Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters











Publication year range
1.
New Phytol ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187921

ABSTRACT

In Arabidopsis, the enzymatically active lysin motif-containing receptor-like kinase (LysM-RLK) CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) and the pseudokinases LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE 5 (LYK5) and LYK4 are the core components of the canonical chitin receptor complex. CERK1 dimerizes and autophosphorylates upon chitin binding, resulting in activation of chitin signaling. In this study, we clarified and further elucidated the individual contributions of LYK4 and LYK5 to chitin-dependent signaling using mutant (combination)s and stably transformed Arabidopsis plants expressing fluorescence-tagged LYK5 and LYK4 variants from their endogenous promoters. Our analyses revealed that LYK5 interacts with CERK1 upon chitin treatment, independently of LYK4 and vice versa. We show that chitin-induced autophosphorylation of CERK1 is predominantly dependent on LYK5, whereas chitin-triggered ROS generation is almost exclusively mediated by LYK4. This suggests specific signaling functions of these two co-receptor proteins apart from their redundant function in mitogen-activated protein kinase (MAPK) signaling and transcriptional reprogramming. Moreover, we demonstrate that LYK5 is subject to chitin-induced and CERK1-dependent ubiquitination, which serves as a signal for chitin-induced internalization of LYK5. Our experiments provide evidence that a combination of phosphorylation and ubiquitination events controls LYK5 removal from the plasma membrane via endocytosis, which likely contributes to receptor complex desensitization.

2.
Plant Commun ; : 101072, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39192582

ABSTRACT

Plants utilize plasma membrane-localized pattern recognition receptors (PRRs) to perceive pathogen-associated molecular patterns (PAMPs) to activate broad-spectrum pattern-triggered immunity (PTI). However, the regulatory mechanism ensuring robust broad-spectrum plant immunity remains largely unknown. Here, we reveal the dual roles of the transcription factor WRKY8 in transcriptional regulation of PRR genes: repressing the nlp20/nlp24 receptor gene RLP23 whereas promoting the chitin receptor gene CERK1. Remarkably, SsNLP1 and SsNLP2, two nlp24 type PAMPs in the destructive fungal pathogen Sclerotinia sclerotiorum, activate two calcium-elicited kinases, CPK4 and CPK11 to phosphorylate WRKY8 and consequently release its inhibition on RLP23 expression to accumulate RLP23. Meanwhile, SsNLPs activate a RLCK type kinase, PBL19 to phosphorylate WRKY8 and consequently enhance the accumulation of CERK1. Intriguingly, RLP23 is repressed at late stage by PBL19-mediated phosphorylation of WRKY8, to avoid excessive immunity for normal growth. Our findings unveil a "killing two birds with one stone" strategy employed by plants to elicit robust broad-spectrum immunity, which is based on PAMP-triggered fine-tuning of a dual-role transcription factor to simultaneously amplify two PRRs recognizing PAMPs well conserved in a wide range of pathogens. Moreover, our results reveal a novel plant strategy based on fine-tuning of multiple PRR gene expression to balance the trade-off between growth and immunity.

3.
J Lipid Res ; 65(8): 100584, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925252

ABSTRACT

Measurements of sphingolipid metabolism are most accurately performed by LC-MS. However, this technique is expensive, not widely accessible, and without the use of specific probes, it does not provide insight into metabolic flux through the pathway. Employing the fluorescent ceramide analogue NBD-C6-ceramide as a tracer in intact cells, we developed a comprehensive HPLC-based method that simultaneously measures the main nodes of ceramide metabolism in the Golgi. Hence, by quantifying the conversion of NBD-C6-ceramide to NBD-C6-sphingomyelin, NBD-C6-hexosylceramides, and NBD-C6-ceramide-1-phosphate (NBD-C1P), the activities of Golgi resident enzymes sphingomyelin synthase 1, glucosylceramide synthase, and ceramide kinase (CERK) could be measured simultaneously. Importantly, the detection of NBD-C1P allowed us to quantify CERK activity in cells, a usually difficult task. By applying this method, we evaluated the specificity of commonly used sphingolipid inhibitors and discovered that 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, which targets glucosylceramide synthase, and fenretinide (4HPR), an inhibitor for dihydroceramide desaturase, also suppress CERK activity. This study demonstrates the benefit of an expanded analysis of ceramide metabolism in the Golgi, and it provides a qualitative and easy-to-implement method.


Subject(s)
Ceramides , Glucosyltransferases , Golgi Apparatus , Phosphotransferases (Alcohol Group Acceptor) , Sphingolipids , Golgi Apparatus/metabolism , Ceramides/metabolism , Sphingolipids/metabolism , Humans , Glucosyltransferases/antagonists & inhibitors , Glucosyltransferases/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , 4-Chloro-7-nitrobenzofurazan/analogs & derivatives , 4-Chloro-7-nitrobenzofurazan/metabolism , Chromatography, High Pressure Liquid , HeLa Cells , Hexosyltransferases/metabolism , Hexosyltransferases/antagonists & inhibitors , Sphingomyelins/metabolism , Transferases (Other Substituted Phosphate Groups)
4.
Plant Commun ; 5(4): 100788, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38160257

ABSTRACT

Multilayered defense responses are activated upon pathogen attack. Viruses utilize a number of strategies to maximize the coding capacity of their small genomes and produce viral proteins for infection, including suppression of host defense. Here, we reveal translation leakage as one of these strategies: two viral effectors encoded by tomato golden mosaic virus, chloroplast-localized C4 (cC4) and membrane-associated C4 (mC4), are translated from two in-frame start codons and function cooperatively to suppress defense. cC4 localizes in chloroplasts, to which it recruits NbPUB4 to induce ubiquitination of the outer membrane; as a result, this organelle is degraded, and chloroplast-mediated defenses are abrogated. However, chloroplast-localized cC4 induces the production of singlet oxygen (1O2), which in turn promotes translocation of the 1O2 sensor NbMBS1 from the cytosol to the nucleus, where it activates expression of the CERK1 gene. Importantly, an antiviral effect exerted by CERK1 is countered by mC4, localized at the plasma membrane. mC4, like cC4, recruits NbPUB4 and promotes the ubiquitination and subsequent degradation of CERK1, suppressing membrane-based, receptor-like kinase-dependent defenses. Importantly, this translation leakage strategy seems to be conserved in multiple viral species and is related to host range. This finding suggests that stacking of different cellular antiviral responses could be an effective way to abrogate viral infection and engineer sustainable resistance to major crop viral diseases in the field.


Subject(s)
Antiviral Agents , Viral Proteins , Viral Proteins/genetics , Open Reading Frames
5.
J Agric Food Chem ; 71(36): 13535-13545, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37665660

ABSTRACT

Plant lysin motif (LysM) ectodomain receptors interact with pathogen-associated molecular patterns (PAMPs) and have critical functions in plant-microbe interactions. In this study, 65 LysM family genes were identified using the recent version of the reference sequence of bread wheat (Triticum aestivum), in which 23, 16, 20, and 6 members belonged to LysM-containing receptor-like kinases (LYKs), LysM-containing receptor-like proteins (LYPs), extracellular LysM proteins (LysMes), and intracellular nonsecretory LysM proteins (LysMns), respectively. The study found that TaCEBiP, TaLYK5, and TaCERK1 were highly responsive to PAMP elicitors and phytopathogens, with TaCEBiP and TaLYK5 binding directly to chitin. TaCERK1 acted as a coreceptor with TaCEBiP and TaLYK5 at the plasma membrane. Overexpression of TaCEBiP, TaLYK5, and TaCERK1 in Nicotiana benthamiana leaves exhibited enhanced resistance to Sclerotinia sclerotiorum. Subsequently, knocking down TaCEBiP, TaLYK5, and TaCERK1 genes with barley stripe mosaic virus-VIGS compromised the wheat defense response to an avirulent strain of Puccinia striiformis. The study concluded that wheat has two synergistic chitin perception systems for detecting pathogen elicitors, with the activated CERK1 intracellular kinase domain leading to signaling transduction. This research provides valuable insights into the functional roles and regulatory mechanisms of wheat LysM members under biotic stress.


Subject(s)
Chitin , Triticum , Triticum/genetics , Bread , Cell Membrane , Immunity
6.
Article in English | MEDLINE | ID: mdl-36906254

ABSTRACT

Ceramide-1-phosphate (C1P) is a sphingolipid formed by the phosphorylation of ceramide; it regulates various physiological functions, including cell survival, proliferation, and inflammatory responses. In mammals, ceramide kinase (CerK) is the only C1P-producing enzyme currently known. However, it has been suggested that C1P is also produced by a CerK-independent pathway, although the identity of this CerK-independent C1P was unknown. Here, we identified human diacylglycerol kinase (DGK) ζ as a novel C1P-producing enzyme and demonstrated that DGKζ catalyzes the phosphorylation of ceramide to produce C1P. Analysis using fluorescently labeled ceramide (NBD-ceramide) demonstrated that only DGKζ among ten kinds of DGK isoforms increased C1P production by transient overexpression of the DGK isoforms. Furthermore, an enzyme activity assay using purified DGKζ revealed that DGKζ could directly phosphorylate ceramide to produce C1P. Furthermore, genetic deletion of DGKζ decreased the formation of NBD-C1P and the levels of endogenous C18:1/24:1- and C18:1/26:0-C1P. Interestingly, the levels of endogenous C18:1/26:0-C1P were not decreased by the knockout of CerK in the cells. These results suggest that DGKζ is also involved in the formation of C1P under physiological conditions.


Subject(s)
Ceramides , Diacylglycerol Kinase , Animals , Humans , Diacylglycerol Kinase/genetics , Ceramides/metabolism , Sphingolipids , Phosphates , Mammals/metabolism
7.
Pharmacol Res ; 187: 106558, 2023 01.
Article in English | MEDLINE | ID: mdl-36410675

ABSTRACT

Dysregulated sphingolipid metabolism contributes to ER+ breast cancer progression and therapeutic response, whereas its underlying mechanism and contribution to tamoxifen resistance (TAMR) is unknown. Here, we establish sphingolipid metabolic enzyme CERK as a regulator of TAMR in breast cancer. Multi-omics analysis reveals an elevated CERK driven sphingolipid metabolic reprogramming in TAMR cells, while high CERK expression associates with worse patient prognosis in ER+ breast cancer. CERK overexpression confers tamoxifen resistance and promotes tumorigenicity in ER+ breast cancer cells. Knocking out CERK inhibits the orthotopic breast tumor growth of TAMR cells while rescuing their tamoxifen sensitivity. Mechanistically, the elevated EHF expression transcriptionally up-regulates CERK expression to prohibit tamoxifen-induced sphingolipid ceramide accumulation, which then inhibits tamoxifen-mediated repression on PI3K/AKT dependent cell proliferation and its driven p53/caspase-3 mediated apoptosis in TAMR cells. This work provides insight into the regulation of sphingolipid metabolism in tamoxifen resistance and identifies a potential therapeutic target for this disease.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Tamoxifen , Female , Humans , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , MCF-7 Cells , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Estrogen/metabolism , Sphingolipids , Tamoxifen/pharmacology , Tamoxifen/therapeutic use
8.
Front Plant Sci ; 13: 1064628, 2022.
Article in English | MEDLINE | ID: mdl-36518504

ABSTRACT

Chitin is a well-known elicitor of disease resistance and its recognition by plants is crucial to perceive fungal infections. Chitin can induce both a local immune response and a systemic disease resistance when provided as a supplement in soils. Unlike local immune responses, it is poorly explored how chitin-induced systemic disease resistance is developed. In this study, we report the systemic induction of disease resistance against the fungal pathogen Bipolaris oryzae by chitin supplementation of soils in rice. The transcriptome analysis uncovered genes related to cell-wall biogenesis, cytokinin signaling, regulation of phosphorylation, and defence priming in the development of chitin-induced systemic response. Alterations of cell-wall composition were observed in leaves of rice plants grown in chitin-supplemented soils, and the disease resistance against B. oryzae was increased in rice leaves treated with a cellulose biosynthesis inhibitor. The disruption of genes for lysin motif (LysM)-containing chitin receptors, OsCERK1 (Chitin elicitor receptor kinase 1) and OsCEBiP (Chitin elicitor-binding protein), compromised chitin-induced systemic disease resistance against B. oryzae and differential expression of chitin-induced genes found in wild-type rice plants. These findings suggest that chitin-induced systemic disease resistance in rice is caused by a perturbation of cell-wall biogenesis in leaves through long-distance signalling after local recognition of chitins by OsCERK1 and OsCEBiP.

9.
Mol Plant Microbe Interact ; 35(9): 845-856, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36107197

ABSTRACT

Lysin-motif receptor-like kinases (LysM-RLKs) are involved in the recognition of microbe-associated molecular patterns to initiate pattern-triggered immunity (PTI). LysM-RLKs are also required for recognition of microbe-derived symbiotic signal molecules upon establishing mutualistic interactions between plants and microsymbionts. A LysM-RLK CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) plays central roles both in chitin-mediated PTI and in arbuscular mycorrhizal symbiosis, suggesting the overlap between immunity and symbiosis, at least in the signal perception and the activation of downstream signal cascades. In this study, we screened for the interacting proteins of Nod factor Receptor1 (NFR1), a CERK1 homolog in the model legume Lotus japonicus, and obtained a protein orthologous to NONRACE-SPECIFIC DISEASE RESISTANCE1/HARPIN-INDUCED1-LIKE13 (NHL13), a protein involved in the activation of innate immunity in Arabidopsis thaliana, which we named LjNHL13a. LjNHL13a interacted with NFR1 and with the symbiosis receptor kinase SymRK. LjNHL13a also displayed positive effects in nodulation. Our results suggest that NHL13 plays a role both in plant immunity and symbiosis, possibly where they overlap. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Lotus , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chitin/metabolism , Lotus/physiology , Phosphotransferases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Symbiosis/physiology
10.
Plants (Basel) ; 11(13)2022 Jun 26.
Article in English | MEDLINE | ID: mdl-35807643

ABSTRACT

The soil-borne fungus Verticillium dahliae is causing a devastating vascular disease in more than 200 species of dicotyledonous plants. The pathogen attacks susceptible plants through the roots, colonizes the plant vascular system, and causes the death of aerial tissues. In this study, we used Arabidopsis and eggplants to examine the plant protective and immunization effects of autoclaved V. dahliae spores against V. dahliae. We observed that the application of V. dahliae autoclaved spores in eggplants and Arabidopsis resulted in enhanced protection against V. dahliae, since the disease severity and pathogen colonization were lower in the plants treated with V. dahliae autoclaved spores when compared to controls. In addition, upregulation of the defense related genes PR1 and PDF1.2 in the Arabidopsis plants treated with the V. dahliae autoclaved spores was revealed. Furthermore, pathogenicity experiments in the Arabidopsis mutant cerk1, defective in chitin perception, revealed a loss of protection against V. dahliae in the cerk1 treated with the V. dahliae autoclaved spores. The participation of the chitin receptor CERK1 is evident in Arabidopsis immunization against V. dahliae using autoclaved spores of the pathogen.

11.
New Phytol ; 234(5): 1606-1613, 2022 06.
Article in English | MEDLINE | ID: mdl-35297054

ABSTRACT

CERK1 (Chitin Elicitor Receptor Kinase 1), a lysin motif-containing pattern recognition receptor (PRR), perceives chitooligosaccharides (COs) to mount immune and symbiotic responses. However, CERK1, for a relatively long time, has been regarded as a co-receptor in plant immunity, mainly due to its lack of high binding affinity to known elicitors. Recent studies demonstrated several novel carbohydrates as ligands of CERK1 in different plant species and recognized CERK1 as a key receptor in plant immunity and symbiosis. This review summarizes recent knowledge acquired on the role of CERK1 in plant-microbe interactions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Chitin/metabolism , Plant Immunity , Protein Serine-Threonine Kinases
12.
Front Plant Sci ; 12: 736560, 2021.
Article in English | MEDLINE | ID: mdl-34764967

ABSTRACT

A phosphorylation/dephosphorylation cycle at tyrosine 428 of CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) plays an essential role in chitin triggered immunity in Arabidopsis thaliana. In this study, we used a differential peptide pull-down (PPD) assay to identify factors that could participate downstream of this cycle. We identified ZYGOTIC ARREST 1 (ZAR1) and showed that it interacts with CERK1 specifically when the tyrosine 428 (Y428) residue of CERK1 is dephosphorylated. ZAR1 was originally characterized as an integrator for calmodulin and G-protein signals to regulate zygotic division in Arabidopsis. Our current results established that ZAR1 also negatively contributed to defense against the fungus Botrytis cinerea and played a redundant role with its homolog ZAR2 in this process. The zar1-3 zar2-1 double mutant exhibited stronger resistance to B. cinerea compared with zar1-3 single mutant, zar2-1 single mutant, and wild-type plants. Moreover, the inducible expression of numerous defense response genes upon B. cinerea infection was increased in the zar1-3zar2-1 double mutant, consistent with a repressive role for ZAR proteins in the defense response. Therefore, our findings provided insight into the function of ZAR1 in multiple defenses and developmental regulation pathways.

13.
Front Physiol ; 12: 663480, 2021.
Article in English | MEDLINE | ID: mdl-33776806

ABSTRACT

Aberrant sphingolipid metabolism contributes to cardiac pathophysiology. Emerging evidence found that an increased level of ceramide during the inflammatory phase of post-myocardial infarction (MI) served as a biomarker and was associated with cardiac dysfunction. However, the alternation of the sphingolipid profile during the reparative phase after MI is still not fully understood. Using a mouse model of the left anterior descending ligation that leads to MI, we performed metabolomics studies to assess the alternations of both plasma and myocardial sphingolipid profiles during the reparative phase post-MI. A total number of 193 sphingolipid metabolites were detected. Myocardial sphingolipids but not plasma sphingolipids showed marked change after MI injury. Ceramide-1-phosphates, which were accumulated after MI, contributed highly to the difference in sphingolipid profiles between groups. Consistently, the expression of ceramide kinase, which phosphorylates ceramides to generate ceramide-1-phosphates, was upregulated in heart tissue after MI injury. Our findings revealed the altering sphingolipid metabolism during the reparative phase post-MI and highlighted the potential role of ceramide kinase/ceramide-1-phosphate in ischemic heart disease.

14.
Cancer Cell Int ; 21(1): 42, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33430896

ABSTRACT

BACKGROUND: Clinical management of triple-negative breast cancer (TNBC) patients remain challenging because of the development of chemo-resistance. Identification of biomarkers for risk stratification of chemo-resistance and therapeutic decision-making to overcome such resistance is thus necessary. METHODS: Retrospective analysis was performed to identify potential stratification biomarkers. The levels of ceramide kinase (CERK) was determined in breast cancer patients. The roles of CERK and its downstream signaling pathways were analysed using cellular and biochemical assays. RESULTS: CERK upregulation was identified as a biomarker for chemotherapeutic response in TNBC. A > 2-fold change in CERK (from tumor)/CERK (from normal counterpart) was significantly associated with chemo-resistance (OR = 2.66, 95% CI 1.18-7.34), P = 0.04. CERK overexpression was sufficient to promote TNBC growth and migration, and confer chemo-resistance in TNBC cell lines, although this resistance could be overcome via CERK inhibition. Mechanistic studies suggest that CERK mediates intrinsic resistance and inferior response to chemotherapy in TNBC by regulating multiple oncogenic pathways such as Ras/ERK, PI3K/Akt/mTOR, and RhoA. CONCLUSIONS: Our work provides an explanation for the heterogeneity of chemo-response across TNBC patients and demonstrates that CERK inhibition offers a therapeutic strategy to overcome treatment resistance.

15.
Plant Biotechnol (Tokyo) ; 37(3): 359-362, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-33088201

ABSTRACT

Receptor complex formation at the cell surface is a key step to initiate downstream signaling but the contribution of this process for the regulation of the direction of downstream responses is not well understood. In the plant-microbe interactions, while CERK1, an Arabidopsis LysM-RLK, mediates chitin-induced immune responses, NFR1, a Lotus homolog of CERK1, regulates the symbiotic process with rhizobial bacteria through the recognition of Nod factors. Concerning the mechanistic insight of the regulation of such apparently opposite biological responses by the structurally related RLKs, Nakagawa et al. previously showed that the addition of YAQ sequence, conserved in NFR1 and other symbiotic LysM-RLKs, to the kinase domain of CERK1 switched downstream responses from defense to symbiosis using a set of chimeric receptors, NFR1-CERK1s. These results indicated that such a subtle difference in the cytoplasmic domain of LysM-RLKs could determine the direction of host responses from defense to symbiosis. On the other hand, it is still not understood how such structural differences in the cytoplasmic domains determine the direction of host responses. We here analyzed the interaction between chimeric NFR1s and NFR5, a partner receptor of NFR1, by co-immunoprecipitation (Co-IP) of these proteins transiently expressed in Nicotiana benthamiana. These results indicated that the cytoplasmic interaction between the LysM-RLKs is important for the symbiotic receptor complex formation and the YAQ containing region of NFR1 contributes to trigger symbiotic signaling through the successful formation of NFR1/NFR5 complex.

16.
Plant Signal Behav ; 15(12): 1816322, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32902365

ABSTRACT

Heat stress is a major growth-limiting factor for most crops over the world. Chitin elicitor receptor kinase 1 (CERK1) is a chitin/chitooligosaccharides receptor, and ERECTA (ER) plays a crucial role in plant resistance to heat stress. In the present study, a chitooligosaccharides-induced CERK1n-ERc fusion gene was designed and synthesized, in which the extracellular domain and transmembrane domain of CERK1 gene is connected with the response region of ER gene. We successfully constructed the CERK1n-ERc fusion gene by Overlap PCR and introduced it into Arabidopsis by Agrobacterium-medicated infection. Genetically modified (GM) plants had a greater germination rate and germination index, as well as a shorter mean germination time, indicating that they had a better thermotolerance compared with the wild-type (WT) lines under heat stress. Moreover, the GM lines showed a lower level of hydrogen peroxide (H2O2) and relative electrolyte leakage (REL), suggesting that they were in better state compared with the WT plants when exposed to high temperature. UPLC-MS/MS was employed to assess the phytohormone level, suggesting that the GM lines acquired a better thermotolerance via jasmonic acid (JA) signaling pathways. In general, we constructed a COS-induced fusion gene to enhance the thermotolerance of Arabidopsis during seed germination and postgermination growth.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Arabidopsis/physiology , Chitin/analogs & derivatives , Protein Serine-Threonine Kinases/genetics , Receptors, Cell Surface/genetics , Recombinant Fusion Proteins/genetics , Thermotolerance/physiology , Abscisic Acid/metabolism , Arabidopsis/drug effects , Arabidopsis Proteins/metabolism , Chitin/pharmacology , Chitosan , Cyclopentanes/metabolism , Electrolytes/metabolism , Germination/drug effects , Green Fluorescent Proteins/metabolism , Heat-Shock Response/drug effects , Hydrogen Peroxide/metabolism , Hypocotyl/anatomy & histology , Hypocotyl/drug effects , Oligosaccharides , Oxylipins/metabolism , Plants, Genetically Modified , Plasmids/genetics , Protein Serine-Threonine Kinases/metabolism , Receptors, Cell Surface/metabolism , Recombinant Fusion Proteins/metabolism , Salicylic Acid/metabolism , Subcellular Fractions/metabolism , Thermotolerance/drug effects , Thermotolerance/genetics
17.
Trends Plant Sci ; 25(8): 805-816, 2020 08.
Article in English | MEDLINE | ID: mdl-32673581

ABSTRACT

Fungal pathogens are major destructive microorganisms for land plants and pose growing challenges to global crop production. Chitin is a vital building block for fungal cell walls and also a broadly effective elicitor of plant immunity. Here we review the rapid progress in understanding chitin perception and signaling in plants and highlight similarities and differences of these processes between arabidopsis and rice. We also outline moonlight functions of CERK1, an indispensable chitin coreceptor conserved across the plant kingdom, which imply potential crosstalk between chitin signaling and symbiotic or biotic/abiotic stress signaling in plants via CERK1. Moreover, we summarize current knowledge about fungal counterstrategies for subverting chitin-triggered plant immunity and propose open questions and future directions in this field.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chitin , Plant Diseases , Plant Immunity , Protein Serine-Threonine Kinases
18.
Plant Signal Behav ; 15(8): 1781384, 2020 08 02.
Article in English | MEDLINE | ID: mdl-32567456

ABSTRACT

Cell cultures established from various plant species have been used for a range of physiological and biochemical studies. Homogeneity of cell types and size of clusters in the cell culture often gave a clearer and simpler results compared to those obtained with the whole plant. On the other hand, possible variability of physiological conditions and responsiveness to external stimuli between the cell lines could be problematic for comparative studies. Aiming at combining the usefulness of plant cell culture with the rich information and genetic resources of Arabidopsis, we systemically examined the methods/conditions to establish cell lines for comparative studies, which could be applicable to a variety of genetic resources. Arabidopsis cell lines thus established from the meristem of mature seeds showed reproducible and comparable MAMP responses such as ROS generation and defense-related gene expression. MAMP responses of the cultured cells showed the specificity depending on the presence/absence of the corresponding MAMP receptor. Pharmacological study with a protein kinase inhibitor, K252a, also showed the usefulness of the cell culture for such studies. These results indicated the usefulness of the method to establish Arabidopsis cell lines, which are useful for comparative studies between genetic resources.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Chitin/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
19.
J Cell Biochem ; 121(5-6): 3070-3089, 2020 06.
Article in English | MEDLINE | ID: mdl-32056304

ABSTRACT

Aging skeletal muscle shows perturbations in metabolic functions. MicroRNAs have been shown to play a critical role in aging and metabolic functions of skeletal muscle. MicroRNA-34a (miR-34a) is implicated in the brain and cardiac aging, however, its role in aging muscle is unclear. We analyzed levels of miR-34a, ceramide kinase (CERK) and other insulin signaling molecules in skeletal muscle from old mice. In addition to in vivo model, levels of these molecules were also analyzed in myoblast derived from insulin resistant (IR) humans and C2C12 myoblasts overexpressing mir-34a. Our results show that miR-34a is elevated in the muscles of 2-year-old mice and in the myoblasts of IR humans. Overexpression of miR-34a in C2C12 myoblasts leads to alterations in the insulin signaling pathway, which were rescued by its antagonism. Our analyses revealed that miR-34a targets CERK resulting in ceramide accumulation, activation of PP2A and the pJNK pathway in muscle and C2C12 myoblasts. Also, myostatin (Mstn) levels were increased in 2-year-old mouse muscle and Mstn treatment upregulated miR-34a in C2C12 myoblasts. In addition, miR-34a expression and ceramide levels did not increase during aging in Mstn-/- mice muscle. In summary, we, therefore, propose that Mstn levels increase in aging muscle and upregulate miR-34a, which inhibits CERK resulting in increased ceramide levels. This ceramide accumulation activates PP2A and pJNK causing hypophosphorylation of AKT and hyperphosphorylation of IRS1 (Ser307), respectively, impairing insulin signaling pathway and eventually inhibiting the sarcolemma localization of GLUT4. These changes would result in reduced glucose uptake and insulin resistance. This study is the first to explain the phenomenon of ceramide accrual and impairment of insulin signaling pathway in aging muscle through a miR-34a based mechanism. In conclusion, our results suggest that Mstn and miR-34a antagonism can help ameliorate ceramide accumulation and loss of insulin sensitivity in aging skeletal muscle.


Subject(s)
Aging , Insulin Resistance/immunology , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Signal Transduction , 3' Untranslated Regions , Adult , Animals , Ceramides/metabolism , Computer Simulation , Humans , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Myoblasts/metabolism , Up-Regulation , Young Adult
20.
Plant J ; 102(6): 1142-1156, 2020 06.
Article in English | MEDLINE | ID: mdl-31925978

ABSTRACT

Plants survey their environment for the presence of potentially harmful or beneficial microbes. During colonization, cell surface receptors perceive microbe-derived or modified-self ligands and initiate appropriate responses. The recognition of fungal chitin oligomers and the subsequent activation of plant immunity are well described. In contrast, the mechanisms underlying ß-glucan recognition and signaling activation remain largely unexplored. Here, we systematically tested immune responses towards different ß-glucan structures and show that responses vary between plant species. While leaves of the monocots Hordeum vulgare and Brachypodium distachyon can recognize longer (laminarin) and shorter (laminarihexaose) ß-1,3-glucans with responses of varying intensity, duration and timing, leaves of the dicot Nicotiana benthamiana activate immunity in response to long ß-1,3-glucans, whereas Arabidopsis thaliana and Capsella rubella perceive short ß-1,3-glucans. Hydrolysis of the ß-1,6 side-branches of laminarin demonstrated that not the glycosidic decoration but rather the degree of polymerization plays a pivotal role in the recognition of long-chain ß-glucans. Moreover, in contrast to the recognition of short ß-1,3-glucans in A. thaliana, perception of long ß-1,3-glucans in N. benthamiana and rice is independent of CERK1, indicating that ß-glucan recognition may be mediated by multiple ß-glucan receptor systems.


Subject(s)
Plant Immunity , beta-Glucans/metabolism , Arabidopsis/immunology , Arabidopsis/metabolism , Brachypodium/immunology , Brachypodium/metabolism , Capsella/immunology , Capsella/metabolism , Glucans/metabolism , Hordeum/immunology , Hordeum/metabolism , Oligosaccharides/metabolism , Plant Leaves/immunology , Plant Leaves/metabolism , Plant Proteins/metabolism , Receptors, Immunologic/metabolism , Species Specificity , Nicotiana/immunology , Nicotiana/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL