Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Synth Syst Biotechnol ; 10(1): 39-48, 2025.
Article in English | MEDLINE | ID: mdl-39224148

ABSTRACT

Bacillus licheniformis is a significant industrial microorganism. Traditional gene editing techniques relying on homologous recombination often exhibit low efficiency due to their reliance on resistance genes. Additionally, the established CRISPR gene editing technology, utilizing Cas9 endonuclease, faces challenges in achieving simultaneous knockout of multiple genes. To address this limitation, the CRISPR-Cpf1 system has been developed, enabling multiplexed gene editing across various microorganisms. Key to the efficient gene editing capability of this system is the rigorous screening of highly effective expression elements to achieve conditional expression of protein Cpf1. In this study, we employed mCherry as a reporter gene and harnessed P mal for regulating the expression of Cpf1 to establish the CRISPR-Cpf1 gene editing system in Bacillus licheniformis. Our system achieved a 100 % knockout efficiency for the single gene vpr and up to 80 % for simultaneous knockout of the double genes epr and mpr. Furthermore, the culture of a series of protease-deficient strains revealed that the protease encoded by aprE contributed significantly to extracellular enzyme activity (approximately 80 %), whereas proteases encoded by vpr, epr, and mpr genes contributed to a smaller proportion of extracellular enzyme activity. These findings provide support for effective molecular modification and metabolic regulation in industrial organisms.

2.
Synth Syst Biotechnol ; 9(4): 759-765, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39007090

ABSTRACT

Pichia pastoris, a methylotrophic yeast, can utilize methanol as a carbon source and energy source to synthesize high-value chemicals, and is an ideal host for biomanufacturing. Constructing the P. pastoris cell factory is somewhat impeded due to the absence of genetic tools for manipulating multi-gene biosynthetic pathways. To broaden its application in the field of metabolic engineering, this study identified and screened 15 novel integration sites in P. pastoris using CRISPR-Cpf1 genome editing technology, with EGFP serving the reporter protein. These integration sites have integration efficiencies of 10-100 % and varying expression strengths, which allow for selection based on the expression levels of genes as needed. Additionally, these integrated sites are applied in the heterologous biosynthesis of P. pastoris, such as the astaxanthin biosynthetic pathway and the carbon dioxide fixation pathway of the Calvin-Benson-Bassham (CBB) cycle. During the three-site integration process, the 8 genes of the CBB cycle were integrated into the genome of P. pastoris. This indicates the potential of these integration sites for integrating large fragments and suggests their successful application in metabolic engineering of P. pastoris. This may lead to improved efficiency of genetic engineering in P. pastoris.

3.
Mol Genet Genomics ; 299(1): 75, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39085660

ABSTRACT

The clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein (Cas) system is a gene editing technology guided by RNA endonuclease. The CRISPR-Cas12a (also known as CRISPR-Cpf1) system is extensively utilized in genome editing research due to its accuracy and high efficiency. In this paper, we primarily focus on the application of CRISPR-Cpf1 technology in the construction of disease models and gene therapy. Firstly, the structure and mechanism of the CRISPR-Cas system are introduced. Secondly, the similarities and differences between CRISPR-Cpf1 and CRISPR-Cas9 technologies are compared. Thirdly, the main focus is on the application of the CRISPR-Cpf1 system in cell and animal genome editing. Finally, the challenges faced by CRISPR-Cpf1 technology and corresponding strategies are analyzed. Although CRISPR-Cpf1 technology has certain off-target effects, it can effectively and accurately edit cell and animal genomes, and has significant advantages in the preclinical research.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Editing/methods , Animals , CRISPR-Cas Systems/genetics , Genetic Therapy/methods , Genome/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Humans , Bacterial Proteins , Endodeoxyribonucleases , CRISPR-Associated Proteins
4.
ACS Synth Biol ; 13(7): 2081-2090, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38607270

ABSTRACT

Ectoine is a compatible solute that functions as a cell protector from various stresses, protecting cells and stabilizing biomolecules, and is widely used in medicine, cosmetics, and biotechnology. Microbial fermentation has been widely used for the large-scale production of ectoine, and a number of fermentation strategies have been developed to increase the ectoine yield, reduce production costs, and simplify the production process. Here, Corynebacterium glutamicum was engineered for ectoine production by heterologous expression of the ectoine biosynthesis operon ectBAC gene from Halomonas elongata, and a series of genetic modifications were implemented. This included introducing the de3 gene from Escherichia coli BL21 (DE3) to express the T7 promoter, eliminating the lysine transporter protein lysE to limit lysine production, and performing a targeted mutation lysCS301Y on aspartate kinase to alleviate feedback inhibition of lysine. The new engineered strain Ect10 obtained an ectoine titer of 115.87 g/L in an optimized fed-batch fermentation, representing the highest ectoine production level in C. glutamicum and achieving the efficient production of ectoine in a low-salt environment.


Subject(s)
Amino Acids, Diamino , Corynebacterium glutamicum , Escherichia coli , Fermentation , Halomonas , Metabolic Engineering , Amino Acids, Diamino/biosynthesis , Amino Acids, Diamino/metabolism , Amino Acids, Diamino/genetics , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Metabolic Engineering/methods , Halomonas/genetics , Halomonas/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lysine/metabolism , Lysine/biosynthesis , Promoter Regions, Genetic , Operon/genetics , Aspartate Kinase/genetics , Aspartate Kinase/metabolism , Amino Acid Transport Systems, Basic
5.
Microb Cell Fact ; 23(1): 98, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561780

ABSTRACT

BACKGROUND: Bacteria of the genus Photorhabdus and Xenorhabdus are motile, Gram-negative bacteria that live in symbiosis with entomopathogenic nematodes. Due to their complex life cycle, they produce a large number of specialized metabolites (natural products) encoded in biosynthetic gene clusters (BGC). Genetic tools for Photorhabdus and Xenorhabdus have been rare and applicable to only a few strains. In the past, several tools have been developed for the activation of BGCs and the deletion of individual genes. However, these often have limited efficiency or are time consuming. Among the limitations, it is essential to have versatile expression systems and genome editing tools that could facilitate the practical work. RESULTS: In the present study, we developed several expression vectors and a CRISPR-Cpf1 genome editing vector for genetic manipulations in Photorhabdus and Xenorhabdus using SEVA plasmids. The SEVA collection is based on modular vectors that allow exchangeability of different elements (e.g. origin of replication and antibiotic selection markers with the ability to insert desired sequences for different end applications). Initially, we tested different SEVA vectors containing the broad host range origins and three different resistance genes for kanamycin, gentamycin and chloramphenicol, respectively. We demonstrated that these vectors are replicative not only in well-known representatives, e.g. Photorhabdus laumondii TTO1, but also in other rarely described strains like Xenorhabdus sp. TS4. For our CRISPR/Cpf1-based system, we used the pSEVA231 backbone to delete not only small genes but also large parts of BGCs. Furthermore, we were able to activate and refactor BGCs to obtain high production titers of high value compounds such as safracin B, a semisynthetic precursor for the anti-cancer drug ET-743. CONCLUSIONS: The results of this study provide new inducible expression vectors and a CRISPR/CPf1 encoding vector all based on the SEVA (Standard European Vector Architecture) collection, which can improve genetic manipulation and genome editing processes in Photorhabdus and Xenorhabdus.


Subject(s)
Biological Products , Photorhabdus , Xenorhabdus , Xenorhabdus/genetics , Xenorhabdus/metabolism , Photorhabdus/genetics , Gene Editing , Biological Products/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats
6.
J Biotechnol ; 381: 67-75, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38181979

ABSTRACT

CRISPR Cpf1/Cas12a has been discussed as a less conflict prone alternative, patent-wise, to Cas9. This article investigates whether or not this assumption is correct, and comes to the conclusion that the promise that CRISPR Cpf1/Cas12 would make things easier, and be less conflict-prone, is fragile.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics
7.
Mol Biol Rep ; 51(1): 227, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38281301

ABSTRACT

Traditional crop breeding techniques are not quickly boosting yields to fulfill the expanding population needs. Long crop lifespans hinder the ability of plant breeding to develop superior crop varieties. Due to the arduous crossing, selecting, and challenging processes, it can take decades to establish new varieties with desired agronomic traits. Develop new plant varieties instantly to reduce hunger and improve food security. As a result of the adoption of conventional agricultural techniques, crop genetic diversity has decreased over time. Several traditional and molecular techniques, such as genetic selection, mutant breeding, somaclonal variation, genome-wide association studies, and others, have improved agronomic traits associated with agricultural plant productivity, quality, and resistance to biotic and abiotic stresses. In addition, modern genome editing approaches based on programmable nucleases, CRISPR, and Cas9 proteins have escorted an exciting new era of plant breeding. Plant breeders and scientists worldwide rely on cutting-edge techniques like quick breeding, genome editing tools, and high-throughput phenotyping to boost crop breeding output. This review compiles discoveries in numerous areas of crop breeding, such as using genome editing tools to accelerate the breeding process and create yearly crop generations with the desired features, to describe the shift from conventional to modern plant breeding techniques.


Subject(s)
CRISPR-Cas Systems , DNA Shuffling , CRISPR-Cas Systems/genetics , Plants, Genetically Modified/genetics , Genome-Wide Association Study , Crops, Agricultural/genetics , Genome, Plant/genetics , Plant Breeding/methods
8.
Folia Microbiol (Praha) ; 69(2): 373-382, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37490214

ABSTRACT

CRISPR/Cas technology is a powerful tool for genome engineering in Aspergillus oryzae as an industrially important filamentous fungus. Previous study has reported the application of the CRISPR/Cpf1 system based on the Cpf1 (LbCpf1) from Lachnospiraceae bacterium in A. oryzae. However, multiplex gene editing have not been investigated using this system. Here, we presented a new CRISPR/Cpf1 multiplex gene editing system in A. oryzae, which contains the Cpf1 nuclease (FnCpf1) from Francisella tularensis subsp. novicida U112 and CRISPR-RNA expression cassette. The crRNA cassette consisted of direct repeats and guide sequences driven by the A. oryzae U6 promoter and U6 terminator. Using the constructed FnCpf1 gene editing system, the wA and pyrG genes were mutated successfully. Furthermore, simultaneous editing of wA and pyrG genes in A. oryzae was performed using two guide sequences targeting these gene loci in a single crRNA array. This promising CRISPR/Cpf1 genome-editing system provides a powerful tool for genetically engineering A. oryzae.


Subject(s)
Aspergillus oryzae , Francisella , Gene Editing , Aspergillus oryzae/genetics , RNA, Guide, CRISPR-Cas Systems
9.
ACS Synth Biol ; 12(10): 2961-2972, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37782893

ABSTRACT

Lycopene is widely used in cosmetics, food, and nutritional supplements. Microbial production of lycopene has been intensively studied. However, few metabolic engineering studies on Pichia pastoris have been aimed at achieving high-yield lycopene production. In this study, the CRISPR/Cpf1-based gene repression system was developed and the gene editing system was optimized, which were applied to improve lycopene production successfully. In addition, the sterol regulatory element-binding protein SREBP (Sre) was used for the regulation of lipid metabolic pathways to promote lycopene overproduction in P. pastoris for the first time. The final engineered strain produced lycopene at 7.24 g/L and 75.48 mg/g DCW in fed-batch fermentation, representing the highest lycopene yield in P. pastoris reported to date. These findings provide effective strategies for extended metabolic engineering assisted by the CRISPR/Cpf1 system and new insights into metabolic engineering through transcriptional regulation of related metabolic pathways to enhance carotenoid production in P. pastoris.


Subject(s)
Metabolic Engineering , Saccharomycetales , Lycopene/metabolism , Pichia/genetics , Pichia/metabolism , Saccharomycetales/metabolism
10.
ACS Synth Biol ; 12(11): 3328-3339, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37885173

ABSTRACT

Bacillus subtilis is a generally recognized as safe microorganism that is widely used for protein expression and chemical production, but has a limited number of genetic regulatory components compared with the Gram-negative model microorganism Escherichia coli. In this study, a two-module plug-and-play T7-based optimized output strategy for transcription (T7-BOOST) systems with low leakage expression and a wide dynamic range was constructed based on the inducible promoters Phy-spank and PxylA. The first T7 RNA polymerase-driven module was seamlessly integrated into the genome based on the CRISPR/Cpf1 system, while the second expression control module was introduced into low, medium, and high copy plasmids for characterization. As a proof of concept, the T7-BOOST systems were successfully employed for whole-cell catalysis production of γ-aminobutyric acid (109.8 g/L with a 98.0% conversion rate), expression of human αS1 casein and human lactoferrin, and regulation of exogenous lycopene biosynthetic gene cluster and endogenous riboflavin biosynthetic gene cluster. Overall, the T7-BOOST system serves as a stringent, controllable, and effective tool for regulating gene expression in B. subtilis.


Subject(s)
Bacillus subtilis , Gene Expression Regulation , Humans , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Promoter Regions, Genetic/genetics , Plasmids , Multigene Family/genetics
11.
Biomolecules ; 13(10)2023 10 23.
Article in English | MEDLINE | ID: mdl-37892243

ABSTRACT

The CRISPR-Cas system has been widely used for genome editing due to its convenience, simplicity and flexibility. Using a plasmid-carrying Cas protein and crRNA or sgRNA expression cassettes is an efficient strategy in the CRISPR-Cas genome editing system. However, the plasmid remains in the cells after genome editing. Development of general plasmid-curing strategies is necessary. Based on our previous CRISPR-Cpf1 genome-editing system in Saccharomyces cerevisiae, the crRNA, designed for the replication origin of the CRISPR-Cpf1 plasmid, and the ssDNA, as a template for homologous recombination, were introduced for plasmid curing. The efficiency of the plasmid curing was 96 ± 4%. In addition, we further simplified the plasmid curing system by transforming only one crRNA into S. cerevisiae, and the curing efficiency was about 70%. In summary, we have developed a CRISPR-mediated plasmid-curing system. The RNA-only plasmid curing system is fast and easy. This plasmid curing strategy can be applied in broad hosts by designing crRNA specific for the replication origin of the plasmid. The plasmid curing system via CRISPR-Cas editing technology can be applied to produce traceless products without foreign genes and to perform iterative processes in multiple rounds of genome editing.


Subject(s)
Gene Editing , Saccharomyces cerevisiae , Gene Editing/methods , Plasmids/genetics , RNA/metabolism , RNA, Guide, CRISPR-Cas Systems , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
12.
World J Microbiol Biotechnol ; 39(10): 266, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37524856

ABSTRACT

Corynebacterium glutamicum, an important industrial producer, is a model microorganism. However, the limited gene editing methods and their defects limit the efficient genome editing of C. glutamicum. To improve the screening efficiency of second-cross-over strains of traditional SacB editing system, a universal pCS plasmid which harbors CRISPR-Cpf1 system targeting kan gene of SacB system was designed and established to kill the false positive single-cross-over strains remained abundantly after the second-cross-over events. The lethality of pCS plasmid to C. glutamicum carrying kan gene on its genome was as high as 98.6%. In the example of PodhA::PilvBNC replacement, pCS plasmid improved the screening efficiency of second-cross-over bacteria from 5% to over 95%. Then this pCS-assisted gene editing system was applied to improve the supply of precursors and reduce the generation of by-products in the production of 4-hydroxyisoleucine (4-HIL). The 4-HIL titer of one edited strain SC01-TD5IM reached 137.0 ± 33.9 mM, while the weakening of lysE by promoter engineering reduced Lys content by 19.0-47.7% and 4-HIL titer by 16.4-64.5%. These editing demonstrates again the efficiency of this novel CRISPR-Cpf1-assisted gene editing tool, suggesting it as a useful tool for improving the genome editing and metabolic engineering in C. glutamicum.


Subject(s)
Corynebacterium glutamicum , Gene Editing , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Isoleucine/genetics , Isoleucine/metabolism , Metabolic Engineering
13.
Food Anal Methods ; : 1-11, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37359895

ABSTRACT

To prevent food fraud, products can be monitored by various chemical-analytical techniques. In this study, we present a CRISPR-Cpf1 DETECTR-based assay for the differentiation of plant ingredients in sweet confectionary like fine and bulk-cocoa, or bitter and sweet almonds. To enable rapid in-field analysis, the trans-cleavage activity of the Cpf1 enzyme was used to develop a DETECTR (DNA endonuclease-targeted CRISPR trans reporter) assay for simple, highly specific fluorometric detection of single nucleotide polymorphisms (SNPs). The endonuclease Cpf1 requires the protospacer adjacent motif (PAM) 5'-TTTV-3' for activation, but the recognition sequence is freely programmable. The SNPs were selected to alter the Cpf1 specific PAM sequence. As a result, sequences that do not carry the canonical PAM sequence are not detected and thus not cut. The optimized system was used for both raw material and processed products such as cocoa masses or marzipan with a limit of detection of 3 ng template DNA. In addition, we were able to implement the system in the context of an LFA (lateral flow assay) to serve as a basis for the development of rapid test systems. Supplementary Information: The online version contains supplementary material available at 10.1007/s12161-023-02500-w.

14.
Genes (Basel) ; 14(5)2023 05 16.
Article in English | MEDLINE | ID: mdl-37239451

ABSTRACT

Genome streamlining, as a natural process in the evolution of microbes, has become a common approach for generating ideal chassis cells for synthetic biology studies and industrial applications. However, systematic genome reduction remains a bottleneck in the generation of such chassis cells with cyanobacteria, due to very time-consuming genetic manipulations. Synechococcus elongatus PCC 7942, a unicellular cyanobacterium, is a candidate for systematic genome reduction, as its essential and nonessential genes have been experimentally identified. Here, we report that at least 20 of the 23 over 10 kb nonessential gene regions could be deleted and that stepwise deletions of these regions could be achieved. A septuple-deletion mutant (genome reduced by 3.8%) was generated, and the effects of genome reduction on the growth and genome-wide transcription were investigated. In the ancestral triple to sextuple mutants (b, c, d, e1), an increasingly large number of genes (up to 998) were upregulated relative to the wild type, while slightly fewer genes (831) were upregulated in the septuple mutant (f). In a different sextuple mutant (e2) derived from the quintuple mutant d, much fewer genes (232) were upregulated. Under the standard conditions in this study, the mutant e2 showed a higher growth rate than the wild type, e1 and f. Our results indicate that it is feasible to extensively reduce the genomes of cyanobacteria for generation of chassis cells and for experimental evolutionary studies.


Subject(s)
Synechococcus , Transcriptome , Transcriptome/genetics , Synechococcus/genetics , Genome , Genetic Techniques
15.
Microb Cell Fact ; 22(1): 3, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36609377

ABSTRACT

BACKGROUND: Corynebacterium glutamicum has industrial track records for producing a variety of valuable products such as amino acids. Although CRISPR-based genome editing technologies have undergone immense developments in recent years, the suicide-plasmid-based approaches are still predominant for C. glutamicum genome manipulation. It is crucial to develop a simple and efficient CRISPR genome editing method for C. glutamicum. RESULTS: In this study, we developed a RecombinAtion Prior to Induced Double-strand-break (RAPID) genome editing technology for C. glutamicum, as Cpf1 cleavage was found to disrupt RecET-mediated homologous recombination (HR) of the donor template into the genome. The RAPID toolbox enabled highly efficient gene deletion and insertion, and notably, a linear DNA template was sufficient for gene deletion. Due to the simplified procedure and iterative operation ability, this methodology could be widely applied in C. glutamicum genetic manipulations. As a proof of concept, a high-yield D-pantothenic acid (vitamin B5)-producing strain was constructed, which, to the best of our knowledge, achieved the highest reported titer of 18.62 g/L from glucose only. CONCLUSIONS: We developed a RecET-assisted CRISPR-Cpf1 genome editing technology for C. glutamicum that harnessed CRISPR-induced DSBs as a counterselection. This method is of great importance to C. glutamicum genome editing in terms of its practical applications, which also guides the development of CRISPR genome editing tools for other microorganisms.


Subject(s)
Corynebacterium glutamicum , Gene Editing , Humans , Gene Editing/methods , Pantothenic Acid/genetics , Pantothenic Acid/metabolism , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Plasmids/genetics , CRISPR-Cas Systems
16.
Methods Mol Biol ; 2577: 229-240, 2023.
Article in English | MEDLINE | ID: mdl-36173577

ABSTRACT

The CRISPR-Cpf1 also known as Cas12a is an RNA-guided endonuclease similar to CRISPR-Cas9. Combining the CRISPR-Cpf1 with optogenetics technology, we have engineered photoactivatable Cpf1 (paCpf1) to precisely control the genome sequence in a spatiotemporal manner. We also identified spontaneously activated split Cpf1 and thereby developed a potent dCpf1 split activator, which has the potential to activate endogenous target genes. Here we describe a method for optogenetic endogenous genome editing using paCpf1 in mammalian cells. Furthermore, we show a method for endogenous gene activation using dCpf1 split activator in mammalian cells and mice.


Subject(s)
Endonucleases , Gene Editing , Animals , CRISPR-Cas Systems/genetics , Endonucleases/genetics , Endonucleases/metabolism , Gene Editing/methods , Genome , Mammals/metabolism , Mice , RNA , Transcriptional Activation
17.
J Agric Food Chem ; 70(28): 8819-8826, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35786882

ABSTRACT

Cocoa cultivation is dominated by the clone "Colleción Castro Naranjal 51" (CCN-51). In contrast, CCN-51 is the expensive and aromatic fine cocoa "Arriba Nacional" from Ecuador. The differences in the overall quality of the beans and in the prices show that it is necessary to develop a rapid and accurate method to distinguish these varieties and prevent food fraud. To this end, we used a CRISPR-Cpf1 assay suitable for AT-rich targets such as the chloroplast genome (cpGenome). SNPs in cocoa plastid genomes were selected to replace the canonical PAM sequence of Cpf1 (5'-TTTV-3'). We developed two assay systems to digest both Arriba and CCN-51. The results were tested qualitatively by agarose gel electrophoresis and quantitatively by capillary gel electrophoresis. Using the assay described here, we were able to reliably detect admixtures of 5% CCN-51 (P < 0.01) and 10% Arriba (P < 0.05). The application to processed cocoa products was also successful.


Subject(s)
Cacao , Chocolate , Genome, Chloroplast , Cacao/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Seeds
18.
Anal Chim Acta ; 1215: 339973, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35680336

ABSTRACT

A novel fluorescent biosensor was proposed for detecting the CaMV 35S promoter in genetically modified organisms (GMOs). It was based on a proximity extension mediated multiple cascade strand displacement amplification connected with CRISPR/Cpf 1 (termed PE-MC/SDA-CRISPR/Cpf1). In this protocol, the CaMV 35S was recognized by proximity reaction in the presence of two adjacent primer probes. The proximity extension further triggered the multiple cascade strand displacement amplification (MC/SDA), generating a mass of ssDNA. The products compelled the trans-cleavage activity of CRISPR/Cpf 1, so as to cleave nearby ssDNA-FQ reporters and generate a strong fluorescent signal. The ingenious three-link combination design allowed the CaMV 35S a low background interference. And the MC/SDA combined with CRISPR/Cpf 1 dramatically improved the detection sensitivity. Under optimized conditions, the detection linear range of ultrasensitive fluorescent biosensor for CaMV 35S was from 50 fM to10 pM and 10 pM-500 pM, along with the limit of detection (LOD) down to 14.4 fM. The sensing platform also had excellent performance in the assay of selectivity and real samples. Therefore, the method earned great application potential for transgenic crops.


Subject(s)
Biosensing Techniques , Nucleic Acid Amplification Techniques , Biosensing Techniques/methods , Clustered Regularly Interspaced Short Palindromic Repeats , Limit of Detection , Nucleic Acid Amplification Techniques/methods , Promoter Regions, Genetic
19.
Microb Cell Fact ; 21(1): 103, 2022 May 28.
Article in English | MEDLINE | ID: mdl-35643551

ABSTRACT

BACKGROUND: Cyanobacteria are photosynthetic autotrophs that have tremendous potential for fundamental research and industrial applications due to their high metabolic plasticity and ability to grow using CO2 and sunlight. CRISPR technology using Cas9 and Cpf1 has been applied to different cyanobacteria for genome manipulations and metabolic engineering. Despite significant advances with genome editing in several cyanobacteria strains, the lack of proper genetic toolboxes is still a limiting factor compared to other model laboratory species. Among the limitations, it is essential to have versatile plasmids that could ease the benchwork when using CRISPR technology. RESULTS: In the present study, several CRISPR-Cpf1 vectors were developed for genetic manipulations in cyanobacteria using SEVA plasmids. SEVA collection is based on modular vectors that enable the exchangeability of diverse elements (e.g. origins of replication and antibiotic selection markers) and the combination with many cargo sequences for varied end-applications. Firstly, using SEVA vectors containing the broad host range RSF1010 origin we demonstrated that these vectors are replicative not only in model cyanobacteria but also in a new cyanobacterium specie, Chroococcidiopsis sp., which is different from those previously published. Then, we constructed SEVA vectors by harbouring CRISPR elements and showed that they can be easily assimilated not only by conjugation, but also by natural transformation. Finally, we used our SEVA-Cpf1 tools to delete the nblA gene in Synechocystis sp. PCC 6803, demonstrating that our plasmids can be applied for CRISPR-based genome editing technology. CONCLUSIONS: The results of this study provide new CRISPR-based vectors based on the SEVA (Standard European Vector Architecture) collection that can improve editing processes using the Cpf1 nuclease in cyanobacteria.


Subject(s)
Gene Editing , Synechocystis , CRISPR-Cas Systems , Endonucleases/genetics , Endonucleases/metabolism , Gene Editing/methods , Plasmids/genetics , Synechocystis/genetics , Synechocystis/metabolism
20.
Front Microbiol ; 13: 902990, 2022.
Article in English | MEDLINE | ID: mdl-35620094

ABSTRACT

The emergence of drug resistance highlights the importance of new drug discovery. Microbial secondary metabolites encoded in biosynthetic gene clusters (BGCs) are a prolific source of drugs, whereas most of these BGCs are cryptic. Thus, taking strategies to activate these cryptic BGCs is of great importance for potential drug discovery. In this work, three novel pentangular polyphenols lanthomicin A-C were identified by activating a cryptic aromatic polyketide BGC through promoter engineering combined with optimization of fermentation conditions. We further confirmed the involvement of lanthomicin (ltm) BGC in biosynthesis by CRISPR-Cpf1-assisted gene editing. Based on functional analysis of homologous genes, a putative biosynthetic pathway was proposed for the three lanthomicins. Particularly, lanthomicin A showed antiproliferative activity with IC50 0.17 µM for lung cancer cell line A-549. The discovery of lanthomicins brings new members to the pentangular polyphenol subclade of aromatic polyketide and demonstrates the potential of Streptomyces as a source for drug discovery.

SELECTION OF CITATIONS
SEARCH DETAIL