Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.572
Filter
1.
J Neuroinflammation ; 21(1): 190, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095775

ABSTRACT

Retinitis pigmentosa (RP), an inherited retinal disease, affects 1,5 million people worldwide. The initial mutation-driven photoreceptor degeneration leads to chronic inflammation, characterized by Müller cell activation and upregulation of CD44. CD44 is a cell surface transmembrane glycoprotein and the primary receptor for hyaluronic acid. It is involved in many pathological processes, but little is known about CD44's retinal functions. CD44 expression is also increased in Müller cells from our Pde6bSTOP/STOP RP mouse model. To gain a more detailed understanding of CD44's role in healthy and diseased retinas, we analyzed Cd44-/- and Cd44-/-Pde6bSTOP/STOP mice, respectively. The loss of CD44 led to enhanced photoreceptor degeneration, reduced retinal function, and increased inflammatory response. To understand the underlying mechanism, we performed proteomic analysis on isolated Müller cells from Cd44-/- and Cd44-/-Pde6bSTOP/STOP retinas and identified a significant downregulation of glutamate transporter 1 (SLC1A2). This downregulation was accompanied by higher glutamate levels, suggesting impaired glutamate homeostasis. These novel findings indicate that CD44 stimulates glutamate uptake via SLC1A2 in Müller cells, which in turn, supports photoreceptor survival and function.


Subject(s)
Ependymoglial Cells , Hyaluronan Receptors , Retinitis Pigmentosa , Signal Transduction , Animals , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Mice , Ependymoglial Cells/metabolism , Signal Transduction/physiology , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology , Retinitis Pigmentosa/genetics , Mice, Knockout , Mice, Inbred C57BL , Photoreceptor Cells, Vertebrate/metabolism , Cell Survival/physiology , Mice, Transgenic , Retina/metabolism , Retina/pathology
2.
Clin Kidney J ; 17(7): sfae196, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39050866

ABSTRACT

Background: Diabetic kidney disease (DKD) poses a significant challenge globally as a complication of diabetes. Hyaluronan (HA), a critical non-sulfated glycosaminoglycan in the extracellular matrix, plays a pivotal role in the progression of DKD. This study assesses the predictive significance of HA's corresponding receptor, RHAMM (receptor for HA-mediated motility), in DKD pathogenesis in type 2 diabetes (T2DM) patients. Methods: Enzyme-linked immunosorbent assays were utilized to measure plasma and urine levels of HA, CD44 and RHAMM in 99 diabetic patients. Immunohistochemistry staining was employed to examine HA deposition, CD44 and RHAMM expressions from 18 biopsy-proven DKD patients. Spearman correlation analysis, linear regression and receiver operating characteristic (ROC) analysis were conducted to establish associations between plasma HA, CD44 and RHAMM levels, and clinical parameters in DKD patients with T2DM. Results: Elevated plasma and urine HA, CD44 and RHAMM levels were notably observed in the severe renal dysfunction group. Plasma RHAMM exhibited positive correlations with HA (r = 0.616, P < .001) and CD44 (r = 0.220, P < .001), and a negative correlation with estimated glomerular filtration rate (eGFR) (r = -0.618, P < .001). After adjusting for other potential predictors, plasma RHAMM emerged as an independent predictor of declining eGFR (ß = -0.160, P < .05). Increased HA, CD44 and RHAMM levels in kidney biopsies of DKD patients were closely associated with heightened kidney injury. The ROC curve analysis highlighted an area under the curve (AUC) of 0.876 for plasma RHAMM, indicating superior diagnostic efficacy compared to CD44 in predicting DKD pathogenesis. The combined AUC of 0.968 for plasma RHAMM, HA and CD44 also suggested even greater diagnostic potential for DKD pathogenesis. Conclusion: These findings provide initial evidence that elevated RHAMM levels predict DKD pathogenesis in T2DM patients. The formation of a triple complex involving HA, CD44 and RHAMM on the cell surface shows promise as a targetable biomarker for early intervention to mitigate severe renal dysfunctions.

3.
Front Pharmacol ; 15: 1437515, 2024.
Article in English | MEDLINE | ID: mdl-39055490

ABSTRACT

Introduction: Icaritin (ICT), a promising anti-hepatocellular carcinoma (HCC) prenylated flavonoid, is hindered from being applied due to its low water solubility and high lipophilicity in poorly differentiated HCC which is associated with upregulation of CD44 isoforms. Thus, hyaluronic acid (HA), a natural polysaccharide with high binding ability to CD44 receptors, was used to formulate a modified liposome as a novel targeted ICT-delivery system for HCC treatment. Methods: The ICT-Liposomes (Lip-ICT) with and without HA were prepared by a combined method of thin-film dispersion and post-insertion. The particle size, polydispersity (PDI), zeta potential, encapsulation efficacy (%EE), drug loading content (%DLC), and in vitro drug release profiles were investigated for physicochemical properties, whereas MTT assay was used to assess cytotoxic effects on HCC cells, HepG2, and Huh7 cells. Tumor bearing nude mice were used to evaluate the inhibitory effect of HA-Lip-ICT and Lip-ICT in vivo. Results: Lip-ICT and HA-Lip-ICT had an average particle size of 171.2 ± 1.2 nm and 208.0 ± 3.2 nm, with a zeta potential of -13.9 ± 0.83 and -24.8 ± 0.36, respectively. The PDI resulted from Lip-ICT and HA-Lip-ICT was 0.28 ± 0.02 and 0.26 ± 0.02, respectively. HA-Lip-ICT demonstrated higher in vitro drug release when pH was dropped from 7.4 to 5.5, The 12-h release rate of ICT from liposomes increased from 30% at pH7.4 to more than 60% at pH5.5. HA-Lip-ICT displayed higher toxicity than Lip-ICT in both HCC cells, especially Huh7with an IC50 of 34.15 ± 2.11 µM. The in vivo tissue distribution and anti-tumor experiments carried on tumor bearing nude mice indicated that HA-Lip- ICT exhibited higher tumor accumulation and achieved a tumor growth inhibition rate of 63.4%. Discussion: The nano-sized Lip-ICT was able to prolong the drug release time and showed long-term killing HCC cells ability. Following conjugation with HA, HA-Lip-ICT exhibited higher cytotoxicity, stronger tumor targeting, and tumor suppression abilities than Lip-ICT attributed to HA-CD44 ligand-receptor interaction, increasing the potential of ICT to treat HCC.

4.
bioRxiv ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39026820

ABSTRACT

RBM10 modulates transcriptome-wide cassette exon splicing. Loss-of-function RBM10 mutations are enriched in thyroid cancers with distant metastases. Analysis of transcriptomes and genes mis-spliced by RBM10 loss showed pro-migratory and RHO/RAC signaling signatures. RBM10 loss increases cell velocity. Cytoskeletal and ECM transcripts subject to exon-inclusion events included vinculin (VCL), tenascin C (TNC) and CD44. Knockdown of the VCL exon inclusion transcript in RBM10-null cells reduced cell velocity, whereas knockdown of TNC and CD44 exon-inclusion isoforms reduced invasiveness. RAC1-GTP levels were increased in RBM10-null cells. Mouse Hras G12V /Rbm1O KO thyrocytes develop metastases that are reversed by RBM10 or by combined knockdown of VCL, CD44 and TNC inclusion isoforms. Thus, RBM10 loss generates exon inclusions in transcripts regulating ECM-cytoskeletal interactions, leading to RAC1 activation and metastatic competency. Moreover, a CRISPR-Cas9 screen for synthetic lethality with RBM10 loss identified NFkB effectors as central to viability, providing a therapeutic target for these lethal thyroid cancers.

5.
Aging (Albany NY) ; 16(13): 10765-10783, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38985127

ABSTRACT

The calcitonin receptor (CALCR) is an essential protein for maintaining calcium homeostasis and has been reported to be upregulated in numerous cancers. However, the molecular role of CALCR in renal cell carcinoma (RCC) is not well understood. In this study, we identified the overexpression of CALCR in RCC using human tissue chip by immunohistochemical (IHC) staining, which was associated with a poor prognosis. Functionally, CALCR depletion inhibited RCC cell proliferation and migration, and induced cell apoptosis and cycle arrest. CALCR is also essential for in vivo tumor formation. Mechanistically, we demonstrated that CALCR could directly bind to CD44, preventing CD44 protein degradation and thereby upregulating CD44 expression. Moreover, a deficiency in CD44 significantly attenuated the promoting role of CALCR on RCC cell proliferation, migration and anti-apoptosis capacities. Collectively, CALCR exacerbates RCC progression via stabilizing CD44, offering a fundamental basis for considering CALCR as a potential therapeutic target for RCC patients.


Subject(s)
Apoptosis , Carcinoma, Renal Cell , Cell Proliferation , Disease Progression , Hyaluronan Receptors , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/genetics , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Cell Line, Tumor , Animals , Cell Movement , Mice , Male , Gene Expression Regulation, Neoplastic , Female
6.
Hepatol Res ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037743

ABSTRACT

AIM: Epithelial splicing regulatory protein 1 (ESRP1) regulates tumor progression and metastasis through the epithelial‒mesenchymal transition by interacting with zinc finger E-box binding 1 (ZEB1) and CD44 in cancers. However, the role of ESRP1 in intrahepatic cholangiocarcinoma (iCCA) remains unclear. METHODS: Three iCCA cell lines (HuCCT-1, SSP-25, and KKU-100) were analyzed using small interfering RNA to investigate the molecular biological functions of ESRP1 and ZEB1. The association between clinicopathological features and the expression of ESRP1 and ZEB1 in iCCA tissues was analyzed immunohistochemically. Proteomic analysis was performed to identify molecules related to ESRP1 expression. RESULTS: ESRP1 expression was upregulated in HuCCT-1 and SSP-25 cells. Cell migration and invasion were enhanced, and the expression of ZEB1 and CD44s (CD44 standard) isoforms were upregulated in the ESRP1 silencing cells. Moreover, ESRP1 silencing increased the expression of N-cadherin and vimentin, indicating the presence of mesenchymal properties. Conversely, ZEB1 silencing increased the expression of ESRP1 and CD44v (CD44 variant) isoforms. Immunohistochemical analysis revealed that a lower ESRP1-to-ZEB1 expression ratio was associated with poor recurrence-free survival in patients with iCCA. Flotillin 2, a lipid raft marker related to epithelial‒mesenchymal transition, was identified as a protein related to the interactive feedback loop in proteomic analysis. CONCLUSIONS: ESRP1 suppresses tumor progression in iCCA by interacting with ZEB1 and CD44 to regulate epithelial‒mesenchymal transition.

7.
Future Oncol ; : 1-8, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011948

ABSTRACT

Aim: To evaluate the prognostic significance of CD44 variant v6 (CD44v6) and matrix metalloproteinases 2 (MMP2) expression in patients with surgically resected osteosarcoma. Methods: CD44v6 and MMP2 expression were immunohistochemically detected in 113 primary osteosarcoma patients at our institute between 2001 and 2019. Results: Both CD44v6 and MMP2 were independent predictors for metastasis-free and overall survival. An extended predictive range and improved sensitivity were observed when the combined effects of CD44v6 and MMP2 were considered. Specifically, patients with CD44v6+ and MMP2+ expression were more susceptible to lung metastasis and exhibited the poorest survival rates compared with the other groups. Conclusion: The combination of CD44v6 and MMP2 may serve as a precise prognostic indicator for predicting metastatic progression and survival outcomes in patients with osteosarcoma.


The most common type of bone cancer in children, teens and young adults is osteosarcoma, which often spreads to the lungs. With proper chemotherapy and surgery, many patients can recover, but if the diagnosis and treatment process go wrong, it could have serious consequences. The most common symptoms of osteosarcoma in its early stages are pain and swelling. The pain usually comes and goes, which can be easily mistaken for growing pains, resulting in a delayed diagnosis. In patients with metastatic (cancer cells spreading from the primary site to other parts of the body) osteosarcoma, the number of metastatic sites and whether they can be completely removed through surgery are factors that affect prognosis. So, starting appropriate treatment early for patients could effectively reduce tumor spread and increase survival time.

8.
Transl Cancer Res ; 13(6): 2971-2984, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988936

ABSTRACT

Background: Esophageal squamous cell carcinoma (ESCC), a prevalent malignancy within the upper gastrointestinal system, is characterized by its unfavorable prognosis and the absence of specific indicators for outcome prediction and high-risk case identification. In our research, we examined the expression levels of cancer stem cells (CSCs), markers CD44/SOX2 in ESCC, scrutinized their association with clinicopathological parameters, and developed a predictive nomogram model. This model, which incorporates CD44/SOX2, aims to forecast the overall survival (OS) of patients afflicted with ESCC. Methods: Immunohistochemistry was utilized to detect the expression levels of CD44 and SOX2 in both cancerous and paracancerous tissues of 68 patients with ESCC. The correlation between CD44/SOX2 expression and clinicopathological parameters was subsequently analyzed. Factors impacting the prognosis of ESCC patients were assessed through univariate and multivariate Cox regression analyses. Leveraging the results of these multivariate regression analyses, a nomogram prognostic model was established to provide individualized predictions of ESCC patient survival outcomes. The predictive accuracy of the nomogram prognostic model was evaluated using the consistency index (C-index) and calibration curves. Results: The expression levels of CD44 were markedly elevated in the tumor tissues of ESCC patients. Similarly, SOX2 was significantly overexpressed in the tumor tissues of ESCC patients. The positive expression of SOX2 in ESCC demonstrated a strong correlation with both the pathological T-stage and the presence of carcinoembryonic antigen. CD44 and SOX2 co-positive expression was significantly associated with the pathological T-stage and tumor node metastasis (TNM) stage. Furthermore, ESCC patients exhibiting CD44-positive expression in their tumor tissue generally had a more adverse prognosis. The co-expression of CD44 and SOX2 resulted in a grimmer prognosis compared to patients with other combinations. Multivariate Cox regression analysis identified the co-expression of CD44 and SOX2, the pathological T-stage, and lymph node metastasis as independent prognostic indicators for ESCC patients. The three identified variables were subsequently incorporated into a nomogram for predicting OS. The C-index of the measurement model and the area under the curve of the subjects' work characteristics showed good individual prediction. This prognostic model stratified patients into low- and high-risk categories. Analysis revealed that the 5-year OS rate was significantly higher in the low-risk group compared to the high-risk group. Conclusions: Elevated CD44 levels, indicative of CSC presence, are intimately linked with the oncogenesis of ESCC and are strongly predictive of unfavorable patient outcomes. Concurrently, the SOX2 gene exhibits a heightened expression in ESCC, markedly accelerating tumor progression and fostering more extensive disease infiltration. The co-expression of CD44 and SOX2 correlates significantly with ESCC patient prognosis, serving as a reliable, independent prognostic marker. Our constructed nomogram, incorporating CD44/SOX2 expression, enhances the prediction of OS and facilitates risk stratification in ESCC patients.

9.
Biochimie ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009062

ABSTRACT

Chronic lymphocytic leukaemia (CLL) is a heterogenous disease characterized by the accumulation of neoplastic CD5+/CD19+ B lymphocytes. The spreading of the leukaemia relies on the CLL cell's ability to survive in the blood and migrate to and proliferate within the bone marrow and lymphoid tissues. Some patients with CLL are either refractory to the currently available therapies or relapse after treatment; this emphasizes the need for novel therapeutic strategies that improving clinical responses and overcome drug resistance. CD38 is a marker of a poor prognosis and governs a set of survival, proliferation and migration signals that contribute to the pathophysiology of CLL. The literature data evidence a spatiotemporal association between the cell surface expression of CD38 and that of other CLL antigens, such as the B-cell receptor (BCR), CD19, CD26, CD44, the integrin very late antigen 4 (VLA4), the chemokine receptor CXCR4, the vascular endothelial growth factor receptor-2 (VEGF-R2), and the neutrophil gelatinase-associated lipocalin receptor (NGAL-R). Most of these proteins contribute to CLL cell survival, proliferation and trafficking, and cooperate with CD38 in multilayered signal transduction processes. In general, these antigens have already been validated as therapeutic targets in cancer, and a broad repertoire of specific monoclonal antibodies and derivatives are available. Here, we review the state of the art in this field and examine the therapeutic opportunities for cotargeting CD38 and its partners in CLL, e.g. by designing novel bi-/trispecific antibodies.

10.
Neuromolecular Med ; 26(1): 30, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020106

ABSTRACT

Adamantinomatous craniopharyngioma (ACP) is an intracranial tumor considered partly malignant due to its ability to infiltrate surrounding structures and tendency to relapse despite radical resection. CD44 is a known stem cell marker in ACP and is upregulated in cell clusters of invasive ACP protrusions; however, the functions of its alternative splicing isoform variants, CD44s and CD44v1-10, have not yet been studied in terms of ACP recurrence, despite their confirmed roles in cancer development and progression. In this study, we first confirmed the difference in total CD44 expression between samples from patients who experienced relapse and those from patients who did not. Moreover, our findings showed that, in recurrent samples, the predominant isoform expressed was CD44s, which might indicate its significance in predicting ACP recurrence. The association between increased CD44 expression and recurrence may lead to the development of prognostic markers of ACP aggressiveness and relapse potential; however, further studies are needed to clarify the exact mechanism of CD44 expression.


Subject(s)
Alternative Splicing , Biomarkers, Tumor , Craniopharyngioma , Hyaluronan Receptors , Neoplasm Recurrence, Local , Pituitary Neoplasms , Protein Isoforms , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/analysis , Craniopharyngioma/genetics , Biomarkers, Tumor/genetics , Male , Pituitary Neoplasms/surgery , Pituitary Neoplasms/metabolism , Pituitary Neoplasms/pathology , Child , Female , Child, Preschool , Adolescent , Gene Expression Regulation, Neoplastic , Prognosis
11.
Cell Rep ; 43(7): 114513, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39003736

ABSTRACT

Psoriasis is an intractable immune-mediated disorder that disrupts the skin barrier. While studies have dissected the mechanism by which immune cells directly regulate epidermal cell proliferation, the involvement of dermal fibroblasts in the progression of psoriasis remains unclear. Here, we identified that signals from dendritic cells (DCs) that migrate to the dermal-epidermal junction region enhance dermal stiffness by increasing extracellular matrix (ECM) expression, which further promotes basal epidermal cell hyperproliferation. We analyzed cell-cell interactions and observed stronger interactions between DCs and fibroblasts than between DCs and epidermal cells. Using single-cell RNA (scRNA) sequencing, spatial transcriptomics, immunostaining, and stiffness measurement, we found that DC-secreted LGALS9 can be received by CD44+ dermal fibroblasts, leading to increased ECM expression that creates a stiffer dermal environment. By employing mouse psoriasis and skin organoid models, we discovered a mechano-chemical signaling pathway that originates from DCs, extends to dermal fibroblasts, and ultimately enhances basal cell proliferation in psoriatic skin.


Subject(s)
Cell Proliferation , Dendritic Cells , Fibroblasts , Psoriasis , Psoriasis/pathology , Psoriasis/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Animals , Dendritic Cells/metabolism , Mice , Humans , Extracellular Matrix/metabolism , Galectins/metabolism , Mice, Inbred C57BL , Skin/pathology , Skin/metabolism
12.
Explor Target Antitumor Ther ; 5(3): 522-542, 2024.
Article in English | MEDLINE | ID: mdl-38966182

ABSTRACT

Aim: Metal nanoclusters are emerging nanomaterials applicable for drug delivery. Here, the toxicity and oxidative stress induction of divalent cationic cadmium (Cd2+) was compared with a Cd in the form of nanocluster. Then, it was used for targeted drug delivery into breast cancer cell lines. Methods: Using a green chemistry route, a Cd nanocluster (Cd-NC) was synthesized based on bovine serum albumin. After characterization, its genotoxicity and oxidative stress induction were studied in both in vitro and in vivo. After that, it was conjugated with hyaluronic acid (HA). The efficiency of hyaloronized-Cd-CN (HA-Cd-NC) for loading and releasing crocin (Cro), an anticancer phytochemical, was studied. Finally, it was applied for cell death induction in a panel of breast cancer cell lines. Results: The comet assay results indicated that, unlike Cd2+ and potassium permanganate (KMnO4), no genotoxicity and oxidative stress was induced by Cd-NC in vitro. Then, the pharmacokinetics of this Cd-NC was studied in vivo. The data showed that Cd-NC has accumulated in the liver and excreted from the feces of mice. Unlike Cd2+, no toxicity and oxidative stress were induced by this Cd-NC in animal tissues. Then, the Cd-NC was targeted toward breast cancer cells by adding HA, a ligand for the CD44 cell surface receptor. After that, Cro was loaded on HA-Cd-NC and it was used for the treatment of a panel of human breast cancer cell lines with varying degrees of CD44. The half-maximal drug inhibitory concentration (IC50) of Cro was significantly decreased when it was loaded on HA-Cd-NC, especially in MDA-MB-468 with a higher degree of CD44 at the surface. These results indicate the higher toxicity of Cro toward breast cancers when carried out by HA-Cd-NC. Conclusions: The Cd-NC was completely safe and is a promising candidate for delivering anticancer drugs/phytochemicals into the targeted breast tumors.

13.
Ultrastruct Pathol ; 48(4): 274-296, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38946300

ABSTRACT

Sepsis denotes a serious high mortality concern. The study was designed to evaluate the effect of mesenchymal stem cell exosomes (MSC-exosomes) on the evolution of the animal model of sepsis. In this study, 36 rats were distributed into three groups, (I) controls, (II) LPS-treated, and (III) LPS+MSC-EVs. Sepsis was simulated by administering E. coli-LPS to the laboratory animals. Group III was given MSC-exosomes four hours after the LPS injection. Forty-eight hours later rats were sacrificed. Ileum samples were excised, and processed for the histological assessment, immunohistochemical identification of CD44, and inducible nitric oxide synthase (iNOS). Ileum homogenate was used to estimate tumor necrosis factor α (TNF α) besides Cyclooxygenase-2 (COX 2). PCR was used for the detection of interleukin 1α (IL­1α), and interleukin 17 (IL­17). Statistical and morphometrical analysis was done. The LPS-treated group showed increased TNF-α, IL­1α, IL­17, and decreased COX 2. LPS administration led to cytoplasmic vacuolization of enterocytes, an increase in the vasculature, and cellular infiltrations invaded the lamina propria. There was a significant rise in goblet cells and the proportion of collagen fibers. Ultrastructurally, the enterocytes displayed nuclear irregularity, rough endoplasmic reticulum (rER) dilatation, and increased mitochondria number. Sepsis induces a significant increase in iNOS and a decrease in CD44 immune expressions. LPS+MSC-EVs group restored normal ileum structure and revealed a significant elevation in CD44 and a reduction in iNOS immunoreactions. LPS-sepsis induced an obvious ileum inflammatory deterioration ameliorated by MSC-exosomes, mostly through their antioxidant, anti-inflammatory, and anti-apoptotic properties.


Subject(s)
Disease Models, Animal , Exosomes , Ileum , Mesenchymal Stem Cells , Sepsis , Animals , Sepsis/complications , Rats , Ileum/pathology , Exosomes/metabolism , Male , Immunohistochemistry , Rats, Wistar , Nitric Oxide Synthase Type II/metabolism
14.
Sci Rep ; 14(1): 15988, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987552

ABSTRACT

AF1q associates with tumor progression and metastases upon WNT signaling. The downstream WNT target CD44 has demonstrated prognostic significance in gastric cancer (GC). This study evaluates the impact of AF1q on tumor stage and survival in GC patients. Immunohistochemical marker expression was analyzed and data were processed to correlation and survival analysis. Out of 182 GC samples, 178 (97.8%) showed moderate to high AF1q expression (p < 0.001), these samples correlated with positive lymph node stage (p = 0.036). In a subgroup analysis of patients with nodal-positive GC (n = 129, 70.9%), enhanced tumoral AF1q expression resulted in impaired recurrence-free survival (RFS, p = 0.030). Enhanced tumoral CD44 expression resulted in impaired disease-specific survival (DSS) in the subgroup of patients with nodal-positive GC (p = 0.031) as well as in the overall GC group (p = 0.005). AF1q demonstrated as an independent prognostic marker for RFS (p = 0.035) and CD44 for DSS (p = 0.036). AF1q has shown potential for prognostication of RFS in GC patients and is predominantly expressed in nodal-positive GC. Testing AF1q provides a possibility of identifying patients with locoregional (and advanced) disease, particularly at risk for disease recurrence. Implementing AF1q into the diagnostic process may facilitate screening, prognosis estimation as well as consideration of preoperative multimodal treatment in patients qualifying for elective upfront surgery.


Subject(s)
Biomarkers, Tumor , Neoplasm Recurrence, Local , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/diagnosis , Stomach Neoplasms/mortality , Male , Female , Middle Aged , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/metabolism , Aged , Prognosis , Biomarkers, Tumor/metabolism , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Adult , Gene Expression Regulation, Neoplastic , Neoplasm Staging
15.
Int Immunopharmacol ; 138: 112613, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38959542

ABSTRACT

Cancer stem cells (CSCs) significantly interfere with immunotherapy, leading to challenges such as low response rates and acquired resistance. PD-L1 expression is associated with the CSC population's overexpression of CD44. Mounting evidence suggests that the breast cancer stem cell (BCSC) marker CD44 and the immune checkpoint PD-L1 contribute to treatment failure through their networks. Natural compounds can overcome therapy resistance in breast cancer by targeting mechanisms underlying resistance in BCSCs. This review provides an updated insight into the CD44 and PD-L1 networks of BCSCs in mediating metastasis and immune evasion. The review critically examines existing literature, providing a comprehensive understanding of the topic and emphasizing the impact of natural flavones on the signaling pathways of BCSCs. Additionally, the review discusses the potential of natural compounds in targeting CD44 and PD-L1 in breast cancer (BC). Natural compounds consistently show potential in targeting regulatory mechanisms of BCSCs, inducing loss of stemness, and promoting differentiation. They offer a promising approach for developing alternative therapeutic strategies to manage breast cancer.


Subject(s)
B7-H1 Antigen , Breast Neoplasms , Drug Resistance, Neoplasm , Hyaluronan Receptors , Immune Evasion , Neoplastic Stem Cells , Humans , Hyaluronan Receptors/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/immunology , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , B7-H1 Antigen/metabolism , Drug Resistance, Neoplasm/drug effects , Female , Animals , Biological Products/pharmacology , Biological Products/therapeutic use , Signal Transduction/drug effects
16.
Article in English | MEDLINE | ID: mdl-39024216

ABSTRACT

Cytomegalic neurons, characterized by increased size and a hyperactive mechanistic target of rapamycin complex 1 (mTORC1), are pathognomonic for tuberous sclerosis complex (TSC). To model these neurons, we recently generated a murine Tsc1 conditional knockout model in which Tsc1 deletion in late embryonic radial glia results in neuronal hypertrophy of a subset of isocortical pyramidal neurons. In the current study, we compared the cellular pathology of these cytomegalic neurons to those of the enlarged neurons in human cortical tubers. Neurons from the mice showed unique features, such as cytoplasmic vacuoles associated with Golgi complexes and the ectopic formation of perineuronal nets (PNNs), a feature of inhibitory neurons, rarely present in excitatory cortical neurons. The membranes of these vacuoles were enriched for the plasma membrane proteins CD44, KCC2, and Na+/K+ ATPase, suggesting deficits in Golgi membrane trafficking. These aberrant features in the mouse appeared only after the onset of seizures, probably due to the prolonged seizure activity in the context of constitutive mTORC1 activation. Similar PNNs and cytoplasmic vacuoles were present in the cytomegalic neurons of human cortical tubers. Our findings reveal novel pathological features of Golgi complexes and PNNs in the cytomegalic neurons in TSC.

17.
Acta Biomater ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067646

ABSTRACT

While tyrosine kinase inhibitor resistance in cancer is a critical issue in the medical field, it is important for clinical testing as well, since it affects the ultimate outcome of cancer therapy. Yet, no effective solutions have been implemented till date. Clinical observations after tyrosine kinase inhibitor treatment reveal that acquired resistance inevitably limits the curative effects of non-small cell lung cancer treatment because of mutations in the epidermal growth factor receptor gene, which are accompanied by epithelial-mesenchymal transition. Here, for the first time, we report that the transmembrane glycoprotein CD44, which is associated with epithelial-mesenchymal transition, chemoresistance, and cancer progression, mediates enhanced endocytosis of iron-platinum alloy nanoparticles (FePt NPs) in the mesenchymal-state gefitinib-resistant (GR+ and M6) cells, via the binding of the CD44 ligand, hyaluronan, to the surface-absorbed hyaluronan-binding protein 2. Upon treatment with FePt NPs, there was higher cellular uptake in mesenchymal-state GR+ and M6 cells, resulting from cell death through ferroptosis and mitochondrial dysfunction, as compared to that observed in the epithelial-state cells. Mechanistically, inactivation of dihydroorotate dehydrogenase elevated the production of mitochondrial lipid peroxidation, and enhanced the cell death in the epithelial-state HCC827 cells, thereby indicating its role in defense against FePt NPs-induced ferroptosis. Furthermore, induction of ferroptosis has been shown to specifically promote the cell death of drug-tolerant "persister" cells and reverse their resistance as well. Therefore, we concluded that FePt NPs preferentially target mesenchymal drug-tolerant "persister" cells and promote ferroptosis, to overcome their resistance. STATEMENT OF SIGNIFICANCE: In the present study, we identified FePt NPs as an innovative agent for cancer treatment, particularly in mesenchymal-state cells that exhibit TKI resistance. Mesenchymal-state cancer cells showed enhanced uptake of FePt NPs via CD44-HA-mediated endocytosis, accompanied by severe cell death and mitochondrial morphology alterations, in comparison to epithelial-state cells. We further elucidated the mechanism underlying FePt NPs-induced ferroptotic cell death as via a burst of mitochondrial LPO and DHODH protein inactivation. In addition, we found that FePt NPs inhibit tumor growth in TKI-resistant mesenchymal GR+ cell-bearing mice with better efficacy than the ferroptotic inducer RSL3. Our current findings on using FePt NPs to overcome TKI resistance through ferroptosis activation may offer a alternative strategy for improved cancer treatment.

18.
J Agric Food Chem ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39072486

ABSTRACT

The CD44 gene is a critical factor in animal physiological processes and has been shown to affect insulin resistance and fat accumulation in mammals. Nevertheless, little research has been conducted on its precise functions in lipid metabolism and adipogenic differentiation in beef cattle. This study analyzed the expression of CD44 and miR-199a-3p during bovine preadipocyte differentiation. The luciferase reporter assay demonstrated that CD44 was a direct target of miR-199a-3p. Increased accumulation of lipid droplets and triglyceride levels, altered fatty acid metabolism, and accelerated preadipocyte differentiation were all caused by the upregulation of miR-199a-3p or a reduction in CD44 expression. CD44 knockdown upregulated the expression of adipocyte-specific genes (LPL and FABP4) and altered the levels of lipid metabolites (SOPC, l-arginine, and heptadecanoic acid). Multiomics highlights enriched pathways involved in energy metabolism (MAPK, cAMP, and calcium signaling) and shifts in mitochondrial respiration and glycolysis, indicating that CD44 plays a regulatory role in lipid metabolism. The findings show that intracellular lipolysis, glycolysis, mitochondrial respiration, fat deposition, and lipid droplet composition are all impacted by miR-199a-3p, which modulates CD44 in bovine adipocytes.

19.
J Nanobiotechnology ; 22(1): 452, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080641

ABSTRACT

Drug resistance to chemotherapy in cancers remains significant clinical challenges. CD44 modulates cellular adhesion, migration and growth, which plays a pivotal role in driving cancer resistance and even recurrence. Despite ongoing efforts, accurate, safe, and real-time dynamic monitoring techniques for CD44 expression remain inadequate in guiding the management of drug-resistant cancer treatment. In this study, we developed a nano-quenching and recovery detector of CD44 (Cy3-AptCD44@BPNSs) for visualizing cancer drug resistance. The fluorescence recovery of the detector is directly related to the CD44 expression level on cancer cells, which can be used to indicate the degree of drug resistance. It's confirmed that downregulating CD44 expression on cancer cells results in a corresponding decrease in the fluorescence intensity of the detector, which enables precise and dynamic monitoring of CD44. In addition, the Cy3-AptCD44@BPNSs also exhibited specificity in detecting CD44. This visualizing strategy may open up a wide range of possibilities for rapid recognition to cancer drug resistance, which is more efficient and flexible.


Subject(s)
Drug Resistance, Neoplasm , Hyaluronan Receptors , Hyaluronan Receptors/metabolism , Humans , Cell Line, Tumor , Neoplasms/drug therapy , Fluorescence , Antineoplastic Agents/pharmacology
20.
Ren Fail ; 46(2): 2384586, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39082695

ABSTRACT

Peritoneal dialysis (PD) is a widely used sustainable kidney replacement therapy. Prolonged use of PD fluids is associated with mesothelial-mesenchymal transition, peritoneal fibrosis, and eventual ultrafiltration (UF) failure. However, the impact of pressure on the peritoneum remains unclear. In the present study, we hypothesized increased pressure is a potential contributing factor to peritoneal fibrosis and investigated the possible mechanisms. In vitro experiments found that pressurization led to a mesenchymal phenotype, the expression of fibrotic markers and inflammatory factors in human mesothelial MeT-5A cells. Pressure also increased cell proliferation and augmented cell migration potential in MeT-5A cells. The mouse PD model and human peritoneum equilibrium test (PET) data both showed a positive association between higher pressure and increased small solute transport, along with decreased net UF. Mechanistically, we found that significant upregulation of CD44 in mesothelial cells upon pressurization. Notably, the treatment of CD44 neutralizing antibodies prevented pressure-induced phenotypic changes in mesothelial cells, while a CD44 inhibitor oligo-fucoidan ameliorated pressure-induced peritoneal thickening, fibrosis, and inflammation in PD mice. To conclude, intraperitoneal pressure results in peritoneal fibrosis in PD via CD44-mediated mesothelial changes and inflammation. CD44 blockage can be utilized as a novel preventive approach for PD-related peritoneal fibrosis and UF failure.


Subject(s)
Hyaluronan Receptors , Peritoneal Dialysis , Peritoneal Fibrosis , Peritoneum , Signal Transduction , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/etiology , Peritoneal Fibrosis/pathology , Animals , Mice , Hyaluronan Receptors/metabolism , Humans , Peritoneum/pathology , Peritoneum/metabolism , Peritoneal Dialysis/adverse effects , Disease Models, Animal , Inflammation/metabolism , Pressure/adverse effects , Male , Cell Proliferation , Epithelial-Mesenchymal Transition , Mice, Inbred C57BL , Cell Line , Cell Movement
SELECTION OF CITATIONS
SEARCH DETAIL