations was analyzed, in comparison to the control strain MME3:c. After 35 days of inoculation, plants treated with MME3:SyNOS had a higher root dry weight, both under semi-hydroponic and greenhouse conditions. At harvest, both MME3:SyNOS and MME3:c increased N uptake and use efficiency of plants grown under low N soil. Our results indicate that synos expression is a valid strategy to boost the phytostimulatory capacity of plant-associated bacteria and improve the adaptability of plants to N deficiency. KEY POINTS: • synos expression improves P. koreensis MME3 traits important for rhizospheric colonization • B. distachyon inoculated with MME3:SyNOS shows improved root growth • MME3 inoculation improves plant N uptake and use efficiencies in N-deficient soil.


Subject(s)
Nitric Oxide Synthase , Pseudomonas , Pseudomonas/genetics , Agriculture , Soil
17.
New Phytol ; 242(2): 524-543, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38413240

ABSTRACT

The Poaceae family of plants provides cereal crops that are critical for human and animal nutrition, and also, they are an important source of biomass. Interacting plant cell wall components give rise to recalcitrance to digestion; thus, understanding the wall molecular architecture is important to improve biomass properties. Xylan is the main hemicellulose in grass cell walls. Recently, we reported structural variation in grass xylans, suggesting functional specialisation and distinct interactions with cellulose and lignin. Here, we investigated the functions of these xylans by perturbing the biosynthesis of specific xylan types. We generated CRISPR/Cas9 knockout mutants in Brachypodium distachyon XAX1 and GUX2 genes involved in xylan substitution. Using carbohydrate gel electrophoresis, we identified biochemical changes in different xylan types. Saccharification, cryo-SEM, subcritical water extraction and ssNMR were used to study wall architecture. BdXAX1A and BdGUX2 enzymes modify different types of grass xylan. Brachypodium mutant walls are likely more porous, suggesting the xylan substitutions directed by both BdXAX1A and GUX2 enzymes influence xylan-xylan and/or xylan-lignin interactions. Since xylan substitutions influence wall architecture and digestibility, our findings open new avenues to improve cereals for food and to use grass biomass for feed and the production of bioenergy and biomaterials.


Subject(s)
Brachypodium , Xylans , Animals , Humans , Xylans/metabolism , Lignin/metabolism , Brachypodium/metabolism , Cell Wall/metabolism
18.
BioTech (Basel) ; 13(1)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38247732

ABSTRACT

Styrene is an important industrial chemical. Although several studies have reported microbial styrene production, the amount of styrene produced in batch cultures can be increased. In this study, styrene was produced using genetically engineered Escherichia coli. First, we evaluated five types of phenylalanine ammonia lyases (PALs) from Arabidopsis thaliana (AtPAL) and Brachypodium distachyon (BdPAL) for their ability to produce trans-cinnamic acid (Cin), a styrene precursor. AtPAL2-expressing E. coli produced approximately 700 mg/L of Cin and we found that BdPALs could convert Cin into styrene. To assess styrene production, we constructed an E. coli strain that co-expressed AtPAL2 and ferulic acid decarboxylase from Saccharomyces cerevisiae. After a biphasic culture with oleyl alcohol, styrene production and yield from glucose were 3.1 g/L and 26.7% (mol/mol), respectively, which, to the best of our knowledge, are the highest values obtained in batch cultivation. Thus, this strain can be applied to the large-scale industrial production of styrene.

19.
Plant Biol (Stuttg) ; 26(1): 93-105, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37991495

ABSTRACT

Peroxiredoxins (Prx) are ubiquitous peroxidases required for the removal of excess free radicals produced under stress conditions. Peroxiredoxin genes (Prx) in the Brachypodium genus were identified using bioinformatics tools and their expression profiles were determined under abiotic stress using RT-qPCR. The promoter regions of Prx genes contain several cis-acting elements related to stress response. In silico expression analysis showed that B. distachyon Prx genes (BdPrx) are tissue specific. RT-qPCR analysis revealed their differential expression when exposed to salt or PEG-induced dehydration stress. In addition, the upregulation of BdPrx genes was accompanied by accumulation of H2 O2 . Exogenous application of H2 O2 induced expression of almost all BdPrx genes. The identified molecular interaction network indicated that Prx proteins may contribute to abiotic stress tolerance by regulating key enzymes involved in lignin biosynthesis. Overall, our findings suggest the potential role of Prx genes in abiotic stress tolerance and lay the foundation for future functional analyses aiming to engineer genetically improved cereal lines.


Subject(s)
Brachypodium , Peroxiredoxins , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Brachypodium/genetics , Brachypodium/metabolism , Stress, Physiological/genetics , Genes, Plant
20.
Plant J ; 117(6): 1676-1701, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37483133

ABSTRACT

The demand for agricultural production is becoming more challenging as climate change increases global temperature and the frequency of extreme weather events. This study examines the phenotypic variation of 149 accessions of Brachypodium distachyon under drought, heat, and the combination of stresses. Heat alone causes the largest amounts of tissue damage while the combination of stresses causes the largest decrease in biomass compared to other treatments. Notably, Bd21-0, the reference line for B. distachyon, did not have robust growth under stress conditions, especially the heat and combined drought and heat treatments. The climate of origin was significantly associated with B. distachyon responses to the assessed stress conditions. Additionally, a GWAS found loci associated with changes in plant height and the amount of damaged tissue under stress. Some of these SNPs were closely located to genes known to be involved in responses to abiotic stresses and point to potential causative loci in plant stress response. However, SNPs found to be significantly associated with a response to heat or drought individually are not also significantly associated with the combination of stresses. This, with the phenotypic data, suggests that the effects of these abiotic stresses are not simply additive, and the responses to the combined stresses differ from drought and heat alone.


Subject(s)
Brachypodium , Brachypodium/metabolism , Biodiversity , Temperature , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL