Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Diabetes Res Clin Pract ; 173: 108692, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33571599

ABSTRACT

AIM: To determine the percentages of (CD19 + CD24 + CD38+, CD19 + CD24 + CD27+, CD19 + IL-10+)-Breg cells, IL-17 single and IL-17+/IFN-γ double producers T cells and IFN-γ+ T cells, in normal-glycemic individuals, prediabetes and T2DM patients, and to analyze the association of Breg cells with metabolic parameters of T2DM. METHODS: percentages of Breg cells, IL-17+ and IL-17 + IFN-γ+ T cells, IFN-γ+ T cells and IL-10 were determined by flow cytometry. IL-6 levels were evaluated by ELISA assay. RESULTS: increased IL-6 levels, IL-17+ and IL-17 + IFN-γ+ T cells and a diminution of IL-10 levels and CD19 + IL-10+ cells in T2DM patients were observed. We found that CD19 + CD24 + CD27+ cells and CD19 + CD24 + CD38+ cells were increased in T2DM patients. The percentages of CD19 + CD24 + CD38+ cells were associated with HOMA-B, TyG index, HDL and cholesterol values. In normal-glycemic individuals, CD19 + CD24 + CD27+ cells were inversely associated to triglycerides and TyG index. In prediabetes patients, CD19 + CD24 + CD38+ cells were inversely related with cholesterol and LDL. Finally, CD19 + CD24 + CD38+ cells were inversely related with HDL values in T2DM patients. CONCLUSION: Our results suggest that increased percentages of IL-17 single and IL-17/IFN-γ double producers T cells in T2DM patients may be a consequence of the initial CD19 + IL-10+ cells reduction. Furthermore, dyslipidemia could play an important role in percentages and activity of B regulatory cells.


Subject(s)
B-Lymphocytes, Regulatory/metabolism , Diabetes Mellitus, Type 2/metabolism , Inflammation/metabolism , Prediabetic State/metabolism , Adult , Female , Humans , Male
2.
J Mol Biol ; 433(1): 166687, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33098857

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by progressive joint destruction associated with increased pro-inflammatory mediators. In inflammatory microenvironments, exogenous ATP (eATP) is hydrolyzed to adenosine, which exerts immunosuppressive effects, by the consecutive action of the ectonucleotidases CD39 and CD73. Mature B cells constitutively express both ectonucleotidases, converting these cells to potential suppressors. Here, we assessed CD39 and CD73 expression on B cells from treated or untreated patients with RA. Neither the frequency of CD73+CD39+ and CD73-CD39+ B cell subsets nor the levels of CD73 and CD39 expression on B cells from untreated or treated RA patients showed significant changes in comparison to healthy controls (HC). CpG+IL-2-stimulated B cells from HC or untreated RA patients increased their CD39 expression, and suppressed CD4+ and CD8+ T cell proliferation and intracellular TNF-production. A CD39 inhibitor significantly restored proliferation and TNF-producing capacity in CD4+ T cells, but not in CD8+ T cells, from HC and untreated RA patients, indicating that B cells from untreated RA patients conserved CD39-mediated regulatory function. Good responder patients to therapy (R-RA) exhibited an increased CD39 but not CD73 expression on B cells after treatment, while most of the non-responder (NR) patients showed a reduction in ectoenzyme expression. The positive changes of CD39 expression on B cells exhibited a negative correlation with disease activity and rheumatoid factor levels. Our results suggest modulating the ectoenzymes/ADO pathway as a potential therapy target for improving the course of RA.


Subject(s)
Apyrase/metabolism , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Immunomodulation , Adenosine/metabolism , Apyrase/genetics , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/therapy , B-Lymphocytes, Regulatory/immunology , B-Lymphocytes, Regulatory/metabolism , Case-Control Studies , Cytokines/biosynthesis , Disease Management , Disease Susceptibility , Gene Expression , Humans , Lymphocyte Activation , Lymphocyte Count , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Treatment Outcome
3.
Appl. cancer res ; 40: 1-9, Oct. 19, 2020. ilus
Article in English | LILACS, Inca | ID: biblio-1281364

ABSTRACT

A large number of cancer patients relapse after chemotherapeutic treatment. The immune system is capable of identifying and destroying cancer cells, so recent studies have highlighted the growing importance of using combinatorial chemotherapy and immunotherapy. However, many patients have innate or acquired resistance to immunotherapies. Long-term follow-up in a pooled meta-analysis exhibited long-term survival in approximately 20% of patients treated with immune checkpoint inhibitors or the adoptive transfer of chimeric T cells. It has been reported that high levels of immunoregulatory cells in cancer patients contribute to immunotherapy resistance via immunosuppression. Among the most important regulatory cell subtypes are the CD4+ T-regulatory cells (Tregs), identified by their expression of the well-characterized, lineage-specific transcription factor FOXP3. In addition to CD4+ Tregs, other regulatory cells present in the tumor microenvironment, namely CD8+ Tregs and IL10-producing B-regulatory cells (Bregs) that also modulate the immune response in solid and lymphoid tumors. These cells together have detrimental effects on tumor immune surveillance and anti-tumor immunity. Therefore, targeting these regulatory lymphocytes will be crucial in improving treatment outcomes for immunotherapy.


Subject(s)
T-Lymphocytes, Regulatory , Immunotherapy , Neoplasms , Immunosuppression Therapy
4.
Oncoimmunology ; 5(2): e1082703, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27057473

ABSTRACT

CD39 and CD73 are key enzymes in the adenosine (ADO) pathway. ADO modulates pathophysiological responses of immune cells, including B cells. It has recently emerged that a subpopulation of ADO-producing CD39+CD73+ B cells has regulatory properties. Here, we define the CD39high subset of these cells as the major contributor to the regulatory network operated by human B lymphocytes. Peripheral blood B cells were sorted into CD39neg, CD39inter and CD39high subsets. The phenotype, proliferation and IL-10 secretion by these B cells were studied by flow cytometry. 5'-AMP and ADO levels were measured by mass spectrometry. Agonists or antagonists of A1R, A2AR and A3R were used to study ADO-receptor signaling in B cells. Inhibition of effector T-cell (Teff) activation/proliferation by B cells was assessed in co-cultures. Cytokine production was measured by Luminex. Upon in vitro activation and culture of B cells, the subset of CD39high B cells increased in frequency (p < 0.001). CD39high B cells upregulated CD73 expression, proliferated (approximately 40% of CD39high B cells were Ki-67+ and secreted fold-2 higher IL-10 and ADO levels than CD39neg or CD39inter B cells. CD39high B cells co-cultured with autologous Teff suppressed T-cell activation/proliferation and secreted elevated levels of IL-6 and IL-10. The A1R and A2AR agonists promoted expansion and functions of CD39high B cells. CD39 ectonucleotidase is upregulated in a subset of in vitro-activated B cells which utilize ADO and IL-10 to suppress Teff functions. Proliferation and functions of these CD39high B cells are regulated by A1R- and A2AR-mediated autocrine signaling.

SELECTION OF CITATIONS
SEARCH DETAIL