Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Neurophysiol ; 126(5): 1756-1771, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34669500

ABSTRACT

Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS). Here we report the temporal and spatial evolution of various functional neurons during demyelination in a cuprizone (CPZ)-induced mouse model. CPZ did not significantly induce the damage of axons and neurons after 2 wk of feeding. However, after 4-6 wk of CPZ feeding, axons and neurons were markedly reduced in the cortex, posterior thalamic nuclear group, and hippocampus. Simultaneously, the expression of TPH+ tryptophan neurons and VGLUT1+ glutamate neurons was obviously decreased, and the expression of TH+ dopaminergic neurons was slightly decreased in the tail part of the substantia nigra striatum, whereas the number of ChAT+ cholinergic neurons was not significantly different in the brain. In the second week of feeding, CPZ caused a higher level of glutamate secretion and upregulated the expression of EAAT2 on astrocytes, which should contribute to rapid and sufficient glutamate uptake and removal. This finding reveals that astrocyte-driven glutamate reuptake protected the CNS from excitotoxicity by rapid reuptake of glutamate in 4-6 wk of CPZ feeding. At this stage, although NG2+ oligodendroglia progenitor cells (OPCs) were enhanced in the demyelination foci, the myelin sheath was still absent. In conclusion, we comprehensively observed the temporal and spatial evolution of various functional neurons. Our results will assist with understanding how demyelination affects neurons during CPZ-induced demyelination and provide novel information for neuroprotection in myelin regeneration and demyelinating diseases.NEW & NOTEWORTHY Our results further indicate temporal and spatial evolution of various functional neurons during the demyelination in a cuprizone (CPZ)-induced mouse model, which mainly occur 4-6 wk after CPZ feeding. At the same time, the axonal compartment is damaged and, consequently, neuronal death occurs, while glutamate neurons are lost obviously. The astrocyte-mediated glutamate reuptake could protect the neurons from the excitatory effects of glutamate.


Subject(s)
Astrocytes , Cuprizone/pharmacology , Demyelinating Diseases , Glutamic Acid/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Myelin Sheath , Neurons , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Axons/drug effects , Axons/metabolism , Axons/pathology , Cuprizone/administration & dosage , Demyelinating Diseases/chemically induced , Demyelinating Diseases/metabolism , Disease Models, Animal , Mice , Monoamine Oxidase Inhibitors/administration & dosage , Multiple Sclerosis/metabolism , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology
2.
Neurotox Res ; 37(3): 587-601, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31721051

ABSTRACT

The cuprizone (CPZ)-induced demyelination is a relatively reproducible animal model and has been extremely useful for identifying the specific cellular and molecular signals that regulate oligodendrocyte survival and efficiency of oligodendrogenesis and remyelination. Here, we reported the temporal and spatial dynamics of astroglial reaction and immune response in CPZ-induced demyelinating model. CPZ did not induce significant microglia and astrocyte reaction after 2 weeks of feeding. After 4-6 weeks of CPZ feeding, microglia and astrocytes were markedly migrated and accumulated in myelin sheath. Simultaneously, the expression of tight junction protein ZO-1 was declined and the infiltration of CD4+IFNγ+ and CD4+IL-17+ T cells was increased in the brain, accompanied by increased production of IFN-γ and IL-17 in the extract of brain. However, the levels of IFN-γ and IL-17 were reduced, while IL-6 and TNF-α were elevated in the supernatant of splenocytes. At the 4th and 6th weeks of feeding, CPZ caused astrocyte activation and upregulated the expression of BDNF, CNTF, and IGF-II, providing a neurotrophic microenvironment in the brain. At this stage, NG2+ and PDGF-Rα+ oligodendroglia progenitor cells were enhanced in the corpus callosum, but the myelin sheath is still severely lost. Therefore, targeting microglia to improve the inflammatory microenvironment should contribute to the remyelination.


Subject(s)
Astrocytes/drug effects , Brain/drug effects , Cuprizone/toxicity , Demyelinating Diseases/chemically induced , Demyelinating Diseases/immunology , Animals , Astrocytes/immunology , Blood-Brain Barrier/drug effects , Brain/immunology , Disease Models, Animal , Male , Mice, Inbred C57BL , Myelin Sheath/drug effects , T-Lymphocytes/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL