Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
Harmful Algae ; 131: 102562, 2024 01.
Article in English | MEDLINE | ID: mdl-38212087

ABSTRACT

Ciguatera Poisoning (CP) is a widespread and complex poisoning syndrome caused by the consumption of fish or invertebrates contaminated with a suite of potent neurotoxins collectively known as ciguatoxins (CTXs), which are produced by certain benthic dinoflagellates species in the genera Gambierdiscus and Fukuyoa. Due to the complex nature of this HAB problem, along with a poor understanding of toxin production and entry in the coral reef food web, the development of monitoring, management, and forecasting approaches for CP has lagged behind those available for other HAB syndromes. Over the past two decades, renewed research on the taxonomy, physiology, and toxicology of CP-causing dinoflagellates has advanced our understanding of the species diversity that exists within these genera, including identification of highly toxic species (so called "superbugs") that likely contribute disproportionately to ciguatoxins entering coral reef food webs. The recent development of approaches for molecular analysis of field samples now provide the means to investigate in situ community composition, enabling characterization of spatio-temporal species dynamics, linkages between toxic species abundance and toxin flux, and the risk of ciguatoxin prevalence in fish. In this study we used species-specific fluorescent in situ hybridization (FISH) probes to investigate Gambierdiscus species composition and dynamics in St. Thomas (USVI) and the Florida Keys (USA) over multiple years (2018-2020). Within each location, samples were collected seasonally from several sites comprising varying depths, habitats, and algal substrates to characterize community structure over small spatial scales and across different host macrophytes. This approach enabled the quantitative determination of communities over spatiotemporal gradients, as well as the selective enumeration of species known to exhibit high toxicity, such as Gambierdiscus silvae. The investigation found differing community structure between St. Thomas and Florida Keys sites, driven in part by differences in the distribution of toxin-producing species G. silvae and G. belizeanus, which were present throughout sampling sites in St. Thomas but scarce or absent in the Florida Keys. This finding is significant given the high toxicity of G. silvae, and may help explain differences in fish toxicity and CP incidence between St. Thomas and Florida. Intrasite comparisons along a depth gradient found higher concentrations of Gambierdiscus spp. at deeper locations. Among the macrophytes sampled, Dictyota may be a likely vector for toxin transfer based on their widespread distribution, apparent colonization by G. silvae, and palatability to at least some herbivore grazers. Given its ubiquity throughout both study regions and sites, this taxa may also serve as a refuge, accumulating high concentrations of Gambierdiscus and other benthic dinoflagellates, which in turn can serve as source populations for highly palatable and ephemeral habitats nearby, such as turf algae. These studies further demonstrate the successful application of FISH probes in examining biogeographic structuring of Gambierdiscus communities, targeting individual toxin-producing species, and characterizing species-level dynamics that are needed to describe and model ecological drivers of species abundance and toxicity.


Subject(s)
Ciguatera Poisoning , Ciguatoxins , Dinoflagellida , Ciguatoxins/toxicity , Florida , In Situ Hybridization, Fluorescence , United States Virgin Islands
2.
Toxins (Basel) ; 16(1)2024 01 22.
Article in English | MEDLINE | ID: mdl-38276536

ABSTRACT

Ciguatera, a global issue, lacks adequate capacity for ciguatoxin analysis in most affected countries. The Caribbean region, known for its endemic ciguatera and being home to a majority of the global small island developing states, particularly needs established methods for ciguatoxin detection in seafood and the environment. The radioligand receptor binding assay (r-RBA) is among the in vitro bioassays currently used for ciguatoxin analysis; however, similarly to the other chemical-based or bioassays that have been developed, it faces challenges due to limited standards and interlaboratory comparisons. This work presents a single laboratory validation of an r-RBA developed in a Cuban laboratory while characterizing the performance of the liquid scintillation counter instrument as a key external parameter. The results obtained show the assay is precise, accurate and robust, confirming its potential as a routine screening method for the detection and quantification of ciguatoxins. The new method will aid in identifying high-risk ciguatoxic fish in Cuba and the Caribbean region, supporting monitoring and scientific management of ciguatera and the development of early warning systems to enhance food safety and food security, and promote fair trade fisheries.


Subject(s)
Ciguatera Poisoning , Ciguatoxins , Animals , Ciguatoxins/analysis , Ciguatera Poisoning/diagnosis , Fishes , Protein Binding , Biological Assay
3.
Harmful Algae ; 127: 102478, 2023 08.
Article in English | MEDLINE | ID: mdl-37544678

ABSTRACT

Public awareness about Benthic Harmful Algal Blooms (BHABs) and their negative impacts has increased substantially over the past few decades. Even so, reports of BHABs remain relatively scarce in South America (SA). This paper provides a comprehensive overview of the current state of knowledge on BHABs in the continent, by integrating data from published articles, books, and technical reports. We recorded ∼300 different occurrences of potentially toxic BHAB species over the Caribbean, Atlantic and Pacific coasts, mostly in marine (>95%) but also in estuarine areas located from 12°36' N to 54°53' S. Over 70% of the data was published/released within the past 10 years, and ∼85% were concentrated in Brazil, Venezuela, Ecuador and Colombia. Benthic species were mainly associated with macroalgae, seagrass and sediment. Incidental detection in the plankton was also relevant, mainly in places where studies targeting BHAB species are still rare, like Argentina, Uruguay, Chile and Peru. The study listed 31 infrageneric taxa of potentially toxic benthic dinoflagellates and eight of estuarine cyanobacteria occurring in SA, with the greatest species diversity recorded in the equatorial-tropical zone, mainly in northeastern Brazil (Atlantic), Venezuela and Colombia (Caribbean), and the Galapagos Islands, Ecuador (Pacific). Local strains of Amphidinium, Gambierdiscus, Coolia and Prorocentrum spp. produced toxic compounds of emerging concern. Prorocentrum lima species complex was the most common and widely distributed taxon, followed by Ostreopsis cf. ovata. In fact, these two dinoflagellates were associated with most BHAB events in SA. Whereas the former has caused the contamination of multiple marine organisms and cases of Diarrhetic Shellfish Poisoning in subtropical and temperate areas, the latter has been associated with faunal mortalities and is suspected of causing respiratory illness to beach users in tropical places. Ciguatera Poisoning has been reported in Colombia (∼240 cases; no deaths) and Venezuela (60 cases; two deaths), and may be also a risk in other places where Gambierdiscus spp. and Fukuyoa paulensis have been reported, such as the Galapagos Islands and the tropical Brazilian coast. Despite the recent advances, negative impacts from BHABs in SA are intensified by limited research/training funding, as well as the lack of official HAB monitoring and poor analytical capability for species identification and toxin detection in parts of the continent.


Subject(s)
Ciguatera Poisoning , Dinoflagellida , Microalgae , Harmful Algal Bloom , Brazil
4.
Toxins (Basel) ; 14(8)2022 08 03.
Article in English | MEDLINE | ID: mdl-36006197

ABSTRACT

Ciguatera poisoning (CP) is one of the most common causes worldwide of marine poisoning associated with fish consumption from tropical areas. Its incidence is underreported. CP cases seem to increase with grouped cases reported during summer. Exposure to ciguatoxins, toxins responsible for CP with sodium-channel agonistic, voltage-gated potassium channel blocking, cholinergic, and adrenergic activities, may result in a large spectrum of manifestations. We aimed to describe the clinical characteristics, management, and outcome of CP in Martinique, French West Indies. We conducted an observational retrospective single-center study during six years (October 2012 to September 2018) including all CP patients managed by the prehospital medical services, admitted to the university hospital emergency department, or declared to the regional health agency. A total of 149 CP patients (81 females/63 males; median age, 46 years (interquartile range, 34-61)) were included. Acute features consisted in general (91%; mainly, myalgia pruritus, and asthenia), gastrointestinal (90%; mainly diarrhea, abdominal pain, and nausea), neurological (72%; mainly, paresthesia, dysgeusia, and impairment of hot/cold feeling), and cardiovascular manifestations (22%; bradycardia, hypotension, and heart conduction disorders). Management was supportive. No patient died but symptoms persisted in 40% of the 77 patients with follow-up at day 15. CP was mainly attributed to the ingestion of trevallies (59%), snappers (13%), and king mackerels (8%) with collective contaminations (71%). Unusual fish (tuna, salmon, and spider conchs) were suspected in rare cases. Ingestion of trevallies was associated with significantly higher persistent symptoms (odds ratio, 3.00; 95% confidence interval, (1.20-8.00); p = 0.03). CP incidence was 0.67 cases per 10,000 patient-years in Martinique over the study period. To conclude, CP represents an increasing public health issue in Martinique, as is the case in other Caribbean islands. Patients present usual but possibly life-threatening features. Outcome is excellent despite frequently prolonged manifestations.


Subject(s)
Ciguatera Poisoning , Ciguatoxins , Animals , Ciguatera Poisoning/epidemiology , Ciguatoxins/toxicity , Female , Fishes , Humans , Male , Martinique/epidemiology , Retrospective Studies , West Indies
5.
Toxins (Basel) ; 13(8)2021 08 11.
Article in English | MEDLINE | ID: mdl-34437435

ABSTRACT

Ciguatera poisoning is a food intoxication associated with the consumption of fish or shellfish contaminated, through trophic transfer, with ciguatoxins (CTXs). In this study, we developed an experimental model to assess the trophic transfer of CTXs from herbivorous parrotfish, Chlorurus microrhinos, to carnivorous lionfish, Pterois volitans. During a 6-week period, juvenile lionfish were fed naturally contaminated parrotfish fillets at a daily dose of 0.11 or 0.035 ng CTX3C equiv. g-1, as measured by the radioligand-receptor binding assay (r-RBA) or neuroblastoma cell-based assay (CBA-N2a), respectively. During an additional 6-week depuration period, the remaining fish were fed a CTX-free diet. Using r-RBA, no CTXs were detectable in muscular tissues, whereas CTXs were measured in the livers of two out of nine fish sampled during exposure, and in four out of eight fish sampled during depuration. Timepoint pooled liver samples, as analyzed by CBA-N2a, confirmed the accumulation of CTXs in liver tissues, reaching 0.89 ng CTX3C equiv. g-1 after 41 days of exposure, followed by slow toxin elimination, with 0.37 ng CTX3C equiv. g-1 measured after the 6-week depuration. These preliminary results, which need to be pursued in adult lionfish, strengthen our knowledge on CTX transfer and kinetics along the food web.


Subject(s)
Ciguatoxins/metabolism , Fishes/metabolism , Food Chain , Animals , Bioaccumulation , Cell Line, Tumor , Cell Survival/drug effects , Ciguatoxins/toxicity , Liver/metabolism , Mice , Muscles/metabolism
6.
Toxins (Basel) ; 13(6)2021 06 10.
Article in English | MEDLINE | ID: mdl-34200870

ABSTRACT

Ciguatera poisoning (CP) poses a significant threat to ecosystem services and fishery resources in coastal communities. The CP-causative ciguatoxins (CTXs) are produced by benthic dinoflagellates including Gambierdiscus and Fukuyoa spp., and enter reef food webs via grazing on macroalgal substrates. In this study, we report on a 3-year monthly time series in St. Thomas, US Virgin Islands where Gambierdiscus spp. abundance and Caribbean-CTX toxicity in benthic samples were compared to key environmental factors, including temperature, salinity, nutrients, benthic cover, and physical data. We found that peak Gambierdiscus abundance occurred in summer while CTX-specific toxicity peaked in cooler months (February-May) when the mean water temperatures were approximately 26-28 °C. These trends were most evident at deeper offshore sites where macroalgal cover was highest year-round. Other environmental parameters were not correlated with the CTX variability observed over time. The asynchrony between Gambierdiscus spp. abundance and toxicity reflects potential differences in toxin cell quotas among Gambierdiscus species with concomitant variability in their abundances throughout the year. These results have significant implications for monitoring and management of benthic harmful algal blooms and highlights potential seasonal and highly-localized pulses in reef toxin loads that may be transferred to higher trophic levels.


Subject(s)
Ciguatoxins/analysis , Dinoflagellida , Animals , Cell Line, Tumor , Cell Survival/drug effects , Ciguatera Poisoning , Ciguatoxins/toxicity , Environmental Monitoring , Mice , Salinity , Seasons , United States Virgin Islands , Weather
7.
Harmful Algae ; 103: 101998, 2021 03.
Article in English | MEDLINE | ID: mdl-33980438

ABSTRACT

Anchored mesh screens have been suggested as a standardized approach to monitor the cell abundances of epiphytic dinoflagellates in benthic habitats, including toxigenic members of the Gambierdiscus genus responsible for ciguatera poisoning (CP). Here we deployed screens for 24h at eight sites in the Florida Keys and St. Thomas (US Virgin Islands) to evaluate their performance relative to the traditional method of assessing Gambierdiscus abundance in which cell counts are normalized to wet weight of host algae. The 30-month study (April 2013 - August 2015) involved monthly sampling at sites where screens were suspended at near-bottom locations for a 24h period and retrieved, with concurrent collections of macrophytes; including Halimeda, Laurencia, and Thalassia in the Florida Keys, and Dictyota in both regions. Gambierdiscus cells were identified and enumerated in the screen and macrophyte samples, and several regression techniques were evaluated (linear regression using untransformed and log-transformed data; negative binomial distribution (NBD) regression) to determine how well the screen-derived data could estimate algal cell concentrations on the host algae. In all cases, the NBD models performed the best based on Akaike Information Criteria values, although 38% of the regressions were not statistically-significant, including all of the St. Thomas sites. The r2 values were all < 0.75 and averaged 0.36, indicating relatively poor fit of the screen data. False negative results (regression models underestimating actual cell abundances) were common occurrences, ranging from 5 to 74% of the scenarios tested. In summary, these results indicate that 24h screen deployments do not appear to be consistent in all situations. Caution is therefore needed when considering 24h screens as a standardized monitoring approach for quantifying Gambierdiscus population dynamics across geography and ecosystems. Furthermore, neutral (artificial) substrates may not adequately capture either the host preference or palatability that likely influence the initial vector of toxin incorporation in the food web via herbivory on these macrophytes.


Subject(s)
Ciguatera Poisoning , Dinoflagellida , Ecosystem , Florida , United States Virgin Islands
8.
Bogotà; Instituto Nacional de Salud;Dirección de Vigilancia y Análisis del Riesgo en Salud Pública; 24/04/2021. 1-43 p. tab, graf, ilus.
Non-conventional in Spanish | COLNAL | ID: biblio-1179288

ABSTRACT

La intoxicación por ciguatera es la forma más común de intoxicación alimentaria no bacteriana de los peces en todo el mundo. En Colombia, es causada por el consumo de peces principalmente de coral; que han acumulado ciguatoxinas, producidas por dinoflagelados de los géneros Gambierdiscus, Ostreopsis, Coolia y Prorocentrum. Las concentraciones de toxinas suelen ser bajas y la ciguatera no se manifiesta tóxica para los peces, pero, a medida que aumentan los eslabones de la cadena alimenticia y los peces de arrecife consumen los peces herbívoros, se incrementa la concentración de toxinas y se expande a lo largo de la red trófica.


Ciguatera poisoning is the most common form of non-bacterial food poisoning of fish worldwide. In Colombia, it is caused by the consumption of fish, mainly coral; that have accumulated ciguatoxins, produced by dinoflagellates of the genera Gambierdiscus, Ostreopsis, Coolia and Prorocentrum. The toxin concentrations are usually low and the ciguatera is not toxic to fish, but as the links in the food chain increase and the reef fish consume the herbivorous fish, the toxin concentration increases and expands to along the food web.


Subject(s)
Ciguatera Poisoning
9.
Eur Heart J Case Rep ; 4(6): 1-4, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33442632

ABSTRACT

BACKGROUND: Ciguatera toxicity is a fish-borne illness that initially manifests with gastrointestinal symptoms, followed by bizarre neurological symptoms including heat-cold sensation alteration, peculiar feeling of loose teeth, and peripheral neuropathy. However, cardiac manifestations are rare and underreported in the literature. CASE SUMMARY: A 73-year-old man presented with symptomatic bradycardia and hypotension after ingestion of barracuda fish in Mexico. He received atropine and dopamine with subsequent improvement in his symptoms, but continued to experience peripheral neuropathic and other odd sensations. Four of his family members ingested the same fish and had similar symptoms. He was managed conservatively and did not require temporary or permanent pacing. Within 1 week from toxin exposure, bradycardia had improved. Heart rate was 40-50 b.p.m. at rest, and he was discharged with an ambulatory monitor. Heart rate had increased to 77 b.p.m. at 1-month follow-up on repeat electrocardiogram (ECG). DISCUSSION: Although the predominant manifestations of ciguatera toxicity are neurological, cardiac complications tend to be more acute and require attention. Unlike neurological symptoms, bradycardia and hypotension are short-lived, often resolving within a week. Treatment continues to be largely supportive, and patients may require temporary treatment with positive chronotropic agents such as atropine or dopamine.

10.
Braz J Infect Dis ; 23(3): 200-202, 2019.
Article in English | MEDLINE | ID: mdl-31301279

ABSTRACT

Ciguatera poisoning is the most common form of non-bacterial food-poisoning from fish worldwide. The incidence among Brazilians returning from high-risk regions is unclear because it is not a mandatory reportable disease. We describe a previously healthy 53-year-old Brazilian woman developed Ciguatera fish poisoning while traveling to Havana, Cuba. Physicians and health care professionals should advise travelers to avoid eating ciguatoxic fish species and potentially toxic fish species in the Caribbean islands. Despite the prognosis for most cases is good with a short duration of self-limited symptoms, early recognition of the identifying clinical features of ciguatera can result in improved patient care.


Subject(s)
Ciguatera Poisoning/diagnosis , Travel , Animals , Brazil , Female , Humans , Middle Aged , West Indies
11.
Braz. j. infect. dis ; Braz. j. infect. dis;23(3): 200-202, May-June 2019. tab
Article in English | LILACS | ID: biblio-1019557

ABSTRACT

ABSTRACT Ciguatera poisoning is the most common form of non-bacterial food-poisoning from fish worldwide. The incidence among Brazilians returning from high-risk regions is unclear because it is not a mandatory reportable disease. We describe a previously healthy 53-year-old Brazilian woman developed Ciguatera fish poisoning while traveling to Havana, Cuba. Physicians and health care professionals should advise travelers to avoid eating ciguatoxic fish species and potentially toxic fish species in the Caribbean islands. Despite the prognosis for most cases is good with a short duration of self-limited symptoms, early recognition of the identifying clinical features of ciguatera can result in improved patient care.


Subject(s)
Humans , Animals , Female , Middle Aged , Travel , Ciguatera Poisoning/diagnosis , West Indies , Brazil
12.
J Environ Radioact ; 192: 289-294, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30015314

ABSTRACT

Ciguatoxins are algal toxins responsible for tens of thousands of human intoxications yearly, both in tropical and subtropical endemic regions as well as worldwide through fish exportation. Previously developed methods for biotoxin surveillance in the environment and seafood include analytical methods and in vivo and in vitro bioassays. The radioligand receptor binding assay (r-RBA) is among the in vitro methodologies currently used for the detection and quantification of marine biotoxins. For the ciguatoxin group, the r-RBA has been widely used as a means to characterize the mode of action and as detection method in various biological matrices. Yet, screening methods have not been standardized, and the details of the ciguatoxin-specific r-RBA are not well-documented, which limit interlaboratory comparison and progress toward method validation. This work presents the development of an optimized r-RBA for ciguatoxins and provides guidance on its use and quality control checks for analysis of environmental samples. We focus on the analysis of critical parameters involved in determining assay acceptability. Calculation of toxin concentrations in fish samples is illustrated with four examples. Thus, this paper provides the detailed information required for a full validation of the r-RBA, a necessary step toward the development and implementation of a regulatory monitoring programme for ciguatoxins in seafood products using the r-RBA.


Subject(s)
Ciguatoxins/analysis , Environmental Monitoring/methods , Radioligand Assay/methods , Water Pollutants/analysis
13.
Environ Toxicol Chem ; 37(7): 1852-1863, 2018 07.
Article in English | MEDLINE | ID: mdl-29710376

ABSTRACT

Ciguatera fish poisoning is a seafood-toxin illness resulting from consumption of fish contaminated with ciguatoxins. Managing ciguatera fish poisoning is complex. It is made easier, however, by local fishers from endemic areas reporting regional predictability for local fish species' ciguatera fish poisoning risk, which the present study then tested. We investigated the prevalence of ciguatoxins in 4 commonly marketed and consumed species (Balistes vetula, Haemulon plumierii, Ocyurus chrysurus, and Epinephelus guttatus) across an oceanic gradient (north, south, east, and west) from the US Virgin Islands. Fish muscle extracts were analyzed for Caribbean ciguatoxins using an in vitro mouse neuroblastoma (N2a) cytotoxicity assay and confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fish collected from the north location had 0 fish with detectable ciguatoxins; this site also had the greatest wave energy. Caribbean ciguatoxins in fish ranged from 0.01 to 0.11, 0.004 to 0.10, and 0.005 to 0.18 ng Caribbean ciguatoxin-1 eq/g, from the west, east, and south respectively. Ciguatoxin-like activity was detectable by the N2a assay in 40, 41, 50, and 70% of H. plumierii, O. chrysurus, B. vetula, and E. guttatus, respectively. Of the fish collected, 4% had Caribbean ciguatoxin levels exceeding the US Food and Drug Administration guidance of 0.1 ng Caribbean ciguatoxin-1 eq/g fish. These findings concurred with spatial ciguatera fish poisoning prevalence information provided by local fishers in the US Virgin Islands and demonstrate how partnerships between researchers and fishers can aid the improvement of science-based ciguatera fish poisoning management. Environ Toxicol Chem 2018;39:1852-1863. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Subject(s)
Ciguatoxins/analysis , Environmental Exposure/analysis , Oceans and Seas , Perciformes/metabolism , Animals , Body Size , Body Weight , Caribbean Region , Cell Line , Chromatography, Liquid , Mice , Muscles/chemistry , United States Virgin Islands
14.
Mar Drugs ; 17(1)2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30597874

ABSTRACT

Historical records of ciguatera in Mexico date back to 1862. This review, including references and epidemiological reports, documents 464 cases during 25 events from 1984 to 2013: 240 (51.72%) in Baja California Sur, 163 (35.12%) in Quintana Roo, 45 (9.69%) in Yucatan, and 16 (3.44%) cases of Mexican tourists intoxicated in Cuba. Carnivorous fish, such as snapper (Lutjanus) and grouper (Epinephelus and Mycteroperca) in the Pacific Ocean, and great barracuda (Sphyraena barracuda) and snapper (Lutjanus) in the Atlantic (Gulf of Mexico and Caribbean Sea), were involved in all cases. In the Mexican Caribbean, a sub-record of ciguatera cases that occurred before 1984 exists. However, the number of intoxications has increased in recent years, and this food poisoning is poorly studied in the region. Current records suggest that ciguatera fish poisoning in humans is the second most prevalent form of seafood poisoning in Mexico, only exceeded by paralytic shellfish poisoning (505 cases, 21 fatalities in the same 34-year period). In this study, the status of ciguatera in Mexico (epidemiological and treatment), and the fish vectors are reviewed. Dinoflagellate species Gambierdiscus, Ostreopsis, and Prorocentrum are related with the reported outbreaks, marine toxins, ecological risk, and the potential toxicological impact.


Subject(s)
Ciguatera Poisoning/epidemiology , Ciguatoxins/chemistry , Animals , Fishes , Foodborne Diseases/epidemiology , Humans , Mexico/epidemiology , Seafood/analysis
16.
Mar Drugs ; 15(7)2017 Jun 25.
Article in English | MEDLINE | ID: mdl-28672825

ABSTRACT

Maitotoxin (MTX) is the most potent marine toxin known to date. It is responsible for a particular human intoxication syndrome called ciguatera fish poisoning (CFP). Several reports indicate that MTX is an activator of non-selective cation channels (NSCC) in different cell types. The molecular identity of these channels is still an unresolved topic, and it has been proposed that the transient receptor potential (TRP) channels are involved in this effect. In Xenopus laevis oocytes, MTX at picomolar (pM) concentrations induces the activation of NSCC with functional and pharmacological properties that resemble the activity of TRP channels. The purpose of this study was to characterize the molecular identity of the TRP channel involved in the MTX response, using the small interference RNA (siRNA) approach and the two-electrode voltage-clamp technique (TEVC). The injection of a specifically designed siRNA to silence the transient receptor potential canonical type 1 (TRPC1) protein expression abolished the MTX response. MTX had no effect on oocytes, even at doses 20-fold higher compared to cells without injection. Total mRNA and protein levels of TRPC1 were notably diminished. The TRPC4 siRNA did not change the MTX effect, even though it was important to note that the protein level was reduced by the silencing of TRPC4. Our results suggest that MTX could be a selective activator of TRPC1 channels in X. laevis oocytes and a useful pharmacological tool for further studies on these TRP channels.


Subject(s)
Marine Toxins/pharmacology , Oocytes/drug effects , Oxocins/pharmacology , TRPC Cation Channels/metabolism , Xenopus , Animals , Electric Stimulation , Electrophysiology , Membrane Potentials/drug effects , Oocytes/metabolism , Patch-Clamp Techniques , TRPC Cation Channels/genetics
17.
Harmful Algae ; 66: 20-28, 2017 06.
Article in English | MEDLINE | ID: mdl-28602250

ABSTRACT

The Gambierdiscus genus is a group of benthic dinoflagellates commonly associated with ciguatera fish poisoning (CFP), which is generally found in tropical or sub-tropical regions around the world. Morphologically similar species within the genus can vary in toxicity; however, species identifications are difficult or sometimes impossible using light microscopy. DNA sequencing of ribosomal RNA genes (rDNA) is thus often used to identify and describe Gambierdiscus species and ribotypes, but the expense and time can be prohibitive for routine culture screening and/or large-scale monitoring programs. This study describes a restriction fragment length polymorphism (RFLP) typing method based on analysis of the large subunit rDNA that can successfully identify at least nine of the described Gambierdiscus species and two Fukuyoa species. The software programs DNAMAN 6.0 and Restriction Enzyme Picker were used to identify a set of restriction enzymes (SpeI, HpyCH4IV, and TaqαI) capable of distinguishing most of the known Gambierdiscus species for which DNA sequences were available. This assay was tested using in silico analysis and cultured isolates, and species identifications of isolates assigned by RFLP typing were confirmed by DNA sequencing. To verify the assay and assess intra-specific heterogeneity in RFLP patterns, identifications of 63 Gambierdiscus isolates comprising ten Gambierdiscus species, one ribotype, and two Fukuyoa species were confirmed using RFLP typing, and this method was subsequently employed in the routine identification of isolates collected from the Caribbean Sea. The RFLP assay presented here reduces the time and cost associated with morphological identification via scanning electron microscopy and/or DNA sequencing, and provides a phylogenetically sensitive method for routine Gambierdiscus species assignment.


Subject(s)
DNA, Algal/analysis , DNA, Protozoan/analysis , DNA, Ribosomal/analysis , Dinoflagellida/classification , Polymorphism, Restriction Fragment Length , Bahamas , Caribbean Region , Dinoflagellida/genetics , Florida , United States Virgin Islands
18.
Harmful Algae ; 57(Pt B): 35-38, 2016 07.
Article in English | MEDLINE | ID: mdl-28918889

ABSTRACT

Ciguatera fish poisoning (ciguatera) is a common clinical syndrome in areas where there is dependence on tropical reef fish for food. A subset of patients develops recurrent and, in some instances, chronic symptoms, which may result in substantial disability. To identify possible biomarkers for recurrent/chronic disease, and to explore correlations with immune gene expression, peripheral blood leukocyte gene expression in 10 ciguatera patients (7 recurrent and 3 acute) from the U.S. Virgin Islands, and 5 unexposed Florida controls were evaluated. Significant differences in gene expression were noted when comparing ciguatera patients and controls; however, it was not possible to differentiate between patients with acute and recurrent disease, possibly due to the small sample sizes involved.


Subject(s)
Ciguatera Poisoning/physiopathology , Gene Expression/drug effects , Leukocytes/drug effects , Animals , Diet , Fishes , Florida , Gene Expression Profiling , Humans , United States Virgin Islands
19.
J Eukaryot Microbiol ; 63(4): 481-97, 2016 07.
Article in English | MEDLINE | ID: mdl-26686980

ABSTRACT

A single cell of the dinoflagellate genus Fukuyoa was isolated from the island of Formentera (Balearic Islands, west Mediterranean Sea), cultured, and characterized by morphological and molecular methods and toxin analyses. This is the first report of the Gambierdiscus lineage (genera Fukuyoa and Gambierdiscus) from the western Mediterranean Sea, which is cooler than its eastern basin. Molecular analyses revealed that the Mediterranean strain belongs to F. paulensis and that it bears LSU rDNA sequences identical to New Zealand, Australian, and Brazilian strains. It also shared an identical sequence of the more variable ITS-rDNA with the Brazilian strain. Toxin analyses showed the presence of maitotoxin, 54-deoxyCTX1B, and gambieric acid A. This is the first observation of the two latter compounds in a Fukuyoa strain. Therefore, both Gambierdiscus and Fukuyoa should be considered when as contributing to ciguatera fish poisoning. Different strains of Fukuyoa form a complex of morphologically cryptic lineages where F. paulensis stands as the most distantly related nominal species. The comparison of the ITS2 secondary structures revealed the absence of CBCs among strains. The study of the morphological and molecular traits depicted an unresolved taxonomic scenario impacted by the low strains sampling.


Subject(s)
Dinoflagellida/genetics , Dinoflagellida/isolation & purification , Marine Toxins/chemistry , Animals , Australia , Brazil , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/genetics , Dinoflagellida/cytology , Dinoflagellida/ultrastructure , Marine Toxins/isolation & purification , Mediterranean Sea , Microscopy, Electron, Scanning , New Zealand , Oxocins/chemistry , Oxocins/isolation & purification , Phylogeny , Sequence Analysis, DNA , Spain
20.
Environ Res ; 143(Pt B): 100-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26409497

ABSTRACT

From 2010 to 2012, 35 ciguatera fish poisoning (CFP) events involving 87 individuals who consumed locally-caught fish were reported in Guadeloupe (French West Indies). For 12 of these events, the presence of ciguatoxins (CTXs) was indicated in meal remnants and in uncooked fish by the mouse bioassay (MBA). Caribbean ciguatoxins (C-CTXs) were confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Using a cell-based assay (CBA), and the only available standard Pacific ciguatoxin-1 (P-CTX-1), the lowest toxins level detected in fish samples causing CFP was 0.022 µg P-CTX-1 equivalent (eq.)·kg(-1) fish. Epidemiological and consumption data were compiled for most of the individuals afflicted, and complete data for establishing the lowest observable adverse effects level (LOAEL) were obtained from 8 CFP events involving 21 individuals. Based on toxin intakes, the LOAEL was estimated at 4.2 ng P-CTX-1 eq./individual corresponding to 48. 4 pg P-CTX-1 eq.kg(-1) body weight (bw). Although based on limited data, these results are consistent with the conclusions of the European Food Safety Authority (EFSA) opinion which indicates that a level of 0.01 µg P-CTX-1 eq.kg(-1) fish, regardless of source, should not exert effects in sensitive individuals when consuming a single meal. The calculated LOAEL is also consistent with the U.S. Food and Drug Administration guidance levels for CTXs (0.1 µg C-CTX-1 eq.kg(-1) and 0.01 µg P-CTX-1 eq.kg(-1) fish).


Subject(s)
Ciguatera Poisoning/chemically induced , Ciguatoxins/analysis , Ciguatoxins/toxicity , Fishes/metabolism , Seafood/analysis , Seafood/toxicity , Animals , Cell Line, Tumor , Cell Survival/drug effects , Ciguatera Poisoning/epidemiology , Dose-Response Relationship, Drug , Guadeloupe , Humans , Male , Mice , Toxicity Tests/methods
SELECTION OF CITATIONS
SEARCH DETAIL