Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 480
Filter
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125179, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39316854

ABSTRACT

Among all kinds of chemical warfare agents, only cyanide and nerve agents can cause massive mortality at low concentrations. In this work, a dual-channel fluorescent probe CWAs-Thia capable of detecting cyanide and nerve agents is presented. The two reactive recognition units, pyridine and the thiazole-2-carbonyl group, of the probe for cyanide and nerve agents, respectively, produced red and blue fluorescent responses, respectively, which were attributed to excited-state intramolecular proton transfer and intramolecular charge transfer. CWAs-Thia is the first probe that can selectively recognize cyanide and nerve agent. And it has proven to be effective in visualizing cyanide and nerve agents in living cells.

3.
Article in English | MEDLINE | ID: mdl-39163097

ABSTRACT

The versatility of metal-organic frameworks (MOFs) has led to groundbreaking applications in a wide variety of fields, especially in the areas of energy, environment, and sustainability. For example, MOFs can be designed for high uptake of toxic gases and pollutants, such as CO2, NH3, and SO2, but designing a single MOF that shows tangible uptake for all of these gases is challenging due to the differences in the chemical and physical properties of these molecules. To this end, integrating multiple MOFs onto textile fibers and crafting various structures have emerged as pivotal developments, enhancing framework durability and usability. MOF composites prepared on readily available textile fibers offer the flexibility essential for critical applications, including heterogeneous catalysis, chemical sensing, toxic gas adsorption, and drug delivery, while preserving the unique characteristics of MOFs. This study introduces a scalable and adaptable method for seamlessly embedding multiple high-performing MOFs onto a single textile fiber using a dip-coating method. We explored the uptake capacity of these multi-MOF composites for CO2, NH3, and SO2 and observed a performance similar to that of traditional powdered materials. Along with harmful gas adsorption, we also have evaluated the permeation and reactivity of these MOF/textile composites toward chemical warfare agents (CWAs) like GD (soman), HD (mustard gas), and VX. In combination, these results demonstrate a fundamental advancement toward establishing a consistent strategy for the hydrolysis of nerve agents in real-world scenarios. This approach can substantially increase the protection toward CWAs and enhance the effectiveness of protective equipment such as fabrics for protective garments. This dip-coating method for the integration of multiple MOFs on a single textile fiber unlocks a wealth of possibilities and paves the way for future innovations in the deployment of MOF-based composites.

4.
ACS Appl Mater Interfaces ; 16(29): 38757-38767, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38988229

ABSTRACT

In an effort to develop the next frontier filtration material for chemical warfare agent (CWA) decomposition, we synthesized mesoporous NiO and CuxNi1-xO (x = 0.10 and 0.20) and studied the decomposition of CWA simulant diisopropyl fluorophosphate (DIFP) on their surfaces. Mesoporous NiO and CuxNi1-xO were fully characterized and found to be a solid solution with no phase separation up to 20% copper dopant. The synthesized materials were successfully templated producing ordered mesoporous metal oxides with high surface areas (67.89- 94.38 m2/g). Through Raman spectroscopy, we showed that pure NiO contained a high concentration of Ni2+ vacancies, while Cu2+ reduced these defects. Through in situ infrared spectroscopy, we determined the surface species formed, potential pathways, and driving factors for decomposition. Upon exposure of DIFP, all materials produced similar decomposition products CO, CO2, carbonyls, and carbonates. However, decomposition reactions were sustained longer on mesoporous NiO, facilitated by the higher Ni2+ vacancy concentration. NiO was further studied with DIFP, first at low dosing temperatures (-50 °C), which still resulted in the production of CO and carbonates, and then, second, with a higher pretreatment temperature, which showed the importance of terminal hydroxyls/water to fully oxidize decomposition products to CO2. Mesoporous NiO demonstrated high decomposition and oxidation capabilities at temperatures below room temperature, all without any external excitation or noble metals, making it a promising frontier filtration material for CWA decomposition.

5.
Molecules ; 29(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39064838

ABSTRACT

In this work, we test metal-organic frameworks (MOFs) as sorbents in the solid-phase extraction (SPE) technique to determine chemical warfare agents (CWAs) and their related compounds in water samples. During this study, we used 13 target compounds to test the selectivity of MOFs thoroughly. Three MOFs were used: MIL-100(Fe), ZIF-8(Zn), and UiO-66(Zr). The obtained materials were characterized using FT-IR/ATR, SEM, and XRD. CWA's and related compounds were analyzed using gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). The effect of the type of elution solvent and the amount of sorbent (MOFs) in the column on the efficiency of the conducted extraction were verified. The LOD ranged from 0.04 to 7.54 ng mL-1, and the linearity range for the analytes tested extended from 0.11/22.62 (depending on the compound) to 1000 ng mL-1. It was found that MOFs showed the most excellent selectivity to compounds having aromatic rings in their structure or a "spread" spatial structure. The best recoveries were obtained for DPAA, CAP, and malathion. Environmental water samples collected from the Baltic Sea were analyzed using an optimized procedure to verify the developed method's usefulness.

6.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928184

ABSTRACT

Simple and efficient sample pretreatment methods are important for analysis and detection of chemical warfare agents (CWAs) in environmental and biological samples. Despite many commercial materials or reagents that have been already applied in sample preparation, such as SPE columns, few materials with specificity have been utilized for purification or enrichment. In this study, ionic magnetic mesoporous nanomaterials such as poly(4-VB)@M-MSNs (magnetic mesoporous silicon nanoparticles modified by 4-vinyl benzene sulfonic acid) and Co2+@M-MSNs (magnetic mesoporous silicon nanoparticles modified by cobalt ions) with high absorptivity for ethanol amines (EAs, nitrogen mustard degradation products) and cyanide were successfully synthesized. The special nanomaterials were obtained by modification of magnetic mesoporous particles prepared based on co-precipitation using -SO3H and Co2+. The materials were fully characterized in terms of their composition and structure. The results indicated that poly(4-VB)@M-MSNs or Co2+@M-MSNs had an unambiguous core-shell structure with a BET of 341.7 m2·g-1 and a saturation magnetization intensity of 60.66 emu·g-1 which indicated the good thermal stability. Poly(4-VB)@M-MSNs showed selective adsorption for EAs while the Co2+@M-MSNs were for cyanide, respectively. The adsorption capacity quickly reached the adsorption equilibrium within the 90 s. The saturated adsorption amounts were MDEA = 35.83 mg·g-1, EDEA = 35.00 mg·g-1, TEA = 17.90 mg·g-1 and CN-= 31.48 mg·g-1, respectively. Meanwhile, the adsorption capacities could be maintained at 50-70% after three adsorption-desorption cycles. The adsorption isotherms were confirmed as the Langmuir equation and the Freundlich equation, respectively, and the adsorption mechanism was determined by DFT calculation. The adsorbents were applied for enrichment of targets in actual samples, which showed great potential for the verification of chemical weapons and the destruction of toxic chemicals.


Subject(s)
Amines , Cyanides , Ethanol , Cyanides/chemistry , Cyanides/isolation & purification , Adsorption , Amines/chemistry , Ethanol/chemistry , Porosity , Cobalt/chemistry , Magnetite Nanoparticles/chemistry , Nanostructures/chemistry
7.
ACS Appl Mater Interfaces ; 16(26): 34135-34140, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38900936

ABSTRACT

Hydrogen peroxide (H2O2) is a highly effective decontaminant against chemical warfare agents (CWAs) when present both in a liquid and as a solid powder. For the latter, this can be in the form of H2O2 being complexed to a polymer, such as polyvinylpyrrolidone (PVP). While a H2O2-PVP complex is indeed effective at decontaminating CWAs, it is vulnerable to environmental conditions such as high relative humidities (RH), which can dissociate the H2O2 from the complex before it is given the opportunity to react with CWAs. In this paper, we demonstrate that the cross-linked version of PVP forms a highly stable complex with H2O2, which can withstand both high (40 °C) and low (-20 °C) temperatures as well as maintain stability at high RH up to 90% over several days. Collectively, this lays the framework for processing the H2O2-PVP complex in a variety of form factors that can maintain efficacy under a wide range of real-world environmental conditions.

8.
Talanta ; 277: 126383, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38852345

ABSTRACT

Chemical warfare agents (CWAs) are toxic that pose a threat to the environment and human health, even trace amounts of CWAs can be fatal. In view of this, there is an urgent need to develop gas sensors for trace detection and ultrafast response of CWAs. Herein, an optical gas sensor has been proposed based on metal-organic frameworks (MOFs) three-dimensional (3D) photonic crystal to detect trace CWAs' simulant (dimethyl methylphosphonate, DMMP) in different atmospheric humidity (RH 20 %, RH 40 %, RH 60 %, RH 80 %). At relative humidity (RH) of 20 %, the sensor shows excellent selectivity of DMMP due to the specific interactions of van der Waals force between UiO-67 and phosphoryl oxygen (OP) group of DMMP (C3H9O3P), the ultrahigh sensitivity (42.7 ppb), ultrafast response (0.5 s) are profit from the ordered superstructure of 3D photonic crystal and its complete photonic bandgap. At higher humidity (RH 40%-80 %), the sensor shows excellent stability, long-term repeatability, and it still keeps ultrahigh sensitivity (12.1 ppb), ultrafast response (0.49 s) for DMMP at RH 80 %. Moreover, an optical gas sensor array has been prepared to solve the problem of cross-sensitive between DMMP and other CWAs at highest humidity (RH ≥ 80 %), the average classification accuracy can reach 98.6 %.

9.
Sensors (Basel) ; 24(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38894390

ABSTRACT

Chemical warfare agents pose a serious threat due to their extreme toxicity, necessitating swift the identification of chemical gases and individual responses to the identified threats. Fourier transform infrared (FTIR) spectroscopy offers a method for remote material analysis, particularly in detecting colorless and odorless chemical agents. In this paper, we propose a deep neural network utilizing a semi-supervised autoencoder (SSAE) for the classification of chemical gases based on FTIR spectra. In contrast to traditional methods, the SSAE concurrently trains an autoencoder and a classifier attached to a latent vector of the autoencoder, enhancing feature extraction for classification. The SSAE was evaluated on laboratory-collected FTIR spectra, demonstrating a superior classification performance compared to existing methods. The efficacy of the SSAE lies in its ability to generate denser cluster distributions in latent vectors, thereby enhancing gas classification. This study established a consistent experimental environment for hyperparameter optimization, offering valuable insights into the influence of latent vectors on classification performance.

10.
Polymers (Basel) ; 16(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38891524

ABSTRACT

Ultraviolet (UV) curing is an efficient and environmentally friendly curing method. In this paper, UV-cured polyurethane acrylates (PUAs) were investigated as potential military coatings to serve as barriers against chemical warfare agents (CWAs). Seven UV-cured PUA coatings were formulated utilizing hydroxyethyl methacrylate-capped hexamethylene diisocyanate trimer (HEMA-Htri) and trimethylolpropane triacrylate-capped polycarbonate prepolymer (PETA-PCDL) as the PUA monomers. Isobornyl acrylate (IBOA) and triethyleneglycol divinyl ether (DVE-3) were employed as reactive diluents. Gas chromatography was utilized to investigate the constitutive relationships between the structures of the PUA coatings and their protective properties against simulant agents for CWAs, including dimethyl methylphosphonate (DMMP), a nerve agent simulant, and 2-chloroethyl ethyl sulfide (CEES), a mustard simulant. The glass transition temperature (Tg) and crosslinking density (υe) of PUAs were found to be crucial factors affecting their ability to serve as barriers against CWAs. The incorporation of IBOA units led to enhanced Tg and barrier performance of the PUAs, resulting in a DMMP retention of less than 0.5% and nearly 0 retention of CEES. However, an excessive introduction of polycarbonate chains decreased the υe and barrier performance of the PUAs. These findings may offer valuable insights for enhancing the protection of UV-cured PU coatings against CWAs.

11.
Protein Pept Lett ; 31(5): 345-355, 2024.
Article in English | MEDLINE | ID: mdl-38706353

ABSTRACT

Nerve agents are a class of lethal neurotoxic chemicals used in chemical warfare. In this review, we have discussed a brief history of chemical warfare, followed by an exploration of the historical context surrounding nerve agents. The article explores the classification of these agents, their contemporary uses, their toxicity mechanisms, and the disadvantages of the current treatment options for nerve agent poisoning. It then discusses the possible application of enzymes as prophylactics against nerve agent poisoning, outlining the benefits and drawbacks of paraoxonase- 1. Finally, the current studies on paraoxonase-1 are reviewed, highlighting that several challenges need to be addressed in the use of paraoxonase-1 in the actual field and that its potential as a prophylactic antidote against nerve agent poisoning needs to be evaluated. The literature used in this manuscript was searched using various electronic databases, such as PubMed, Google Scholar, Web of Science, Elsevier, Springer, ACS, Google Patent, and books using the keywords chemical warfare agent, butyrylcholinesterase, enzyme, nerve agent, prophylactic, and paraoxonase-1, with the time scale for the analysis of articles between 1960 to 2023. The study has suggested that concerted efforts by researchers and agencies must be made to develop effective countermeasures against NA poisoning and that paraoxonase-1 has suitable properties for the development of efficient prophylaxis against NA poisoning.


Subject(s)
Aryldialkylphosphatase , Chemical Warfare Agents , Nerve Agents , Aryldialkylphosphatase/metabolism , Aryldialkylphosphatase/therapeutic use , Humans , Chemical Warfare Agents/poisoning , Chemical Warfare Agents/toxicity , Nerve Agents/poisoning , Nerve Agents/toxicity , Animals , Antidotes/therapeutic use , Antidotes/pharmacology
13.
J Hazard Mater ; 472: 134604, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38759283

ABSTRACT

Of all chemical warfare agents (CWAs), only nerve and blood agents cause massive mortality at low concentrations. To better detect and discriminate nerve and blood agents, a reliable detection method is desirable. We report a series of fluorescent probes for nerve and blood agent detection. Among the tested probes, SR-Pip detected nerve and blood agents quickly (within 10 s for nerve agents and 1 min for blood agents). SR-Pip coupled with nerve agent produced a weak orange fluorescence with good sensitivity [limit of detection (LOD)= 5.5 µM]. Upon reaction with blood agent, the fluorescence of SR-Pip changed from orange fluorescence to blue fluorescence with detection limits as low as 9.6 nM. This probe effectively visualised different concentrations of nerve agents in living cells and mice. A portable test kit using SR-Pip instantly detected nerve and blood agents. To the best of our knowledge, SR-Pip is the first fluorescent probe for nerve and blood agent detection.


Subject(s)
Chemical Warfare Agents , Fluorescent Dyes , Nerve Agents , Animals , Fluorescent Dyes/chemistry , Nerve Agents/analysis , Nerve Agents/toxicity , Chemical Warfare Agents/analysis , Mice , Humans , Limit of Detection
14.
J Hazard Mater ; 472: 134311, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38691989

ABSTRACT

This study proposes a predictive model for assessing adsorber performance in gas purification processes, specifically targeting the removal of chemical warfare agents (CWAs) using breakthrough curve analysis. Conventional parameter estimation methods, such as Brunauer-Emmett-Teller analysis, encounter challenges due to the limited availability of kinetic and equilibrium data for CWAs. To overcome these challenges, we implement a Bayesian parametric inference method, facilitating direct parameter estimation from breakthrough curves. The model's efficacy is confirmed by applying it to H2S purification in a fixed-bed setup, where predicted breakthrough curves aligned closely with previous experimental and numerical studies. Furthermore, the model is applied to sarin with ASZM-TEDA carbon, estimating key parameters that could not be assessed through conventional experimental techniques. The reconstructed breakthrough curves closely match actual measurements, highlighting the model's accuracy and robustness. This study not only enhances filter performance prediction for CWAs but also offers a streamlined approach for evaluating gas purification technologies under limited experimental data conditions.

15.
Chembiochem ; 25(15): e202400137, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38591336

ABSTRACT

The biocatalyzed oxidative detoxification of the V-series simulant PhX, by mean of the microperoxidase AcMP11, affords the corresponding phosphonothioate as the prominent product instead of the classical P-S and P-O bond cleavage. While PhX is structurally very close to the live agent VX (the methyl group is replaced by a phenyl), assessment with other surrogates missing the nucleophilic amino function displayed more resistance under the same conditions with no phosphonothioate observed. These encouraging results highlight 1) the efficacy of AcMP11 microperoxidase to efficiently detoxify V-series organophosphorus nerve agents (OPNA), and 2) the necessity to use representative alkyl or aryl phosphonothioates simulants such as PhX bearing the appropriate side chain as well as the P-O and P-S cleavable bond to mimic accurately the V-series OPNA to prevent false positive or false negative results.


Subject(s)
Nerve Agents , Organothiophosphorus Compounds , Peroxidases , Nerve Agents/chemistry , Nerve Agents/metabolism , Organothiophosphorus Compounds/chemistry , Organothiophosphorus Compounds/metabolism , Peroxidases/metabolism , Peroxidases/chemistry , Molecular Structure , Biocatalysis , Oxidation-Reduction
16.
Nanomaterials (Basel) ; 14(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38607094

ABSTRACT

Chemical warfare agents (CWAs) refer to toxic chemical substances used in warfare. Recently, CWAs have been a critical threat for public safety due to their high toxicity. Metal-organic frameworks have exhibited great potential in protecting against CWAs due to their high crystallinity, stable structure, large specific surface area, high porosity, and adjustable structure. However, the metal clusters of most reported MOFs might be highly consumed when applied in CWA hydrolysis. Herein, we fabricated a two-dimensional piezoresponsive UiO-66-F4 and subjected it to CWA simulant dimethyl-4-nitrophenyl phosphate (DMNP) detoxification under sonic conditions. The results show that sonication can effectively enhance the removal performance under optimal conditions; the reaction rate constant k was upgraded 45% by sonication. Moreover, the first-principle calculation revealed that the band gap could be further widened with the application of mechanical stress, which was beneficial for the generation of 1O2, thus further upgrading the detoxification performance toward DMNP. This work demonstrated that mechanical vibration could be introduced to CWA protection, but promising applications are rarely reported.

17.
Anal Sci ; 40(8): 1409-1419, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38687414

ABSTRACT

Mustard gas, a representative of blister agents, poses a severe threat to human health. Although the structure of 2-chloroethyl ethyl sulfide (2-CEES) is similar to mustard gas, 2-CEES is non-toxic, rendering it a commonly employed simulant in related research. ZnFe2O4-based semiconductor gas sensors exhibit numerous advantages, including structural stability, high sensitivities, and easy miniaturization. However, they exhibit insufficient sensitivity at low concentrations and require high operating temperatures. Owing to the effect of electronic and chemical sensitization, the gas-sensing performance of a sensor may be remarkably enhanced via the sensitization method of noble metal loading. In this study, based on the morphologies of ZnFe2O4 hollow microspheres, a solvothermal method was adopted to realize different levels of Au loading. Toward 1 ppm of 2-CEES, the gas sensor based on 2 wt.% Au-loaded ZnFe2O4 hollow microspheres exhibited a response sensitivity twice that of the gas sensor based on pure ZnFe2O4; furthermore, the response/recovery times decreased. Additionally, the sensor displayed excellent linear response to low concentrations of 2-CEES, outstanding selectivity in the presence of several common volatile organic compounds, and good repeatability, as well as long-term stability. The Au-loaded ZnFe2O4-based sensor has considerable potential for use in detecting toxic chemical agents and their simulants.

18.
J Hazard Mater ; 470: 134190, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38593659

ABSTRACT

Organophosphorus compounds (OPs), such as VX, pose a significant threat due to their neurotoxic and hazardous properties. Skin decontamination is essential to avoid irreversible effects. Fuller's earth (FE), a phyllosilicate conventionally employed in powder form, has demonstrated decontamination capacity against OPs. The aim of this study was to develop a formulation that forms a film on the skin, with a significant OP removal capacity (>95 %) coupled with sequestration capabilities, favorable drying time and mechanical properties to allow for easy application and removal, particularly in emergency context. Various formulations were prepared using different concentrations of polyvinyl alcohol (PVA), FE and surfactants. Their removal and sequestration capacity was tested using paraoxon-ethyl (POX), a chemical that simulates the behavior of VX. Formulations with removal capacity levels surpassing 95 % were mechanically characterized and cell viability assays were performed on Normal Human Dermal Fibroblast (NHDF). The four most promising formulations were used to assess decontamination efficacy on pig ear skin explants. These formulations showed decontamination levels ranging from 84.4 ± 4.7 % to 96.5 ± 1.3 %, which is equivalent to current decontamination methods. These results suggest that this technology could be a novel and effective tool for skin decontamination following exposure to OPs.


Subject(s)
Decontamination , Paraoxon , Skin , Decontamination/methods , Animals , Skin/drug effects , Humans , Swine , Paraoxon/toxicity , Paraoxon/chemistry , Aluminum Compounds/chemistry , Cell Survival/drug effects , Silicates/chemistry , Polyvinyl Alcohol/chemistry , Magnesium Compounds/chemistry , Magnesium Compounds/pharmacology , Surface-Active Agents/chemistry , Fibroblasts/drug effects
19.
Disaster Med Public Health Prep ; 18: e87, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38618924

ABSTRACT

OBJECTIVE: Escalating global challenges (such as disasters, conflict, and climate change) underline the importance of addressing Chemical, Biological, Radiological, and Nuclear (CBRN) terrorism for sustainable public health strategies. This study aims to provide a comprehensive epidemiological analysis of CBRN incidents in the Middle East and North Africa (MENA) region, emphasizing the necessity of sustainable responses to safeguard healthcare infrastructures. METHOD: Utilizing a retrospective approach, this research analyzes data from the Global Terrorism Database (GTD) covering the period from 2003 to 2020. The study focuses on examining the frequency, characteristics, and consequences of CBRN incidents in the MENA region to identify patterns and trends that pose significant challenges to public health systems. RESULTS: The analysis revealed a significant clustering of CBRN incidents in Iraq and Syria, with a predominant involvement of chemical agents. These findings indicate the extensive impact of CBRN terrorism on healthcare infrastructures, highlighting the challenges in providing immediate health responses and the necessity for long-term recovery strategies. CONCLUSIONS: The study underscores the need for improved healthcare preparedness, robust emergency response systems, and the development of sustainable public health policies. Advocating for international collaboration, the research contributes to the strategic adaptation of healthcare systems to mitigate the impacts of CBRN terrorism, ensuring preparedness for future incidents in the MENA region and beyond.


Subject(s)
Public Health , Terrorism , Humans , Africa, Northern/epidemiology , Middle East/epidemiology , Public Health/methods , Public Health/statistics & numerical data , Public Health/trends , Retrospective Studies , Terrorism/statistics & numerical data , Terrorism/trends
20.
Toxicol Lett ; 396: 70-80, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38677567

ABSTRACT

Ocular tissue, especially the cornea, is overly sensitive to chemical exposures. The availability and adoption of chemical threat agent chloropicrin (CP) is growing in the United States as a pesticide and fumigant; thereby increasing the risk of its use in warfare, terrorist attacks and non-intentional exposure. Exposure to CP results in immediate ocular, respiratory, and dermal injury; however, we lack knowledge on its mechanism of toxicity as well as of its breakdown products like chlorine and phosgene, and effective therapies are elusive. Herein, we have reviewed the recent findings on exposure route, toxicity and likely mechanisms of CP induced ocular toxicity based on other vesicating chemical warfare agents that cause ocular injury. We have focused on the implication of their toxicity and mechanistic outcomes in the ocular tissue, especially the cornea, which could be useful in the development of broad-spectrum effective therapeutic options. We have discussed on the potential countermeasures, overall hallmarks and challenges involved in studying ocular injuries from chemical threat agent exposures. Finally, we reviewed useful available technologies and methods that can assist in the identification of effective medical countermeasures for chemical threat agents related ocular injuries.


Subject(s)
Biomarkers , Hydrocarbons, Chlorinated , Humans , Animals , Hydrocarbons, Chlorinated/toxicity , Chemical Warfare Agents/toxicity , Eye Injuries/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL