Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58.536
Filter
1.
Synth Syst Biotechnol ; 10(1): 10-22, 2025.
Article in English | MEDLINE | ID: mdl-39206086

ABSTRACT

The waste pollution problem caused by polyethylene terephthalate (PET) plastics poses a huge threat to the environment and human health. As plasticizers, Phthalate esters (PAEs) are widely used in PET production and become combined pollutants with PET. Synthetic biology make it possible to construct engineered cells for microbial degradation of combined pollutants of PET and PAEs. PET hydroxylase (PETase) and monohydroxyethyl terephthalate hydroxylase (MHETase) isolated from Ideonella sakaiensis 201-F6 exhibit the capability to depolymerize PET. However, PET cannot enter cells, thus enzymatic degradation or cell surface displaying technology of PET hydrolase are the potential strategies. In this study, Pseudomonas sp. JY-Q was selected as a chassis strain, which exhibits robust stress tolerance. First, a truncated endogenous outer membrane protein cOmpA and its variant Signal (OprF)-cOmpA were selected as anchor motifs for exogenous protein to display on the cell surface. These anchor motifs were fused at the N-terminal of PET hydrolase and MHETase and transformed into Pseudomonas sp. JY-Q, the mutant strains successfully display the enzymes on cell surface, after verification by green fluorescent protein labeling and indirect immunofluorescence assay. The resultant strains also showed the catalytic activity of co-displaying PETase and MHETase for PET biodegradation. Then, the cell surface displaying PET degradation module was introduced to a JY-Q strain which genome was integrated with PAEs degrading enzymes and exhibited PAEs degradation ability. The resultant strain JY-Q-R1-R4-SFM-TPH have the ability of degradation PET and PAEs simultaneously. This study provided a promising strain resource for PET and PAEs pollution control.

2.
Methods Mol Biol ; 2854: 93-106, 2025.
Article in English | MEDLINE | ID: mdl-39192122

ABSTRACT

As an interferon-stimulating factor protein, STING plays a role in the response and downstream liaison in antiviral natural immunity. Upon viral invasion, the immediate response of STING protein leads to a series of changes in downstream proteins, which ultimately leads to an antiviral immune response in the form of proinflammatory cytokines and type I interferons, thus triggering an innate immune response, an adaptive immune response in vivo, and long-term protection of the host. In the field of antiviral natural immunity, it is particularly important to rigorously and sequentially probe the dynamic changes in the antiviral natural immunity connector protein STING caused by the entire anti-inflammatory and anti-pathway mechanism and the differences in upstream and downstream proteins. Traditionally, proteomics technology has been validated by detecting proteins in a 2D platform, for which it is difficult to sensitively identify changes in the nature and abundance of target proteins. With the development of mass spectrometry (MS) technology, MS-based proteomics has made important contributions to characterizing the dynamic changes in the natural immune proteome induced by viral infections. MS analytical techniques have several advantages, such as high throughput, rapidity, sensitivity, accuracy, and automation. The most common techniques for detecting complex proteomes are liquid chromatography (LC) and mass spectrometry (MS). LC-MS (Liquid Chromatography-Mass Spectrometry), which combines the physical separation capability of LC and the mass analysis capability of MS, is a powerful technique mainly used for analyzing the proteome of cells, tissues, and body fluids. To explore the combination of traditional proteomics techniques such as Western blotting, Co-IP (co-Immunoprecipitation), and the latest LC-MS methods to probe the anti-inflammatory pathway and the differential changes in upstream and downstream proteins induced by the antiviral natural immune junction protein STING.


Subject(s)
Immunity, Innate , Proteomics , Proteomics/methods , Chromatography, Liquid/methods , Humans , Blotting, Western/methods , Mass Spectrometry/methods , Immunoprecipitation/methods , Animals , Membrane Proteins/metabolism , Membrane Proteins/immunology , Liquid Chromatography-Mass Spectrometry
3.
Methods Mol Biol ; 2854: 35-40, 2025.
Article in English | MEDLINE | ID: mdl-39192116

ABSTRACT

Co-immunoprecipitation is a technique widely utilized to isolate protein complexes and study protein-protein interactions. Ubiquitinated proteins could be identified by combining co-immunoprecipitation with SDS-PAGE followed by immunoblotting. In this chapter, we use Herpes Simplex Virus 1 immediate-early protein ICP0-mediated polyubiquitination of p50 as an example to describe the method to identify a ubiquitinated adaptor protein by a viral E3 ligase by co-immunoprecipitation.


Subject(s)
Immediate-Early Proteins , Immunoprecipitation , Ubiquitin-Protein Ligases , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Immunoprecipitation/methods , Humans , Immediate-Early Proteins/metabolism , Protein Binding , Ubiquitinated Proteins/metabolism , Herpesvirus 1, Human/metabolism , Electrophoresis, Polyacrylamide Gel/methods , Viral Proteins/metabolism
4.
J Environ Sci (China) ; 149: 242-253, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181639

ABSTRACT

Poly(butylene succinate-co-furandicarboxylate) (PBSF) and poly(butylene adipate-co-furandicarboxylate) (PBAF) are novel furandicarboxylic acid-based biodegradable copolyesters with great potential to replace fossil-derived terephthalic acid-based copolyesters such as poly(butylene succinate-co-terephthalate) (PBST) and poly(butylene adipate-co-terephthalate) (PBAT). In this study, quantum chemistry techniques after molecular dynamics simulations are employed to investigate the degradation mechanism of PBSF and PBAF catalyzed by Candida antarctica lipase B (CALB). Computational analysis indicates that the catalytic reaction follows a four-step mechanism resembling the ping-pong bibi mechanism, with the initial two steps being acylation reactions and the subsequent two being hydrolysis reactions. Notably, the first step of the hydrolysis is identified as the rate-determining step. Moreover, by introducing single-point mutations to expand the substrate entrance tunnel, the catalytic distance of the first acylation step decreases. Additionally, energy barrier of the rate-determining step is decreased in the PBSF system by site-directed mutations on key residues increasing hydrophobicity of the enzyme's active site. This study unprecedently show the substrate binding pocket and hydrophobicity of the enzyme's active site have the potential to be engineered to enhance the degradation of copolyesters catalyzed by CALB.


Subject(s)
Fungal Proteins , Lipase , Polyesters , Lipase/metabolism , Lipase/chemistry , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Polyesters/chemistry , Polyesters/metabolism , Biodegradation, Environmental , Molecular Dynamics Simulation , Hydrolysis , Models, Chemical
5.
J Environ Sci (China) ; 150: 246-253, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306399

ABSTRACT

The electrochemical carbon dioxide reduction reaction (CO2RR) to high value-added fuels or chemicals driven by the renewable energy is promising to alleviate global warming. However, the selective CO2 reduction to C2 products remains challenge. Cu-based catalyst with the specific Cu0 and Cu+ sites is important to generate C2 products. This work used nitrogen (N) to tune amounts of Cu0 and Cu+ sites in Cu2O catalysts and improve C2-product conversion. The controllable Cu0/Cu+ ratio of Cu2O catalyst from 0.16 to 15.19 was achieved by adjusting the N doping amount using NH3/Ar plasma treatment. The major theme of this work was clarifying a volcano curve of the ethylene Faraday efficiency as a function of the Cu0/Cu+ ratio. The optimal Cu0/Cu+ ratio was determined as 0.43 for selective electroreduction CO2 to ethylene. X-ray spectroscopy and density functional theory (DFT) calculations were employed to elucidate that the strong interaction between N and Cu increased the binding energy of NCu bond and stabilize Cu+, resulting in a 92.3% reduction in the potential energy change for *CO-*CO dimerization. This study is inspiring in designing high performance electrocatalysts for CO2 conversion.


Subject(s)
Carbon Dioxide , Copper , Ethylenes , Oxidation-Reduction , Copper/chemistry , Ethylenes/chemistry , Carbon Dioxide/chemistry , Catalysis , Nitrogen/chemistry , Electrochemical Techniques/methods , Models, Chemical
6.
J Environ Sci (China) ; 150: 267-276, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306402

ABSTRACT

The electrocatalytic reduction of carbon dioxide (CO2ER) into formate presents a compelling solution for mitigating dependence on fossil energy and green utilization of CO2. Bismuth (Bi) has been gaining recognition as a promising catalyst material for the CO2ER to formate. The performance of Bi catalysts (named as Bi-V) can be significantly improved when they possess single metal atom vacancy. However, creating larger-sized metal atom vacancies within Bi catalysts remains a significant challenge. In this work, Bi nanosheets with dual VBi0 vacancy (Bi-DV) were synthesized utilizing in situ electrochemical transformation, using BiOBr nanosheets with triple vacancy associates (VBi″'VO··VBi″', VBi″' and VO·· denote the Bi3+ and O2- vacancy, respectively) as a template. The obtained Bi-DV achieved higher CO2ER activity than Bi-V, showing Faradaic efficiency for formate production of >92% from -0.9 to -1.2 VRHE in an H-type cell, and the partial current density of formate reached up to 755 mA/cm2 in a flow cell. The comprehensive characterizations coupled with density functional theory calculations demonstrate that the dual VBi0 vacancy on the surface of Bi-DV expedite the reaction kinetics toward CO2ER, by reducing the thermodynamic barrier of *OCHO intermediate formation. This research provides critical insights into the potential of large atom vacancies to enhance electrocatalysis performance.


Subject(s)
Bismuth , Carbon Dioxide , Electrochemical Techniques , Formates , Nanostructures , Bismuth/chemistry , Formates/chemistry , Carbon Dioxide/chemistry , Nanostructures/chemistry , Catalysis , Electrochemical Techniques/methods , Oxidation-Reduction , Models, Chemical
7.
J Environ Sci (China) ; 150: 332-339, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306408

ABSTRACT

NH3-SCR (SCR: Selective catalytic reduction) is an effective technology for the de-NOx process from both mobile and stationary pollution sources, and the most commonly used catalysts are the vanadia-based catalysts. An innovative V2O5-CeO2/TaTiOx catalyst for NOx removal was prepared in this study. The influences of Ce and Ta in the V2O5-CeO2/TaTiOx catalyst on the SCR performance and physicochemical properties were investigated. The V2O5-CeO2/TaTiOx catalyst not only exhibited excellent SCR activity in a wide temperature window, but also presented strong resistance to H2O and SO2 at 275 ℃. A series of characterization methods was used to study the catalysts, including H2-temperature programmed reduction, X-ray photoelectron spectroscopy, NH3-temperature programmed desorption, etc. It was discovered that a synergistic effect existed between Ce and Ta species. The introduction of Ce and Ta enlarged the specific surface area, increased the amount of acid sites and the ratio of Ce3+, (V3++V4+) and Oα, and strengthened the redox capability which were related to synergistic effect between Ce and Ta species, significantly improving the NH3-SCR activity.


Subject(s)
Ammonia , Cerium , Titanium , Vanadium Compounds , Catalysis , Cerium/chemistry , Titanium/chemistry , Ammonia/chemistry , Vanadium Compounds/chemistry , Air Pollutants/chemistry , Oxidation-Reduction , Air Pollution/prevention & control
8.
J Environ Sci (China) ; 150: 622-631, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306434

ABSTRACT

The non-aqueous solid-liquid biphasic solvent of 2-amino-2-methyl-1-propanol (AMP)/piperazine (PZ)/dipropylene glycol dimethyl ether (DME) features a high CO2 absorption loading, favorable phase separation behavior and high regeneration efficiency. Different with the liquid-liquid phase change solvent, the reaction kinetics of CO2 capture into solid-liquid biphasic solvent was rarely studied. In the present work, the reaction kinetics of CO2 absorption into AMP/PZ/DME solid-liquid biphasic solvent was investigated into the double stirred kettle reactor. The absorption reaction followed a pseudo-first-order kinetic model according to the zwitterion mechanism. The overall reaction rate constant (kov) and the enhancement factor (E) of CO2 absorption both increased with increasing temperature. The total mass transfer resistance of the absorbent decreased with increasing temperature and increased with increasing absorption loading, so the higher reaction temperature was conducive to the absorption, and the liquid phase mass transfer resistance was the main factor affecting the absorption rate.


Subject(s)
Carbon Dioxide , Solvents , Carbon Dioxide/chemistry , Kinetics , Solvents/chemistry , Models, Chemical , Piperazines/chemistry , Piperazine/chemistry , Propanolamines
9.
J Environ Sci (China) ; 150: 604-621, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306433

ABSTRACT

Recently, the transportation sector in China has gradually become the main source of urban air pollution and primary driver of carbon emissions growth. Considering air pollutants and greenhouse gases come from the same emission sources, it is necessary to establish an updated high-resolution emission inventory for the transportation sector in Central China, the most polluted region in China. The inventory includes on-road mobile, non-road mobile, oil storage and transportation, and covers 9 types of air pollutants and 3 types of greenhouse gases. Based on the Long-range Energy Alternatives Planning System (LEAP) model, the emissions of pollutants were predicted for the period from 2020 to 2035 in different scenarios. Results showed that in 2020, emissions of SO2, NOx, CO, PM10, PM2.5, VOCs, NH3, BC, OC, CO2, CH4, and N2O in Henan Province were 27.5, 503.2, 878.6, 20.1, 17.4, 222.1, 21.5, 9.4, 2.9, 92,077.9, 6.0, and 10.4 kilotons, respectively. Energy demand and pollutant emissions in Henan Province are simulated under four scenarios (Baseline Scenario (BS), Pollution Abatement Scenario (PA), Green Transportation Scenario (GT), and Reinforcing Low Carbon Scenario (RLC)). The collaborative emission reduction effect is most significant in the RLC scenario, followed by the GT scenario. By 2035, under the RLC scenario, energy consumption and emissions of SO2, NOx, CO, PM10, PM2.5, VOCs, NH3, CO2, CH4, and N2O are projected to decrease by 72.0%, 30.0%, 55.6%, 56.0%, 38.6%, 39.7%, 51.5%, 66.1%, 65.5%, 55.4%, and 52.8%, respectively. This study provides fundamental data support for subsequent numerical simulations.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Greenhouse Gases , China , Air Pollutants/analysis , Greenhouse Gases/analysis , Environmental Monitoring/methods , Air Pollution/statistics & numerical data , Air Pollution/analysis , Transportation , Vehicle Emissions/analysis
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124945, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39163768

ABSTRACT

Pd speciation induced by the combined effect of CO and water on Pd/SSZ-13 samples prepared by both impregnation and ion exchange was examined by FT-IR spectroscopy of CO adsorbed at room temperature and at liquid nitrogen temperature on anhydrous and hydrated samples. Starting from the literature findings related to the CO reducing effect on Pd cations, the present work gives precise spectroscopic evidences on how water is necessary in this process not only for compensating with H+ the zeolite exchange sites set free by Pd reduction, but also for mobilizing isolated Pd2+/Pd+ cations and making possible the reduction reactions. The aggregation of some Pd+ sites, just formed by the reduction and mobilized by the hydration, gives rise to the formation of Pd2O particles. Also, Pd0(100) sites are observed with CO on hydrated sample, formed by the aggregation and reduction of isolated Pd cations. Moreover, Pd0(111) sites are formed on the surface of PdOx particles during CO outgassing. The observation of the combined effect of water and CO allowed to define assignments of IR bands related to carbonyls of Pd in different oxidation states and coordination degrees.

11.
J Ethnopharmacol ; 336: 118706, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39186989

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ganoderma lucidum (G. lucidum) has been widely used as adjuvant of anti-tumor therapy for variety tumors. The bioactive ingredients of G. lucidum mainly include triterpenes, such as Ganoderic acid A, Ganoderic acid B, Ganoderenic acid A, Ganoderenic acid B, Ganoderenic acid D, and Ganoderic acid X. However, the effects and underlying mechanisms of G. lucidum are often challenging in hepatocellular carcinoma (HCC) treatment. AIM OF THE STUDY: To explore the potential role and mechanism of enhancer-associated lncRNAs (en-lncRNAs) in G. lucidum treated HCC through the in vivo and in vitro experiments. MATERIALS AND METHODS: Hepa1-6-bearing C57 BL/6 mice model were established to evaluate the therapeutic efficacy of G. lucidum treated HCC. Ki67 and TUNEL staining were used to detect the tumor cell proliferation and apoptosis in vivo. The Mouse lncRNA 4*180K array was implemented to identify the differentially expressed (DE) lncRNAs and mRNAs of G. lucidum treated tumor mice. The constructed lncRNA-mRNA co-expression network and bioinformatics analysis were used to selected core en-lncRNAs and its neighboring genes. The UPLC-MS method was used to identify the triterpenes of G. lucidum, and the in vitro experiments were used to verify which triterpene monomers regulated en-lncRNAs in tumor cells. Finally, a stable knockdown/overexpression cell lines were used to confirm the relationship between en-lncRNA and neighboring gene. RESULTS: Ki67 and TUNEL staining demonstrated G. lucidum significantly inhibited tumor growth, suppressed cell proliferation and induced apoptosis in vivo. Transcriptomic analysis revealed the existence of 126 DE lncRNAs high correlated with 454 co-expressed mRNAs in G. lucidum treated tumor mice. Based on lncRNA-mRNA network and qRT-PCR validation, 6 core lncRNAs were selected and considered high correlated with G. lucidum treatment. Bioinformatics analysis revealed FR036820 and FR121302 might act as enhancers, and qRT-PCR results suggested FR121302 might enhance Popdc2 mRNA level in HCC. Furthermore, 6 main triterpene monomers of G. lucidum were identified by UPLC-MS method, and in vitro experiments showed FR121302 and Popdc2 were significantly suppressed by Ganoderenic acid A and Ganoderenic acid B, respectively. The knock/overexpression results demonstrated that FR121302 activating and enhancing Popdc2 expression levels, and Ganoderenic acid A and Ganoderenic acid B dramatically suppressed FR121302 and decreased Popdc2 level in Hepa1-6 cells. CONCLUSIONS: Enhancer-associated lncRNA plays a crucial role as an enhancer during hepatocarcinogenesis, and triterpenes of G. lucidum significantly inhibited tumor cell proliferation and induced apoptosis by regulating en-lncRNAs. Our study demonstrated Ganoderenic acid A and Ganoderenic acid B suppressed en-lncRNA FR121302 may be one of the critical strategies of G. lucidum inhibit hepatocellular carcinoma growth.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular , Cell Proliferation , Liver Neoplasms , Mice, Inbred C57BL , RNA, Long Noncoding , Reishi , Triterpenes , Animals , Triterpenes/pharmacology , Triterpenes/isolation & purification , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Reishi/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Mice , Cell Line, Tumor , Male , Gene Expression Regulation, Neoplastic/drug effects , Humans , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification
12.
Biomaterials ; 312: 122760, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39163825

ABSTRACT

Inflammation-resident cells within arthritic sites undergo a metabolic shift towards glycolysis, which greatly aggravates rheumatoid arthritis (RA). Reprogramming glucose metabolism can suppress abnormal proliferation and activation of inflammation-related cells without affecting normal cells, holding potential for RA therapy. Single 2-deoxy-d-glucose (2-DG, glycolysis inhibitor) treatment often cause elevated ROS, which is detrimental to RA remission. The rational combination of glycolysis inhibition with anti-inflammatory intervention might cooperatively achieve favorable RA therapy. To improve drug bioavailability and exert synergetic effect, stable co-encapsulation of drugs in long circulation and timely drug release in inflamed milieu is highly desirable. Herein, we designed a stimulus-responsive hyaluronic acid-triglycerol monostearate polymersomes (HTDD) co-delivering 2-DG and dexamethasone (Dex) to arthritic sites. After intravenous injection, HTDD polymersomes facilitated prolonged circulation and preferential distribution in inflamed sites, where overexpressed matrix metalloproteinases and acidic pH triggered drug release. Results indicated 2-DG can inhibit the excessive cell proliferation and activation, and improve Dex bioavailability by reducing Dex efflux. Dex can suppress inflammatory signaling and prevent 2-DG-induced oxidative stress. Thus, the combinational strategy ultimately mitigated RA by inhibiting glycolysis and hindering inflammatory signaling. Our study demonstrated the great potential in RA therapy by reprogramming glucose metabolism in arthritic sites.


Subject(s)
Arthritis, Rheumatoid , Deoxyglucose , Dexamethasone , Glucose , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Animals , Glucose/metabolism , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Mice , Deoxyglucose/pharmacology , Inflammation/drug therapy , Glycolysis/drug effects , Polymers/chemistry , Hyaluronic Acid/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Male , Humans , Cell Proliferation/drug effects
13.
J Colloid Interface Sci ; 677(Pt A): 90-98, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39083895

ABSTRACT

The recombination of photogenerated electron-hole pairs of the photoanode seriously impairs the application of bismuth vanadate (BiVO4) in photoelectrochemical water splitting. To address this issue, we prepared a Yb:BiVO4/Co3O4/FeOOH composite photoanode by employing drop-casting and soaking methods to attach Co3O4/FeOOH cocatalysts to the surface of ytterbium-doped BiVO4. The prepared Yb:BiVO4/Co3O4/FeOOH photoanode demonstrates a high photocurrent density of 4.89 mA cm-2 at 1.23 V versus the reversible hydrogen electrode (RHE), which is 5.1 times that of bare BiVO4 (0.95 mA cm-2). Detailed characterization and testing demonstrated that Yb doping narrows the band gap and significantly enhances the carrier density. Furthermore, Co3O4 serves as a hole transfer layer to expedite hole migration and diminish recombination, while FeOOH offers additional active sites and minimizes surface trap states, thus boosting stability. The synergistic effects of Yb doping and Co3O4/FeOOH cocatalyst significantly improved the reaction kinetics and overall performance of PEC water oxidation. This work provides a strategy for designing efficient photoanodes for PEC water oxidation.

14.
J Colloid Interface Sci ; 677(Pt A): 369-377, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39096705

ABSTRACT

In the domain of electrocatalytic NO3- reduction (NO3-RR) for the treatment of low-concentration nitrate-containing domestic or industrial wastewater, the conversion of NO3- into NH4+ holds significant promise for resource recovery. Nevertheless, the central challenge in this field revolves around the development of catalysts exhibiting both high catalytic activity and selectivity. To tackle this challenge, we design a two-step hydrothermal combine with carbonization process to fabricate a cobalt-doped Fe-based MOF (MIL-101) catalyst at 800 °C temperatures. The aim was to fully leverage cobalt's demonstrated high selectivity in NO3- electroreduction and enhance activity by promoting electron transfer through the d-band of Fe. The results indicate that the synthesized catalyst inherits multiple active sites from its precursor, with the co-doping process optimized through the topological properties of the MOF. Elemental analysis and oxidation state testing were employed to scrutinize the fundamental characteristics of this catalyst type and comprehend how these features may influence its efficiency. Electrochemical analysis revealed that, even under conditions of low NO3- concentration, the Cox@MIL-Fe catalyst achieved an impressive nitrate conversion rate of 98 % at -0.9 V vs. RHE. NH4+ selectivity was notably high at 87 %, and the by-product NO2- levels remained at a minimal threshold. The Faradaic efficiency for NH4+ reached 74 %, with ammonia yield approaching 0.08 mmol h-1 cm-2. This study furnishes indispensable research data for the design of Fe-based electrocatalysts for nitrate reduction, offering profound insights into the modulation of catalysts to play a pivotal role in the electroreduction of nitrate ions.

15.
J Colloid Interface Sci ; 677(Pt A): 820-830, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39121666

ABSTRACT

Controlling interfacial charge transfer behavior of heterojunction is an arduous issue to efficiently drive separation of photogenerated carriers for improving the photocatalytic activity. Herein, the interface charge transfer behavior is effectively controlled by fabricating an unparalleled VO-NiWO4/PCN heterojunction that is prepared by encapsulating NiWO4 nanoparticles rich in surface oxygen vacancies (VO-NiWO4) in the mesoporous polymeric carbon nitride (PCN) nanosheets. Experimental and theoretical investigations show that, differing with the traditional p-n junction, the direction of built-in electric field between p-type NiWO4 and n-type PCN is reversed interestingly. The strongly codirectional built-in electric field is also produced between the surface defect region and inside of VO-NiWO4 besides in the space charge region, the dual drive effect of which forcefully propels interface charge transfer through triggering Z-Scheme mechanism, thus significantly improving the separation efficiency of photogenerated carriers. Moreover, the unique mesoporous encapsulation structure of VO-NiWO4/PCN heterostructure can not only afford the confinement effect to improve the reaction kinetics and specificity in the CO2 reduction to CO, but also significantly reduce mass transfer resistance of molecular diffusion towards the reaction sites. Therefore, the VO-NiWO4/PCN heterostructure demonstrates the preeminent activity, stability and reusability for photocatalytic CO2 reduction to CO reaction. The average evolution rate of CO over the optimal 10 %-VO-NiWO4/PCN composite reaches around 2.5 and 1.8 times higher than that of individual PCN and VO-NiWO4, respectively. This work contributes a fresh design approach of interface structure in the heterojunction to control charge transfer behaviors and thus improve the photocatalytic performance.

16.
J Colloid Interface Sci ; 677(Pt A): 758-770, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39121660

ABSTRACT

Directly capturing atmospheric CO2 and converting it into valuable fuel through photothermal synergy is an effective way to mitigate the greenhouse effect. This study developed a gas-solid interface photothermal catalytic system for atmospheric CO2 reduction, utilizing the innovative photothermal catalyst (Cu porphyrin) CuTCPP/MXene/TiO2. The catalyst demonstrated a photothermal catalytic performance of 124 µmol·g-1·h-1 for CO and 106 µmol·g-1·h-1 for CH4, significantly outperforming individual components. Density functional theory (DFT) results indicate that the enhanced catalytic performance is attributed to the internal electric field between the components, which significantly enhances carrier utilization. The introduction of CuTCPP reduces free energy of the photothermal catalytic reaction. Additionally, the local surface plasmon resonance (LSPR) effect and high-speed electron transfer properties of MXene further boost the catalytic reaction rate. This well-designed catalyst and catalytic system offer a simple method for capturing atmospheric CO2 and converting it in-situ through photothermal catalysis.

17.
J Colloid Interface Sci ; 677(Pt A): 800-811, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39121664

ABSTRACT

Zinc-air batteries, as one of the emerging areas of interest in the quest for sustainable energy solutions, are hampered by the intrinsically sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), and still suffer from the issues of low energy density. Herein, we report a MOF-on-MOF-derived electrocatalyst, FeCo@NC-II, designed to efficiently catalyze both ORR (Ehalf = 0.907 V) and OER (Ej=10 = 1.551 V) within alkaline environments, surpassing esteemed noble metal benchmarks (Pt/C and RuO2). Systematically characterizations and density functional theory (DFT) calculations reveal that the synergistic effect of iron and cobalt bimetallic and the optimized distribution of nitrogen configuration improved the charge distribution of the catalysts, which in turn optimized the adsorption / desorption of oxygenated intermediates accelerating the reaction kinetics. While the unique leaf-like core-shell morphology and excellent pore structure of the FeCo@NC-II catalyst caused the improvement of mass transfer efficiency, electrical conductivity and stability. The core and shell of the precursor constructed through the MOF-on-MOF strategy achieved the effect of 1 + 1 > 2 in mutual cooperation. Further application to zinc-air batteries (ZABs) yielded remarkable power density (212.4 mW/cm2), long cycle (more than 150 h) stability and superior energy density (∼1060 Wh/kg Zn). This work provides a methodology and an idea for the design, synthesis and optimization of advanced bifunctional electrocatalysts.

18.
J Colloid Interface Sci ; 677(Pt A): 909-917, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39126809

ABSTRACT

Since the intensification of global environmental pollution and energy shortages, photocatalytic CO2 reduction reaction (CO2RR) has emerged as a promising strategy to convert solar energy into clean chemical energy. Herein, we construct a robust and efficient heterojunction construction photocatalyst for CO2RR, composed of the highly reactive CeNi quantum dots (CeNi QDs) and nickel metal-organic layer (Ni-MOL) ultrathin nanosheets. This design facilitates the rapid separation of photogenerated charge carriers, as confirmed by X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy (PL) and other characterizations. Mechanistic studies with in situ diffuse reflectance Fourier transform infrared spectroscopy (in situ DRIFTS) and the d-band center calculation indicate that the propensity of photocatalyst for CO2 absorption and CO desorption, leading to high performance and selectivity. The optimized loading amount of CeNi quantum dots and modified structure result in a CO yield of 30.53 mmol·g-1 within 6 h under irradiation. This work not only paves a new and convenient way for developing high-activity quantum dot materials for CO2RR but also exploits novel avenues to fabricate more heterojunction composites for solar energy conversion.

19.
J Colloid Interface Sci ; 677(Pt B): 111-119, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39137560

ABSTRACT

Electrochemical carbon dioxide reduction reaction (CO2RR) is a promising technology to establish an artificial carbon cycle. Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) with high electrical conductivity have great potential as catalysts. Herein, we designed a range of 2D c-MOFs with different transition metal atoms and organic ligands, TMNxO4-x-HDQ (TM = Cr∼Cu, Mo, Ru∼Ag, W∼Au; x  = 0, 2, 4; HDQ = hexadipyrazinoquinoxaline), and systematically studied their catalytic performance using density functional theory (DFT). Calculation results indicated that all of TMNxO4-x-HDQ structures possess good thermodynamic and electrochemical stability. Notably, among the examined 37 MOFs, 6 catalysts outperformed the Cu(211) surface in terms of catalytic activity and product selectivity. Specifically, NiN4-HDQ emerged as an exceptional electrocatalyst for CO production in CO2RR, yielding a remarkable low limiting potential (UL) of -0.04 V. CuN4-HDQ, NiN2O2-HDQ, and PtN2O2-HDQ also exhibited high activity for HCOOH production, with UL values of -0.27, -0.29, and -0.27 V, respectively, while MnN4-HDQ, and NiO4-HDQ mainly produced CH4 with UL values of -0.58 and -0.24 V, respectively. Furthermore, these 6 catalysts efficiently suppressed the competitive hydrogen evolution reaction. Machine learning (ML) analysis revealed that the key intrinsic factors influencing CO2RR performance of these 2D c-MOFs include electron affinity (EA), electronegativity (χ), the first ionization energy (Ie), p-band center of the coordinated N/O atom (εp), the radius of metal atom (r), and d-band center (εd). Our findings may provide valuable insights for the exploration of highly active and selective CO2RR electrocatalysts.

20.
J Colloid Interface Sci ; 677(Pt B): 181-193, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39142159

ABSTRACT

Lithium-sulfur (Li-S) batteries have garnered extensive research interest as one of the most promising energy storage devices due to their ultra-high theoretical energy density. However, the sluggish reaction kinetics, abominable shuttling effect and inferior cycling stability severely restrict its practical application. Herein, a multifunctional CoP/Co@NC/CNT heterostructure host material was elaborately designed and synthesized by integrating CoP/Co heterojunction, N-doped carbon hollow polyhedrons (NC) and carbon nanotubes (CNTs). Specifically, the CoP/Co heterojunction can reconfigure the local electronic structure, resulting in a synergistic effect that enhances adsorption capacity and catalytic activity compared to CoP and Co alone. Furthermore, the CNTs-grafted NC not only provides multi-dimensional pathways for rapid electron transport and ion diffusion, but also physically restricts the diffusion of polysulfides during charge-discharge processes. Owing to these advantages, the battery assembled with the CoP/Co@NC/CNT/S cathode yields an impressive discharge specific capacity of 1479.9 mAh g-1 at 0.1C, and excellent capacity retention of 793.7 mAh g-1 over 500 cycles at 2C (∼85.5 % of initial capacity). The rational integration of multifunctional heterostructures could provide an effective strategy for designing high-efficiency nanocomposite electrocatalysts to promote sulfur redox kinetics in Li-S batteries.

SELECTION OF CITATIONS
SEARCH DETAIL