Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 230
Filter
1.
Neurotoxicology ; 103: 230-255, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955288

ABSTRACT

The 3,4-methylenedioxy-alpha-pyrrolidinohexanophenone (MDPHP) is a synthetic cathinone closely related to 3,4-methylenedioxypyrovalerone (MDPV), one of the most common synthetic cathinones present in the "bath salts". MDPHP has recently gained attention due to increasing seizures and involvement in human intoxications which occurred in Europe and Italy in the last years, but currently there is a lack of information about its pharmaco-toxicological effects. With the aim at filling this gap, the present study is endeavoured to (i) evaluate the effects of acute administration of MDPHP (0.01-20 mg/kg; i.p.) on behaviour, cardiorespiratory and cardiovascular parameters in CD-1 male mice, comparing them to those observed after administration of MDPV; (ii) predict the ADMET profile of the two analogues using the Plus ADMET Predictor®; (iii) present clinical data related to MDPHP and MDPV-induced intoxications recorded between 2011 and 2023 by the Pavia Poison Control Centre (PCC) - National Toxicology Information Centre (Istituti Clinici Scientifici Maugeri, IRCCS Pavia, Italy). Our results substantiated that MDPHP and MDPV similarly affect sensorimotor and behavioural responses in mice, importantly increased locomotion and induced aggressive behaviour, and, at higher dosage, increased heart rate and blood pressure. These findings are in line with those observed in humans, revealing severe toxidromes typically characterized by Central Nervous System (CNS) alterations (behavioural/neuropsychiatric symptoms), including psychomotor agitation and aggressiveness, cardiovascular and respiratory disorders (e.g. tachycardia, hypertension, dyspnoea), and other peripheral symptoms (e.g. hyperthermia, acidosis, rhabdomyolysis).


Subject(s)
Benzodioxoles , Pyrrolidines , Synthetic Cathinone , Animals , Pyrrolidines/toxicity , Pyrrolidines/pharmacokinetics , Pyrrolidines/chemistry , Male , Benzodioxoles/chemistry , Mice , Alkaloids/toxicity , Alkaloids/chemistry , Alkaloids/pharmacokinetics , Humans , Heart Rate/drug effects , Dose-Response Relationship, Drug , Behavior, Animal/drug effects , Computer Simulation , Blood Pressure/drug effects
2.
Electrophoresis ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962870

ABSTRACT

The present study investigates the utilization of a supramolecular deep eutectic solvent (SUPRADES), consisting of sulfated-ß-cyclodextrin (S-ß-CD) and citric acid (CA), as a chiral selector (CS) in capillary electrophoresis for the enantiomeric separation of nefopam (NEF) and five cathinone derivatives (3-methylmethcathinone [3-MMC], 4-methylmethcathinone [4-MMC], 3,4-dimethylmethcathinone [3,4-DMMC], 4-methylethcathinone [4-MEC], and 3,4-methylendioxycathinone [MDMC]). A significant improvement in enantiomeric separation of the target analytes was observed upon the addition of S-ß-CD-CA to the background electrolyte (BGE), leading to a baseline separation of all analytes. In particular, the optimum percentage of S-ß-CD-CA, added to the BGE, was determined to be 0.075% v/v for NEF (Rs = 1.5) and 0.050% v/v for three out of five cathinone derivatives (Rs = 1.5, 1.6, and 2.4 for 3-MMC, 4-MEC, and 3,4-DMMC, respectively). In the case of 4-MMC and MDMC, a higher percentage of the CS, equal to 0.075% and 0.10% v/v, respectively, was required to achieve baseline separation (Rs = 1.5, 1.9 for MDMC and 4-MMC, respectively). The outcomes of the present study highlight the potential effectiveness of using SUPRADES as a CS in electrophoretic enantioseparations.

3.
Forensic Sci Int ; 361: 112134, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38996540

ABSTRACT

Synthetic cathinones are some of the most prevalent new psychoactive substances (NPSs) globally, with alpha-pyrrolidinoisohexanophenone (α-PiHP) being particularly noted for its widespread use in the United States, Europe, and Taiwan. However, the analysis of isomeric NPSs such as α-PiHP and alpha-pyrrolidinohexiophenone (α-PHP) is challenging owing to similarities in their retention times and mass spectra. This study proposes a dual strategy based on in vitro metabolic experiments and machine learning-based classification modelling for differentiating α-PHP and α-PiHP in urine samples: (1) in vitro metabolic experiments using pooled human liver microsomes and liquid chromatography tandem quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) were conducted to identify the key metabolites of α-PHP and α-PiHP from the high-resolution MS/MS spectra. After 5 h incubation, 71.4 % of α-PHP and 64.7 % of α-PiHP remained unmetabolised. Nine phase I metabolites were identified for each compound, including primary ß-ketone reduction (M1) metabolites. Comparing the metabolites and retention times confirmed the efficacy of in vitro metabolic experiments for differentiating NPS isomers. Subsequently, analysis of seven real urine samples revealed the presence for various metabolites, including M1, that could be used as suitable detection markers at low concentrations. The aliphatic hydroxylation (M2) metabolite peak counts and metabolite retention times were used to determine α-PiHP use. (2) Classification models for the parent compounds and M1 metabolites were developed using principal component analysis for feature extraction and logistic regression for classification. The training and test sets were devised from the spectra of standard samples or supernatants from in vitro metabolism experiments with different incubation times. Both models had classification accuracies of 100 % and accurately identified α-PiHP and its M1 metabolite in seven real urine samples. The proposed methodology effectively distinguished between such isomers and confirmed their presence at low concentrations. Overall, this study introduces a novel concept that addresses the complexities in analysing isomeric NPSs and suggests a path towards enhancing the accuracy and reliability of NPS detection.


Subject(s)
Machine Learning , Microsomes, Liver , Pyrrolidines , Humans , Microsomes, Liver/metabolism , Pyrrolidines/urine , Chromatography, Liquid , Psychotropic Drugs/urine , Psychotropic Drugs/metabolism , Tandem Mass Spectrometry , Mass Spectrometry/methods , Isomerism , In Vitro Techniques , Alkaloids/urine , Alkaloids/metabolism
4.
Forensic Sci Int ; 361: 112116, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38905907

ABSTRACT

INTRODUCTION: The proliferation of new psychoactive substances (NPS) poses a significant challenge to clinical and forensic toxicology laboratories. N,N-dimethylpentylone, a novel synthetic cathinone, has emerged as a public health concern. The aims of this study are to describe the clinical presentation of N,N-dimethylpentylone poisoning, to describe detection methods, and to deduce its metabolic pathways. METHODS: Clinical data was collected and reviewed retrospectively from patients with confirmed N,N-dimethylpentylone exposure. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify N,N-dimethylpentylone and its metabolites in urine samples. The metabolic pathway was characterised by comparison of the detected substances with reference standards. RESULTS: Eight cases were included in the case series. Seven different metabolites of N,N-dimethylpentylone were identified in in vivo patient urine samples, where the two major metabolic pathways were proposed to be opening of the 5-membered ring and reduction of carboxide. All patients presented with neuropsychiatric and/or cardiovascular symptoms. Co-ingestion with other substances was reported in all cases. One patient requiring intensive care was described in detail. All patients eventually recovered. The analytical method allowed the simultaneous identification of N,N-dimethylpentylone, pentylone and bisdesmethyl-N,N-dimethylpentylone, as well as other drugs of abuse in patient samples. CONCLUSION: N,N-dimethylpentylone appears to be less potent than its metabolite pentylone. Co-ingestion with other drugs of abuse is common. Poisoning cases have neuropsychiatric and cardiovascular manifestations. An updated and comprehensive laboratory method is needed for its detection.


Subject(s)
Psychotropic Drugs , Tandem Mass Spectrometry , Humans , Male , Adult , Chromatography, Liquid , Retrospective Studies , Female , Middle Aged , Psychotropic Drugs/poisoning , Psychotropic Drugs/urine , Forensic Toxicology , Young Adult , Alkaloids/urine , Alkaloids/poisoning , Alkaloids/analysis , Designer Drugs/analysis , Designer Drugs/poisoning , Substance-Related Disorders/diagnosis
5.
Plants (Basel) ; 13(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38891346

ABSTRACT

Khat leaves, indigenous to eastern Africa, have been chewed for centuries for their stimulant effects, attributed to alkaloids such as cathinone and cathine. Although associated with gastric disorders like gastritis and gastro-oesophageal reflux disease, the underlying molecular mechanisms remain unclear. This study aimed to examine the morpho-anatomy of khat leaves using light microscopy and histochemistry and to assess the effects of leaf extracts and alkaloids on human gastric epithelial cells (GES-1). The study identified specific cells in the palisade-spongy transition zone as storage sites for psychoactive alkaloids. Leaf extracts were prepared by mimicking the chewing process, including a prolonged salivary phase followed by a gastric phase. Cytotoxicity and cell viability were evaluated using LDH and MTT assays, respectively. Additionally, the impact on IL-8 secretion, a key chemokine in gastric inflammation, was analysed under normal and TNF-α-stimulated conditions. The results showed no increase in cytotoxicity up to 250 µg/mL. However, there was a significant decrease in cell metabolism and a reduction in both basal and TNF-α-induced IL-8 secretion, but cathinone and cathine were inactive. These findings suggest that khat may not directly cause the gastric issues reported in the literature, which would rather be attributed to other confounding factors, highlighting the need for further research to clarify its biological impacts.

6.
AAPS J ; 26(4): 70, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862871

ABSTRACT

Synthetic cathinones represent one of the largest and most abused new psychoactive substance classes, and have been involved in numerous intoxications and fatalities worldwide. Methcathinone analogues like 3-methylmethcathinone (3-MMC), 3-chloromethcathinone (3-CMC), and 4-CMC currently constitute most of synthetic cathinone seizures in Europe. Documenting their consumption in clinical/forensic casework is therefore essential to tackle this trend. Targeting metabolite markers is a go-to to document consumption in analytical toxicology, and metabolite profiling is crucial to support investigations. We sought to identify 3-CMC, 4-CMC, and 4-bromomethcathinone (4-BMC) human metabolites. The substances were incubated with human hepatocytes; incubates were screened by liquid chromatography-high-resolution tandem mass spectrometry and data were mined with Compound Discoverer (Themo Scientific). 3-CMC-positive blood, urine, and oral fluid and 4-CMC-positive urine and saliva from clinical/forensic casework were analyzed. Analyses were supported by metabolite predictions with GLORYx freeware. Twelve, ten, and ten metabolites were identified for 3-CMC, 4-CMC, and 4-BMC, respectively, with similar transformations occurring for the three cathinones. Major reactions included ketoreduction and N-demethylation. Surprisingly, predominant metabolites were produced by combination of N-demethylation and ω-carboxylation (main metabolite in 3-CMC-positive urine), and combination of ß-ketoreduction, oxidative deamination, and O-glucuronidation (main metabolite in 4-CMC-positive urine). These latter metabolites were detected in negative-ionization mode only and their non-conjugated form was not detected after glucuronide hydrolysis; this metabolic pathway was never reported for any methcathinone analogue susceptible to undergo the same transformations. These results support the need for comprehensive screening strategies in metabolite identification studies, to avoid overlooking significant metabolites and major markers of consumption.


Subject(s)
Hepatocytes , Humans , Hepatocytes/metabolism , Hepatocytes/drug effects , Tandem Mass Spectrometry/methods , Propiophenones/pharmacokinetics , Propiophenones/metabolism , Chromatography, Liquid/methods , Substance Abuse Detection/methods , Methamphetamine/analogs & derivatives , Methamphetamine/metabolism , Methamphetamine/administration & dosage , Methamphetamine/pharmacokinetics , Psychotropic Drugs/pharmacokinetics , Psychotropic Drugs/metabolism , Psychotropic Drugs/administration & dosage , Metabolomics/methods , Alkaloids/metabolism , Illicit Drugs
7.
Br J Pharmacol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772548

ABSTRACT

BACKGROUND AND PURPOSE: α-Pyrrolidinobutiothiophenone (α-PBT) is a chemical derivative of cathinone, a structural analogue of amphetamine. Until now, there have been a few previous neurochemical or neurobehavioural studies on the abuse potential of α-PBT. EXPERIMENTAL APPROACH: We examined the abuse potential of α-PBT by measuring psychomotor, rewarding, and reinforcing properties and methamphetamine-like discriminative stimulus effects in rodents using locomotor activity, conditioned place preference, self-administration, and drug discrimination studies. To clarify the underlying neuropharmacological mechanisms, we measured dopamine levels and neuronal activation in the dorsal striatum. In addition, we investigated the role of the dopamine D1 receptor or D2 receptors in α-PBT-induced hyperlocomotor activity, conditioned place preference, and the methamphetamine-like discriminative stimulus effect of α-PBT in rodents. KEY RESULTS: α-PBT promoted hyperlocomotor activity in mice. α-PBT induced drug-paired place preference in mice and supported self-administration in rats. In a drug discrimination experiment, α-PBT fully substituted for the discriminative stimulus effects of methamphetamine in rats. Furthermore, α-PBT increased dopamine levels and c-Fos expression in the dorsal striatum of mice, which was associated with these behaviours. Finally, pretreatment with the D1 receptor antagonist SCH23390 or the D2 receptors antagonist eticlopride significantly attenuated acute or repeated α-PBT-induced hyperlocomotor activity, place preference, and the methamphetamine-like discriminative stimulus effects in rodents. CONCLUSIONS AND IMPLICATIONS: These findings suggest that α-PBT has abuse potential at the highest dose tested via enhanced dopaminergic transmission in the dorsal striatum of rodents. The results provide scientific evidence for the legal restrictions of the recreational use of α-PBT.

8.
Curr Drug Metab ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38752643

ABSTRACT

BACKGROUND: Cathinone is a natural stimulant found in the Catha edulis plant. Its derivatives make up the largest group of new psychoactive substances. In order to better understand its effects, it is imperative to investigate its distribution, pharmacokinetics, and metabolic profile. However, the existing literature on cathinone remains limited. OBJECTIVE: This study aimed to investigate the disposition kinetics and metabolic profile of cathinone and its metabolite cathine through a single oral dose of cathinone administration in rats. METHODS: Cathinone and cathine concentrations were identified and quantified using ion trap liquid chromatography- mass spectrometry (LC-IT/MS). The metabolic profile in the serum, brain, lung, liver, kidney, and heart was analyzed at specific time points (0, 0.5, 2.5, 6, 12, 24, 48, and 72 hours) using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) method. RESULTS: The highest concentration of cathinone was found in the kidney (1438.6 µg/L, which gradually decreased to 1.97 within 48 h and disappeared after 72 h. Cathinone levels in the lungs, liver, and heart were 859, 798.9, and 385.8 µg/L, respectively, within half an hour. However, within 2.5 hours, these levels decreased to 608.1, 429.3, and 309.1 µg/L and became undetectable after 24 h. In the rat brain, cathinone levels dropped quickly and were undetectable within six hours, decreasing from 712.7 µg/L after 30 min. In the brain and serum, cathine reached its highest levels at 2.5 hours, while in other organs, it peaked at 0.5 hours, indicating slower conversion of cathinone to cathine in the brain and serum. CONCLUSION: This study revealed a dynamic interplay between cathinone disposition kinetics and its impact on organ-specific metabolic profiles in rats. These results have significant implications for drug development, pharmacovigilance, and clinical practices involving cathinone. Investigating the correlation between the changes in biomarkers found in the brain and the levels of cathinone and cathine is essential for informed decision- making in medical practices and further research into the pharmacological properties of cathinone.

9.
J Biomol Struct Dyn ; : 1-16, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698732

ABSTRACT

In a step towards understanding the structure-property relationship among Synthetic Cathinones (SCs), a combined methodology based on Density Functional Theory (DFT), Administration, Distribution, Metabolism, Excretion, and Toxicity (ADMET) predictions, docking and molecular dynamics simulations have been applied to correlate physicochemical descriptors of various SCs to their biological activity. The results from DFT and molecular docking studies correlate well with each other explaining the biological activity trends of the studied SCs. Quantum mechanical descriptors viz. polarizability, electron affinity, ionization potential, chemical hardness, electronegativity, molecular electrostatic potential, and ion interaction studies unravel the distinguishingly reactive nature of Group D (pyrrolidine substituted) and Group E (methylenedioxy and pyrrolidine substituted) compounds. According to ADMET analysis, Group D and Group E molecules have a higher probability of permeating through the blood-brain barrier. Molecular docking results indicate that Phe76, Ala77, Asp79, Val152, Tyr156, Phe320, and Phe326 constitute the binding pocket residues of hDAT in which the most active ligands MDPV, MDPBP, and MDPPP are bound. Finally, to validate the derived quantum chemical descriptors and docking results, Molecular Dynamics (MD) simulations are performed with homology-modelled hDAT (human dopamine transporter). The MD simulation results revealed that the majority of SCs remain stable within the hDAT protein's active sites via non-bonded interactions after 100 ns long simulations. The findings from DFT, ADMET analysis, molecular docking, and molecular dynamics simulation studies complement each other suggesting that pyrrolidine-substituted SCs (Group D and E), specifically, MPBP and PVN are proven potent SCs along with MDPV, validating various experimental observations.Communicated by Ramaswamy H. Sarma.

10.
Brain Sci ; 14(3)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38539653

ABSTRACT

Structural modifications to synthetic psychoactive cathinones (SPCs), a class of drugs that contain a ß-keto modification of the phenethylamine pharmacophore of amphetamine, induce differences in dopamine transporter (DAT) activity. Here, in vivo retrodialysis was utilized to deliver the SPCs 3,4-methylenedioxypyrovalerone (MDPV, a DAT inhibitor) or methylone (a DAT substrate) into the caudate putamen of male Sprague-Dawley rats. Dialysate samples were collected prior to and post drug administration, and temporal changes in dopamine concentration were quantified using HPLC-EC methods. Methylone elicited a 200% increase and MDPV a 470% increase in dopamine levels at the 10 min time point. The findings demonstrate that in vivo retrodialysis can be used to evaluate the effects of SPCs on neurotransmission in the brain.

11.
Eur J Pharmacol ; 969: 176466, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38431243

ABSTRACT

The chronic use of the novel synthetic cathinone mexedrone, like other psychoactive drugs, can be considered addictive, with a high potential for abuse and the ability to cause psychological dependence in certain users. However, little is known about the neurobehavioral effects of mexedrone in association with its potential for abuse. We investigated the abuse potential for mexedrone abuse through multiple behavioral tests. In addition, serotonin transporter (SERT) levels were measured in the synaptosome of the dorsal striatum, and serotonin (5-HT) levels were measured in the dorsal striatum of acute mexedreone (50 mg/kg)-treated mice. To clarify the neuropharmacological mechanisms underlying the locomotor response of mexedrone, the 5-HT2A receptor antagonist M100907 (0.5 or 1.0 mg/kg) was administered prior to the acute injection of mexedrone in the locomotor activity experiment in mice. Mexedrone (10-50 mg/kg) produced a significant place preference in mice and mexedrone (0.1-0.5 mg/kg/infusion) maintained self-administration behavior in rats in a dose-dependent manner. In the drug discrimination experiment, mexedrone (5.6-32 mg/kg) was fully substituted for the discriminative stimulus effects of cocaine in rats. Mexedrone increased locomotor activity, and these effects were reversed by pretreatment with M100907. Acute mexedrone significantly increased c-Fos expression in the dorsal striatum and decreased SERT levels in the synaptosome of the dorsal striatum of mice, resulting in an elevation of 5-HT levels. Taken together, our results provide the possibility that mexedrone has abuse potential, which might be mediated, at least in part, by the activation of the serotonergic system in the dorsal striatum.


Subject(s)
Cocaine , Fluorobenzenes , Methamphetamine/analogs & derivatives , Piperidines , Synthetic Cathinone , Rats , Mice , Male , Animals , Rats, Sprague-Dawley , Serotonin/metabolism , Cocaine/pharmacology , Dose-Response Relationship, Drug
12.
Forensic Toxicol ; 42(2): 172-180, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38554217

ABSTRACT

PURPOSE: Synthetic cathinones constitute the second largest group of new psychoactive substances, which are often used for recreational purposes and reported in toxicological analysis. Various factors may influence the stability of synthetic cathinones between sampling and analysis, and therefore, stability studies are required to determine the best storage conditions as well as extend the period of detection. METHODS: This study involved sixteen synthetic cathinones and ten dihydro-metabolites spiked in human urine to evaluate the stability under common storage conditions to imitate real forensic toxicology samples. The samples were stored at either room temperature (22-23 °C) for up to 3 days, refrigerated (4 °C) for up to 14 days or frozen (-40 °C) for up to 12 months, and analyzed in triplicate using a validated liquid chromatography-tandem mass spectrometry method. RESULTS: Analytes' concentrations decreased over time, although slower when stored frozen. All analytes remained stable (> 80%) for 1 month when stored frozen before losses in content were more apparent for some compounds, depending on their chemical structure. Under all storage conditions, the highest instability was observed for analytes containing halogens (i.e., chlorine or fluorine). Thus, halogenated analytes were further investigated by using liquid chromatography coupled to quadruple time-of-flight mass spectrometry to attempt identifying degradation products. CONCLUSIONS: Irrespective of parent analytes, dihydro-metabolites had improved stability at each tested temperature, which highlights their importance as appropriate urine biomarkers when retesting is required after a long period of storage.


Subject(s)
Alkaloids , Drug Stability , Specimen Handling , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Specimen Handling/methods , Alkaloids/urine , Alkaloids/chemistry , Psychotropic Drugs/urine , Psychotropic Drugs/chemistry , Temperature , Freezing , Time Factors
13.
Molecules ; 29(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38398627

ABSTRACT

The characteristic alkaloid component of the leaves of the catnip shrub (Catha edulis) is cathinone, and its synthetic analogs form a major group of recreational drugs. Cathinone derivatives are chiral compounds. In the literature, several chiral methods using cyclodextrins (CDs) have been achieved so far for diverse sets of analogs; however, a comprehensive investigation of the stability of their CD complexes has not been performed yet. To characterize the enantioselective complex formation, a systematic experimental design was developed in which a total number of 40 neutral, positively, and negatively charged CD derivatives were screened by affinity capillary electrophoresis and compared according to their cavity size, substituent type, and location. The functional groups responsible for the favorable interactions were identified in the case of para-substituted cathinone analog mephedrone, flephedrone, and 4-methylethcathinone (4-MEC) and in the case of 3,4-methylendioxy derivative butylone and methylenedioxypyrovalerone (MDPV). The succinylated-ß-CD and subetadex exhibited the highest complex stabilities among the studied drugs. The complex stoichiometry was determined using the Job's plot method, and the complex structures were further studied using ROESY NMR measurements. The results of our enantioselective complex formation study can facilitate chiral method development and may lead to evaluate potential CD-based antidotes for cathinone analogs.


Subject(s)
Alkaloids , Cyclodextrins , Cyclodextrins/chemistry , Stereoisomerism , Magnetic Resonance Spectroscopy/methods
14.
J Pharm Biomed Anal ; 241: 115994, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38309098

ABSTRACT

Forensic laboratories are constantly required to identify new drugs and their metabolites. N-ethylhexedrone (NEH, HEXEN), N-Ethylpentedrone (NEP), and 4-Chloromethcathinone (4-CMC, clephedrone) are synthetic substances structurally related to natural cathinone, alkaloid present in the leaves of the Catha edulis (Khat) plant. These synthetic cathinones (SC) are members of the heterogenous family of new psychoactive substances (NPS) that raised major concerns in scientific and forensic communities over the past years due to their widespread consumption. In this context, we investigated their metabolic profile using of UHPLC-QTOF-HRMS to elucidate the distribution of the parent drug and its metabolites in urine samples over time. Initially, both male and female volunteers were divided into three groups and eight subjects of each group were administered intranasally or orally with one SC (20-40 mg of NEH or NEP intranasal, 100-150 mg of 4-CMC oral). Urine samples were collected at 0-2 and 2-4 or 2-5 h. Urine (50 µL) was diluted 1:2 with acetonitrile/methanol (95:5) and injected into the UHPLC-QTOF-HRMS. Phase-I and phase-II metabolites were identified on the basis of fragmentation patterns and exact masses. Several phase-I and glucuronide-phase-II metabolites were identified in urine samples. Keto group reduction, hydroxylation and dealkylation were the common metabolic pathways identified for all cathinones and the presence of NEH-glucuronide, NEP-glucuronide and 4-CMC-glucuronide was also relevant. Significant is the slower metabolite formation for 4-CMC, which was detected at high concentrations in its original form even 5 h after administration, due to its long half-life and low intrinsic clearance compared to the other SCs. UHPLC-QTOF-HRMS demonstrated a considerable capability to semi-quantify the three synthetic cathinones and identify the target metabolites with high reliability. The introduction of new target compounds improves the efficiency of toxicological screening analysis on real samples and extends the window of detection of the SCs in biological matrices.


Subject(s)
Glucuronides , Methylamines , Propiophenones , Synthetic Cathinone , Humans , Chromatography, High Pressure Liquid , Reproducibility of Results , Metabolome
15.
J Pharm Biomed Anal ; 241: 115974, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38277706

ABSTRACT

MDPHP is a synthetic cathinone (SC) belonging to α-pyrrolidinophenone derivatives. It is a central nervous system stimulant and may induce hallucinations, paranoia, tachycardia, hypertension, chest pain, and rhabdomyolysis. In literature, a few cases of intoxication have been reported. In the present study, 17 cases of MDPHP intake were described including the analytical findings and clinical manifestations. MDPHP was quantified by liquid chromatography-tandem mass spectrometry in blood (range 1.26-73.30 ng/mL) and urine (range 19.31-8769.64 ng/mL) samples. In three cases the presence of α-PHP was observed. In one case, MDPHP was the only detected substance. Concomitant use of MDPHP with other substances, particularly psychostimulants, was common and it was difficult to describe the peculiar clinical characteristics of this SC. Most of the symptoms overlapped those expected, some of them were unusual and all of them particularly severe thus inducing the research of NPS in laboratory tests. We demonstrated the presence of psychiatric, neurological, and respiratory symptoms, as well as the possible presence of rhabdomyolysis and cardiotoxicity associated with the use of MDPHP. ED admissions were also more frequent in patients with addiction problems. In some cases, MDPHP intake required intensive supportive care. A multidisciplinary approach, including specialist consultation, is recommended for patients showing challenging features. Moreover, we demonstrated that the adoption of advanced analytical techniques, i.e., liquid chromatography-tandem mass spectrometry, is necessary to detect these molecules. Further studies are needed to understand MDPHP intake patterns and associated symptoms. It is essential to raise awareness in addiction treatment centers and among potential users, especially young people, and chemsex addicted.


Subject(s)
Central Nervous System Stimulants , Rhabdomyolysis , Humans , Adolescent , Synthetic Cathinone , Mass Spectrometry , Chromatography, Liquid
16.
Drug Test Anal ; 16(3): 277-288, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37431186

ABSTRACT

1-(2,3-Dihydro-1H-inden-5-yl)-2-(piperidin-1-yl)pentan-1-one (3,4-Pr-PipVP), a novel synthetic cathinone (SCat), was first identified in 2022 in Germany. The product was marketed as 1-(bicyclo[4.2.0]octa-1,3,5-trien-3-yl)-2-(pyrrolidin-1-yl)pentan-1-one (3,4-EtPV), a substance not covered by the German New Psychoactive Substances Act (NpSG). Although originally intended to be an exploratory new synthetic cathinone containing the novel bicyclo[4.2.0]octatrienyl function, the compound was subsequently confirmed to contain an indanyl ring system scheduled under generic legislation like the NpSG. However, it is one of only a few marketed SCats carrying a piperidine ring. Inhibition experiments involving norepinephrine, dopamine, and serotonin transporters showed that 3,4-Pr-PipVP was a low potency blocker at all three monoamine transporters compared to related substances such as MDPV. Additionally, pharmacokinetic data were collected from pooled human liver microsomes incubations and from the analysis of authentic urine samples received after oral administration of 5 mg 3,4-Pr-PipVP hydrochloride. Phase I metabolites were tentatively identified in vitro and in vivo using liquid chromatography-time-of-flight mass spectrometry. Main metabolites were formed by metabolic reduction of the carbonyl function with and without additional hydroxylations at the propylene bridge of the molecule. Keto-reduced H2 -3,4-Pr-PipVP and H2 -piperidine-OH-3,4-Pr-PipVP as well as aryl-OH-3,4-Pr-PipVP, and indanyl-OH-piperidine-OH-3,4-Pr-PipVP are suggested as most suitable biomarkers for the detection of 3,4-Pr-PipVP since they were detected for much longer than the parent compound. 3,4-Pr-PipVP could be detected for up to 21 h whereas its metabolites were detectable for up to about 4 days.


Subject(s)
Body Fluids , Synthetic Cathinone , Humans , Microsomes, Liver/metabolism , Biomarkers/metabolism , Piperidines/metabolism
17.
Arch Toxicol ; 98(1): 151-158, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37833490

ABSTRACT

Eutylone is a cathinone-derived synthetic amphetamine scheduled by the World Health Organization and European Monitoring Centre for Drugs and Drug Addiction since 2022 due to its growing consumption. We report here an eutylone intoxication involving a 38-year-old man and a 29-year-old woman in a chemsex context. A bag containing a white crystalline powder labelled as a research product was found in their vehicle. Nuclear magnetic resonance and liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analyses identified the powder as eutylone and confirmed purity superior to 99%. LC-HRMS data analysis using molecular networking allowed to propose new eutylone metabolites in blood samples in a graphical manner. We described 16 phase I (e.g. hydroxylated or demethylated) and phase II metabolites (glucuroconjugates and sulfoconjugates). The same metabolites were found both in male and female blood samples. Toxicological analyses measured eutylone concentration in blood samples at 1374 ng/mL and 1536 ng/mL for the man and the woman, respectively. A keto-reduced metabolite (m/z 238.144) was synthesized to permit its quantification at 67 ng/mL and 54 ng/mL in male and female blood samples, respectively. Overall, the identification of these metabolites will increase the knowledge of potential drug consumption markers and allow to implement mass spectrometry databases to better monitor future drug abuse or consumption.


Subject(s)
Substance-Related Disorders , Humans , Male , Female , Adult , Chromatography, Liquid/methods , Powders , Mass Spectrometry/methods , Substance-Related Disorders/diagnosis , Amphetamine
18.
Talanta ; 269: 125375, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37977086

ABSTRACT

3',4'-Methylenedioxy-N-tert-butylcathinone (MDPT), also known as tBuONE or D-Tertylone, is a synthetic cathinone (SC) frequently abused for recreational purposes due to its potent stimulant effects and similarity to illegal substances like methamphetamine and ecstasy. The structural diversity and rapid introduction of new SC analogs to the market poses significant challenges for law enforcement and analytical methods for preliminary screening of illicit drugs. In this work, we present, for the first time, the electrochemical detection of MDPT using screen-printed electrodes modified with carbon nanofibers (SPE-CNF). MDPT exhibited three electrochemical processes (two oxidations and one reduction) on SPE-CNF. The proposed method for MDPT detection was optimized in 0.2 mol L-1 Britton-Robinson buffer solution at pH 10.0 using differential pulse voltammetry (DPV). The SPE-CNF showed a high stability for electrochemical responses of all redox processes of MDPT using the same or different electrodes, with relative standard deviations less than 4.7% and 1.5% (N = 3) for peak currents and peak potentials, respectively. Moreover, the proposed method provided a wide linear range for MDPT determination (0.90-112 µmol L-1) with low LOD (0.26 µmol L-1). Interference studies for two common adulterants, caffeine and paracetamol, and ten other illicit drugs, including amphetamine-like compounds and different SCs, showed that the proposed sensor is highly selective for the preliminarily identification of MDPT in seized forensic samples. Therefore, SPE-CNF with DPV can be successfully applied as a fast and simple screening method for MDPT identification in forensic analysis, addressing the significant challenges posed by the structural diversity of SCs.

19.
J Pharm Biomed Anal ; 239: 115897, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38071765

ABSTRACT

A comprehensive study was performed to determine an optimum enantioseparation method for fluorine-substituted amphetamine and cathinone derivatives (fluor-amphetamine and fluor-cathinone derivatives), using a binary system consisting of carboxymethyl-ß-CD (CM-ß-CD) and a deep eutectic solvent (DES), namely choline chloride-ethylene glycol (ChCl-EG). Under this framework, the optimization and modeling of the separation conditions in a binary system were performed with the objective of maximizing resolution and minimizing analysis time. This was achieved through the application of response surface methodology. In particular, the effect of chiral selector concentration and percentage of DES on resolution and analysis time were investigated and optimized using a complete experimental design. The optimum enantioseparation conditions were determined to be 13.84 mM CM-ß-CD and 0.15% v/v ChCl-EG for fluorine-substituted amphetamine derivatives and 14.36 mM and 0.75% v/v ChCl-EG for fluorine-substituted cathinone derivatives, respectively. This combination resulted in a baseline separation for eight out of the nine analytes studied. Overall, the results demonstrated the synergistic effect of the CM-ß-CD/DES dual system and highlighted the significance of DESs as additives in capillary electrophoresis.


Subject(s)
Deep Eutectic Solvents , Fluorine , Electrophoresis, Capillary/methods , Choline , Amphetamines , Stereoisomerism
20.
Neuropharmacology ; 245: 109827, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38154512

ABSTRACT

Substitutions to the phenethylamine structure give rise to numerous amphetamines and cathinones, contributing to an ever-growing number of abused novel psychoactive substances. Understanding how various substitutions affect the pharmacology of phenethylamines may help lawmakers and scientists predict the effects of newly emerging drugs. Here, we established structure-activity relationships for locomotor stimulant and monoamine transporter effects of 12 phenethylamines with combinations of para-chloro, ß-keto, N-methyl, or N-ethyl additions. Automated photobeam analysis was used to evaluate effects of drugs on ambulatory activity in mice, whereas in vitro assays were used to determine activities at transporters for dopamine (DAT), norepinephrine (NET), and 5-HT (SERT) in rat brain synaptosomes. In mouse studies, all compounds stimulated locomotion, except for 4-chloro-N-ethylcathinone. Amphetamines were more potent stimulants than their ß-keto counterparts, while para-chloro amphetamines tended to be more efficacious than unsubstituted amphetamines. Para-chloro compounds also produced lethality at doses on the ascending limbs of their locomotor dose-effect functions. The in vitro assays showed that all compounds inhibited uptake at DAT, NET, and SERT, with most compounds also acting as substrates (i.e., releasers) at these sites. Unsubstituted compounds displayed better potency at DAT and NET relative to SERT. Para-chloro substitution or increased N-alkyl chain length augmented relative potency at SERT, while combined para-chloro and N-ethyl substitutions reduced releasing effects at NET and DAT. These results demonstrate orderly SAR for locomotor stimulant effects, monoamine transporter activities, and lethality induced by phenethylamines. Importantly, 4-chloro compounds produce toxicity in mice that suggests serious risk to humans using these drugs in recreational contexts.


Subject(s)
Alkaloids , Central Nervous System Stimulants , Humans , Rats , Mice , Animals , Amphetamines/pharmacology , Alkaloids/pharmacology , Central Nervous System Stimulants/pharmacology , Structure-Activity Relationship , Carrier Proteins , Dopamine Plasma Membrane Transport Proteins/metabolism , Serotonin Plasma Membrane Transport Proteins , Norepinephrine Plasma Membrane Transport Proteins
SELECTION OF CITATIONS
SEARCH DETAIL