Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1386552, 2024.
Article in English | MEDLINE | ID: mdl-38596379

ABSTRACT

A new strain of xanthan-degrading bacteria identified as Cohnella sp. has been isolated from a xanthan thickener for food production. The strain was able to utilize xanthan as the only carbon source and to reduce the viscosity of xanthan-containing medium during cultivation. Comparative analysis of the secretomes of Cohnella sp. after growth on different media led to the identification of a xanthanase designated as CspXan9, which was isolated after recombinant production in Escherichia coli. CspXan9 could efficiently degrade the ß-1,4-glucan backbone of xanthan after previous removal of pyruvylated mannose residues from the ends of the native xanthan side chains by xanthan lyase treatment (XLT-xanthan). Compared with xanthanase from Paenibacillus nanensis, xanthanase CspXan9 had a different module composition at the N- and C-terminal ends. The main putative oligosaccharides released from XLT-xanthan by CspXan9 cleavage were tetrasaccharides and octasaccharides. To explore the functions of the N- and C-terminal regions of the enzyme, truncated variants lacking some of the non-catalytic modules (CspXan9-C, CspXan9-N, CspXan9-C-N) were produced. Enzyme assays with the purified deletion derivatives, which all contained the catalytic glycoside hydrolase family 9 (GH9) module, demonstrated substantially reduced specific activity on XLT-xanthan of CspXan9-C-N compared with full-length CspXan9. The C-terminal module of CspXan9 was found to represent a novel carbohydrate-binding module of family CBM66 with binding affinity for XLT-xanthan, as was shown by native affinity polyacrylamide gel electrophoresis in the presence of various polysaccharides. The only previously known binding function of a CBM66 member is exo-type binding to the non-reducing fructose ends of the ß-fructan polysaccharides inulin and levan.

2.
Antonie Van Leeuwenhoek ; 117(1): 20, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38189996

ABSTRACT

A bacterial strain, Gram staining positive, strictly aerobic, rod-shaped, motile bacterium with flagellum and endospore-forming, designated strain YIM B05605T, was isolated from soil sampled in Hamazui hot springs, Tengchong City, Yunnan province, China. Optimum growth for the strain occurred at pH 7.0 and 45 °C. MK-7 was the main menaquinone in the strain YIM B05605T. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. Diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylmonomethylethanolamine (PME), unidentified glycolipid (GL), three unknown aminophospholipids (APLs) and unidentified polarlipid (PL) were part of the polar lipid profile. The major fatty acids were anteiso-C15:0 and iso-C16:0. The DNA G + C content of the type strain was 58.76%. Genome-based phylogenetic analysis confirmed that strain YIM B05605T formed a distinct phylogenetic cluster within the genus Cohnella. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values of strain YIM B05605T with the most related species C. fontinalis YT-1101T were 73.42% and 15.7%. Functional analysis by NR, Swiss-prot, Pfam, eggNOG, GO, KEGG databases revealed that strain YIM B05605T has 13 genes related to the sulfur cycle, 2 genes related to the nitrogen cycle. Based on phylogenomic and phylogenetic analyses coupled with phenotypic and chemotaxonomic characterizations, strain YIM B05605T could be classified as a novel species of the genus Cohnella, for which the name Cohnella caldifontis sp. nov., is proposed. The type strain is YIM B05605T (= CGMCC 1.60052T = KCTC 43462T = NBRC 115921T).


Subject(s)
Hot Springs , China , DNA , Genomics , Phylogeny , DNA Barcoding, Taxonomic/methods
3.
Microorganisms ; 11(11)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38004738

ABSTRACT

Two strains, designated NL03-T5T and NL03-T5-1, were isolated from a soil sample collected from the Nanling National Forests, Guangdong Province, PR China. The two strains were Gram-stain-positive, aerobic, rod-shaped and had lophotrichous flagellation. Strain NL03-T5T could secrete extracellular mucus whereas NL03-T5-1 could not. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the two strains belong to the genus Cohnella, were most closely related to Cohnella lupini LMG 27416T (95.9% and 96.1% similarities), and both showed 94.0% similarity with Cohnella arctica NRRL B-59459T, respectively. The two strains showed 99.8% 16S rRNA gene sequence similarity between them. The draft genome size of strain NL03-T5T was 7.44 Mbp with a DNA G+C content of 49.2 mol%. The average nucleotide identities (ANI) and the digital DNA-DNA hybridization (dDDH) values between NL03-T5T and NL03-T5-1 were 99.98% and 100%, indicating the two strains were of the same species. Additionally, the ANI and dDDH values between NL03-T5T and C. lupini LMG 27416T were 76.1% and 20.4%, respectively. The major cellular fatty acids of strain NL03-T5T included anteiso-C15:0 and iso-C16:0. The major polar lipids and predominant respiratory quinone were diphosphatidylglycerol (DPG) and menaquinone-7 (MK-7). Based on phylogenetic analysis, phenotypic and chemotaxonomic characterization, genomic DNA G+C content, and ANI and dDDH values, strains NL03-T5T and NL03-T5-1 represent novel species in the genus Cohnella, for which the name Cohnella silvisoli is proposed. The type strain is NL03-T5T (=GDMCC 1.2294T = JCM 34999T). Furthermore, comparative genomics revealed that the genus Cohnella had an open pan-genome. The pan-genome of 29 Cohnella strains contained 41,356 gene families, and the number of strain-specific genes ranged from 6 to 1649. The results may explain the good adaptability of the Cohnella strains to different habitats at the genetic level.

4.
Front Microbiol ; 14: 1166013, 2023.
Article in English | MEDLINE | ID: mdl-37396358

ABSTRACT

A single strain from the family Paenibacillaceae was isolated from the wall behind the Waste Hygiene Compartment aboard the International Space Station (ISS) in April 2018, as part of the Microbial Tracking mission series. This strain was identified as a gram-positive, rod-shaped, oxidase-positive, catalase-negative motile bacterium in the genus Cohnella, designated as F6_2S_P_1T. The 16S sequence of the F6_2S_P_1T strain places it in a clade with C. rhizosphaerae and C. ginsengisoli, which were originally isolated from plant tissue or rhizosphere environments. The closest 16S and gyrB matches to strain F6_2S_P_1T are to C. rhizosphaerae with 98.84 and 93.99% sequence similarity, while a core single-copy gene phylogeny from all publicly available Cohnella genomes places it as more closely related to C. ginsengisoli. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values to any described Cohnella species are <89 and <22%, respectively. The major fatty acids for strain F6_2S_P_1T are anteiso-C15:0 (51.7%), iso-C16:0 (23.1%), and iso-C15:0 (10.5%), and it is able to metabolize a wide range of carbon compounds. Given the results of the ANI and dDDH analyses, this ISS strain is a novel species within the genus Cohnella for which we propose the name Cohnella hashimotonis, with the type strain F6_2S_P_1T (=NRRL B-65657T and DSMZ 115098T). Because no closely related Cohnella genomes were available, this study generated the whole-genome sequences (WGSs) of the type strains for C. rhizosphaerae and C. ginsengisoli. Phylogenetic and pangenomic analysis reveals that F6_2S_P_1T, C. rhizosphaerae, and C. ginsengisoli, along with two uncharacterized Cohnella strains, possess a shared set of 332 gene clusters which are not shared with any other WGS of Cohnella species, and form a distinct clade branching off from C. nanjingensis. Functional traits were predicted for the genomes of strain F6_2S_P_1T and other members of this clade.

5.
Article in English | MEDLINE | ID: mdl-36995658

ABSTRACT

In this study, the cellulase activity by bacterial strain Cohnella xylanilytica RU-14 was enhanced by optimizing the medium components using statistical methods of Plackett-Burman design (PBD) and response surface methodology-central composite design (RSM-CCD). The cellulase assay was performed using NS enzyme assay method for reducing sugars. By PBD, the most significant factors (CMC, pH, and yeast extract) in an enzyme production medium that influence cellulase production by RU-14 were identified. These identified significant variables were further optimized using RSM by CCD. It was found that under optimized conditions of the medium components, the cellulase activity increased three times up to 14.5 U/mL as compared to un-optimized conditions (5.2 U/mL) of the enzyme production medium. The optimized levels of the significant factors determined by the CCD were found to be CMC, 2.3% w/v, and yeast extract, 0.75% w/v, at pH 7.5. The most adequate temperature for cellulase production by the bacterial strain was found to be 37 °C using the one-factor-at-a-time method. Thus, statistical methods to optimize medium conditions to enhance cellulase production by Cohnella xylanilytica RU-14 were found successful.

6.
Biochimie ; 207: 83-95, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36493965

ABSTRACT

Glutamate carboxypeptidase is a bacterial enzyme of metallopeptidase superfamily. This enzyme is an exo-peptidase that catalyzes the hydrolysis of glutamate residues at the C-terminus of folic acid. The rCP302 is a novel zinc ion-dependent recombinant glutamate carboxypeptidase derived from a thermophilic bacterium, Cohnella sp. A01 (PTCC No: 1921). By simulating the structure of rCP302, analyzing its activity in various environmental settings, and contrasting it with that of related enzymes, we wanted to evaluate the heterologous production, purification, and characterization of this enzyme. The bioinformatics study showed that rCP302 had maximum similarity to M20 family of metallopeptidases. The purified rCP302 molecular weight was about 41.6 kDa. The optimum temperature and pH for the catalytic activity of rCP302 were 50 °C and 7.2, respectively. Fluorescence spectroscopy data elucidated the secondary structure of rCP302 and determined conformational changes caused by alterations in ambient conditions. Using folate as a substrate, Km and specific activity values were calculated as 0.108 µM and 687 µmol/min/mg, respectively. The enzyme activity was strongly inhibited when EDTA sequestered zinc ions. The half-life of this enzyme at 30 °C was 2012 min. Regarding the ability of rCP302 to degrade folic acid, and its long half-life at 37 °C, the normal temperature of many mammals, this enzyme can be introduced for further study for use in the pharmaceutical industry.


Subject(s)
Carboxypeptidases , Peptide Hydrolases , Animals , Carboxypeptidases/metabolism , Temperature , Peptide Hydrolases/metabolism , Organic Chemicals , Zinc , Folic Acid , Hydrogen-Ion Concentration , Substrate Specificity , Mammals/metabolism
7.
Article in English | MEDLINE | ID: mdl-35960646

ABSTRACT

A novel strictly aerobic, Gram-stain-positive, rod-shaped, motile, endospore-forming, white-coloured bacterium, designated strain MFER-1T, was isolated from a fermented liquor of wild grasses sampled in the Republic of Korea. The respiratory quinone of strain MFER-1T was menaquinone-7 and its major cellular fatty acids were anteiso-C15 : 0 (55.3 %), iso-C16 : 0 (17.5 %) and C16 : 0 (12.1 %). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four unidentified aminophospholipids and an unidentified phospholipid. The 16S rRNA gene sequence of strain MFER-1T showed similarity of 98.1 % to 'Cohnella cholangitidis' 1 605-214T and below 98.0 % sequence similarity to the other Cohnella species. The phylogenomic tree indicated that strain MFER-1T formed a reliable cluster with several Cohnella species. The estimated genome size of strain MFER-1T was 8.52 Mb. Genomic DNA G+C content was 50.7mol%. The orthologous average nucleotide identity, digital DNA-DNA hybridization and amino acid identity values of strain MFER-1T with the most closely related species 'Cohnella cholangitidis' 1 605-214T were 78.7, 23.0 and 79.6 %, respectively. Based on the phenotypic, chemotaxonomic and phylogenetic results, strain MFER-1T should represent a novel species of the genus Cohnella, for which the name Cohnella herbarum sp. nov. is proposed, with strain MFER-1T (=KACC 21 257T=NBRC 114 628T) as the type strain.


Subject(s)
Bacillales , Poaceae , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Fermentation , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
8.
Arch Microbiol ; 204(8): 492, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35841443

ABSTRACT

A Gram-stain-negative, aerobic, rod-shaped bacteria strain, named YIM B01951T, was isolated from a forest soil sample collected from Mopan Mountain National Forest Park, Xinping City, Yunnan Province, southwest PR China (101°58'06" N, 23°03'02" E). Growth occurred at 15-40 °C (optimum, 30 °C), pH 5.0-8.0 (optimum, pH 6.5) and with up to ≤ 3.0% (w/v) NaCl on Nutrient Agar plates. The results of 16S rRNA gene sequence similarity analysis showed that strain YIM B01951T was closely related to the type strain of Cohnella arctica M9-62T (96.5%) and Cohnella lupini RLAHU4BT (96.3%). YIM B01951T contains anteiso-C15:0 and iso-C16:0 as the major cellular fatty acids; the main polar lipids are diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), lysylphosphatidylglycerol (PGL) and five aminophospholipids (APL). The MK-7 is the major respiratory quinone and the DNA G + C content is 49.2 mol%. Based on these phenotypic, chemotaxonomic and phylogenetic analyses, strain YIM B01951T is considered to be a novel species of the genus Cohnella, and named Cohnella mopanensis sp. nov. The type strain is YIM B01951T (= NBRC 115331T = KCTC 43370T).


Subject(s)
Phospholipids , Soil , Bacterial Typing Techniques , China , DNA, Bacterial/genetics , Fatty Acids/analysis , Forests , Phospholipids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
9.
Front Microbiol ; 13: 828687, 2022.
Article in English | MEDLINE | ID: mdl-35432256

ABSTRACT

Previously, we have reported that an endo-type ß-agarase AgaW was responsible for the hydrolysis of agarose into the major product neoagarotetraose in a terrestrial agar-degrading bacterium Cohnella sp. LGH. Here, we identify and characterize the following depolymerization pathway in strain LGH through the genomic and enzymatic analysis. In the pathway, neoagarotetraose was depolymerized by a novel α-neoagarooligosaccharide (NAOS) hydrolase CL5012 into 3,6-anhydro-α-L-galactose (L-AHG) and agarotriose; Agarotriose was further depolymerized by a novel agarolytic ß-galactosidase CL4994 into D-galactose and neoagarobiose; Neoagarobiose was finally depolymerized by CL5012 into L-AHG and D-galactose. Although α-agarase has not been identified in strain LGH, the combined action of CL5012 and CL4994 unexpectedly plays a critical role in the depolymerization of agarotetraose, one theoretical product of α-agarase hydrolysis of agarose. In this pathway, agarotetraose was depolymerized by CL4994 into D-galactose and neoagarotriose; Neoagarotriose was then depolymerized by CL5012 into L-AHG and agarobiose. Furthermore, another novel endo-type ß-agarase CL5055 was identified as an isozyme of AgaW with different pH preference in the hydrolysis of agarose into α-NAOSs. Strain LGH seemed to lack a common exo-type ß-agarase responsible for the direct depolymerization of agarose or neoagarooligosaccharide into neoagarobiose. These results highlight the diversity of agarolytic manner in bacteria and provide a novel insight on the diversity of agarolytic pathways.

10.
Arch Microbiol ; 203(10): 6053-6060, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34562146

ABSTRACT

A Gram-positive, aerobic, rod-shaped bacterium, designated as strain 1605-214T, was isolated from the blood sample of a patient with cholangitis. Based on its 16S rRNA gene sequence, the strain 1605-214T belonged to the genus Cohnella and exhibited 97.9% sequence identity with Cohnella luojiensis DSM 24270T (GQ214052). DNA-DNA hybridization, digital DNA-DNA hybridization, and average nucleotide identity values between the two species were 23% ± 1.9, 21.1%, and 77.2%, respectively. The cellular fatty acids of strain 1605-214T were mainly comprised of anteiso-C15:0 (36.1%), iso-C16:0 (16.5%), and C16:0 (15.1%). The predominant quinone was menaquinone-7; predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, and aminophospholipid-1. The cell wall peptidoglycan of strain 1605-214T contained meso-diaminopimelic acid. DNA G + C content of strain 1605-214T was 50.6 mol%. 5187 genes out of a total of 5413 (94.6%) were assigned putative functions using eggNOG v5.0. Based on genotypic characteristics and genomic sequence analysis results, strain 1605-214T was confirmed to represent a novel species of genus Cohnella, for which the name Cohnella cholangitidis sp. nov., was proposed.


Subject(s)
Fatty Acids , Phospholipids , Bacillales , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/analysis , Humans , Phospholipids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Republic of Korea , Sequence Analysis, DNA , Vitamin K 2
11.
Appl Microbiol Biotechnol ; 105(18): 6759-6778, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34458936

ABSTRACT

The genus Cohnella belongs to a group of Gram-positive endospore-forming bacteria within the Paenibacillaceae family. Although most species were described as xylanolytic bacteria, the literature still lacks some key information regarding their repertoire of xylan-degrading enzymes. The whole genome sequence of an isolated xylan-degrading bacterium Cohnella sp. strain AR92 was found to contain five genes encoding putative endo-1,4-ß-xylanases, of which four were cloned, expressed, and characterized to better understand the contribution of the individual endo-xylanases to the overall xylanolytic properties of strain AR92. Three of the enzymes, CoXyn10A, CoXyn10C, and CoXyn11A, were shown to be effective at hydrolyzing xylans-derived from agro-industrial, producing oligosaccharides with substrate conversion values of 32.5%, 24.7%, and 10.6%, respectively, using sugarcane bagasse glucuronoarabinoxylan and of 29.9%, 19.1%, and 8.0%, respectively, using wheat bran-derived arabinoxylan. The main reaction products from GH10 enzymes were xylobiose and xylotriose, whereas CoXyn11A produced mostly xylooligosaccharides (XOS) with 2 to 5 units of xylose, often substituted, resulting in potentially prebiotic arabinoxylooligosaccharides (AXOS). The endo-xylanases assay displayed operational features (temperature optima from 49.9 to 50.4 °C and pH optima from 6.01 to 6.31) fitting simultaneous xylan utilization. Homology modeling confirmed the typical folds of the GH10 and GH11 enzymes, substrate docking studies allowed the prediction of subsites (- 2 to + 1 in GH10 and - 3 to + 1 in GH11) and identification of residues involved in ligand interactions, supporting the experimental data. Overall, the Cohnella sp. AR92 endo-xylanases presented significant potential for enzymatic conversion of agro-industrial by-products into high-value products.Key points• Cohnella sp. AR92 genome encoded five potential endo-xylanases.• Cohnella sp. AR92 enzymes produced xylooligosaccharides from xylan, with high yields.• GH10 enzymes from Cohnella sp. AR92 are responsible for the production of X2 and X3 oligosaccharides.• GH11 from Cohnella sp. AR92 contributes to the overall xylan degradation by producing substituted oligosaccharides.


Subject(s)
Bacillales , Saccharum , Endo-1,4-beta Xylanases/genetics , Hydrolysis , Oligosaccharides , Xylans
12.
Int J Biol Macromol ; 187: 373-385, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34329665

ABSTRACT

Superoxide dismutases (SODs) (EC 1.15.1.1) are well known antioxidant enzymes that play critical roles in cellular defenses of living organisms against harmful superoxide radicals during oxidative stress. This study details on cloning, biochemical and functional characterization of an iron containing type superoxide dismutase (SOD) from a novel thermophilic bacteria Cohnella sp. A01 (CaSOD). The secondary and three dimensional structure of the protein were predicted. CaSOD gene was subsequently cloned into pET-26b(+) expression vector and expression of the recombinant protein (rCaSOD) was optimized in E. coli BL21 (DE3) and the purified recombinant SOD showed a single band with an apparent molecular weight of 26 kDa by SDS-PAGE. The half-life and thermodynamic parameters including ΔH⁎, ΔS⁎, and ΔG⁎ were 187 min at 60 °C, 7.3 kJ.mol-1, -76.8 kJ.mol-1.°K-1, and 84.1 kJ.mol-1, respectively. The rCaSOD exhibited catalytic activity in a very broad range of pH (6.0-10.0) and temperatures (35-75 °C), as well as stability in a broad pH range, from 3.0 to 11.0, and wide range of temperature, different concentrations of detergent agents, metal ions, organic solvents and other chemicals. The results suggest that this novel enzyme could be used for various industrial applications in cosmetic, food, and pharmaceutical industries.


Subject(s)
Bacillales/enzymology , Bacterial Proteins/metabolism , Iron/metabolism , Superoxide Dismutase/metabolism , Superoxides/metabolism , Amino Acid Sequence , Bacillales/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Catalysis , Cloning, Molecular , Enzyme Stability , Hydrogen Peroxide/metabolism , Hydrogen-Ion Concentration , Protein Conformation , Structure-Activity Relationship , Substrate Specificity , Superoxide Dismutase/chemistry , Superoxide Dismutase/genetics , Temperature
13.
Article in English | MEDLINE | ID: mdl-34161218

ABSTRACT

A Gram-positive, aerobic, flagellated, endospore-forming, rod-shaped strain, designated as G13T, was isolated from soil. The results of 16S rRNA gene sequence analysis led to the conclusion that strain G13T was phylogenetically related to Cohnella boryungensis BR29T (97.5 %) and Cohnella phaseoli CECT 7287T (96.9 %) with digital DNA-DNA hybridization values of 21.0 and 21.4 %, and distantly related to Cohnella thermotolerans CCUG 47242T (94.8 %), type species of the genus Cohnella, at 19.0 %. The genome size of strain G13T was 5 387 258 bp, with 51.3 mol% G+C content. The predominant fatty acids were summed feature 9 (iso-C17 : 1 ω9c and/or C16 : 0 10-methyl), anteiso-C17 : 0, iso-C17 : 0 and iso-C15 : 0. The predominant quinone was menaquinone-7 and the major polar lipids were diphosphatidyglycerol, phosphatidylethanolamine, phosphatidylglycerol, lysylphosphatidylglycerol, three aminophospholipids, two phosphoglycolipids, three aminolipids and two unidentified lipids. Based on the data from phenotypic tests and the genotypic differences between strain G13T and its close phylogenetic relatives, strain G13T represents a new species belonging to the genus Cohnella, for which the name Cohnella terricola sp. nov. (=KACC 19905T=NBRC 113748T) is proposed.


Subject(s)
Bacillales/classification , Phylogeny , Soil Microbiology , Bacillales/isolation & purification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Republic of Korea , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
14.
Arch Microbiol ; 203(5): 2445-2451, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33666688

ABSTRACT

A Gram-positive, aerobic, endospore-forming, rod-shaped bacterial strain, CAU 1483 T, was isolated from tidal-flat mud in the Republic of Korea. It grew optimally at 30 °C, in a pH 7.0 medium with 2% (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain CAU 1483 T formed a separate clade within Paenibacillaceae together with members of the genus Cohnella. Strain CAU 1483 T exhibited the highest 16S rRNA gene sequence similarity (97.1%) to C. candidum 18JY8-7 T. Whole genome of strain CAU 1483 T was 4.29 Mb in size with a 53.7 mol% G + C content, and included 4046 coding sequences and included 4046 coding sequences, some of which associated with stress response. The average nucleotide identity and digital DNA-DNA hybridization similarity between strain CAU 1483 T and related members of the genus Cohnella were 71.8-74.9% and 22.6-33.9%, respectively. The major respiratory quinone present in this strain was menaquinone-7. Strain CAU 1483 T contained anteiso-C15:0 and iso-C16:0 as the major fatty acids, while its polar lipids consisted of phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, lysyl-phosphatidylglycerol, phosphatidylcholine, three unidentified aminophospholipids, two unidentified lipids and an unidentified phospholipid. Peptidoglycan type was A1γ meso-Dpm. On the basis of taxonomic characterization, strain CAU 1483 T constitutes a novel species, for which the name Cohnella pontilimi sp. nov. is proposed. The type strain of this novel species is CAU 1483 T (= KCTC 43047 T = NBRC 113953 T).


Subject(s)
Bacillales/classification , Geologic Sediments/microbiology , Bacillales/chemistry , Bacillales/physiology , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genome, Bacterial/genetics , Peptidoglycan/chemistry , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Republic of Korea , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives
15.
Antonie Van Leeuwenhoek ; 114(1): 37-44, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33392934

ABSTRACT

A Gram-stain positive, aerobic, motile, rod-shaped bacterium designated as strain CBP-2801T was isolated as a contaminant from a culture containing maize callus in Peoria, Illinois, United States. The strain is unique relative to other Cohnella species due to its slow growth and reduced number of sole carbon sources. Phylogenetic analysis using 16S rRNA indicated that strain CBP-2801T is a Cohnella bacterium and showed the highest similarity to Cohnella xylanilytica (96.8%). Genome-based phylogeny and genomic comparisons based on average nucleotide identity confirmed the strain to be a novel species of Cohnella. Growth occurs at 15-45 °C (optimum 40 °C), pH 5-7 (optimum pH 6) and with 0-1% NaCl. The predominant fatty acids are anteiso-15:0 and 18:1 ω6c. Genome mining for secondary metabolites identified a putative biosynthetic cluster that encodes for a novel lasso peptide. In addition, this study contributes five new genome assemblies of type strains of Cohnella species, a genus with less than 30% of the type strains sequenced. The DNA G + C content is 58.7 mol %. Based on the phenotypic, phylogenetic and biochemical data strain CBP-2801T represents a novel species, for which the name Cohnella zeiphila sp. nov. is proposed. The type strain is CBP-2801T (= DSM 111598 = ATCC TSD-230).


Subject(s)
Phospholipids , Zea mays , Bacillales , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/analysis , Phospholipids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
16.
Int J Syst Evol Microbiol ; 70(4): 2602-2610, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32160142

ABSTRACT

A novel Gram-stain-positive, aerobic, motile with peritrichous flagella, rod-shaped bacterium, designated CC-MHH1044T, was isolated from a preserved vegetable sample. A polyphasic taxonomic approach was applied to the isolates in order to clarify its taxonomic position. Growth of the strain CC-MHH1044T occurred at 15-50 °C (optimum, 30 °C), pH 6.0-8.0 (optimum, pH 7.0) and with 0-2.0 % (w/v) NaCl (optimum, 1 %, w/v). The genome of strain CC-MHH1044T consisted of 8.5 Mb and the genomic DNA G+C content was 58.5 mol%. Comparison of the 16S rRNA gene sequences showed that CC-MHH1044T belonged to the genus Cohnella and showed a close relationship with the type strains of Cohnella damuensis (96.2 %) and Cohnella panacarvi (95.9 %), and lower sequence similarity to other species. Average nucleotide identity values calculated from whole-genome sequencing data proved that CC-MHH1044T represents a distinct Cohnella species. The dominant cellular fatty acids (>5 %) included iso-C14 : 0(7.4 %), iso-C15 : 0 (6.4 %), anteiso-C15 : 0(40.3 %), C16 : 0 (6.6 %) and iso-C16 : 0 (27.0 %). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four unidentified aminophospholipids, one unidentified phospholipid and glycolipid. The major polyamine was spermidine. The predominant isoprenoid quinone was menaqinone 7 (MK-7). Based on its distinct phylogenetic, phenotypic and chemotaxonomic traits, together with results of comparative 16S rRNA gene sequence, average nucleotide identity and digital DNA-DNA hybridization analyses, we conclude that strain CC-MHH1044T represents a novel member of the genus Cohnella, for which the name Cohnella fermenti sp. nov. is proposed. The type strain is CC-MHH1044T (=BCRC 81147T=JCM 32834T).


Subject(s)
Bacillales/classification , Fermentation , Fermented Foods/microbiology , Phylogeny , Bacillales/isolation & purification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Food Microbiology , Glycolipids/chemistry , Naphthols/chemistry , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Taiwan , Terpenes/chemistry , Whole Genome Sequencing
17.
Heliyon ; 5(9): e02543, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31687608

ABSTRACT

Laccase (EC 1.10.3.2; benzenediol; oxygen oxidoreductases) is a multi-copper oxidase that catalyzes the oxidation of phenols, polyphenols, aromatic amines, and different non-phenolic substrates with concomitant reduction of O2 to H2O. Enzymatic oxidation techniques have the potential of implementation in different areas of industrial fields. In this study, the Cohnella sp. A01 laccase gene was cloned into pET-26 (b+) vector and was transformed to E. coli BL21. Then it was purified using His tag affinity (Ni sepharose resin) chromatography. The estimated molecular weight was approximately 60 kDa using SDS-PAGE. The highest enzyme activity and best pH for 2,6-dimethoxyphenol (DMP) oxidation were recorded as 8 at 90 °C respectively. The calculated half-life and kinetic values including Km, Vmax, turn over number (kcat), and catalytic efficiency (kcat/Km) of the enzyme were 106 min at 90 °C and 686 µM, 10.69 U/ml, 20.3 S-, and 0.029 s-1 µM-1, respectively. The DMP was available as the substrate in all the calculations. Enzyme activity enhanced in the presence of Cu2+, NaCl, SDS, n-hexane, Triton X-100, tween 20, and tween 80, significantly. The binding residues were predicted and mapped upon the modeled tertiary structure of identified laccase. The remaining activity and structural properties of Cohnella sp. A01 laccase in extreme conditions such as high temperatures and presence of metals, detergents, and organic solvents suggest the potential of this enzyme in biotechnological and industrial applications. This process has been patented in Iranian Intellectual Property Centre under License No: 91325.

18.
J Microbiol ; 57(11): 953-958, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31463785

ABSTRACT

A strictly aerobic, motile, endospore-forming, rod-shaped bacterium, designated HS21T, was isolated from rhizospheric soil of the Korean fir tree (Abies koreana) from Halla mountain on Jeju island, Korea. Growth of strain HS21T was observed at pH 6.0-8.0 (optimum: pH 7.0), 0-2% (w/v) NaCl and 4-30°C (optimum: 25°C). A comparative analysis of 16S rRNA gene sequences showed that strain HS21T was most closely related to Cohnella luojiensis HY-22RT (97.6%), followed by C. lupini RLAHU4BT (97.4%) and C. collisoli NKM-5T (97.2%). The genome of strain HS21T comprised a circular chromosome of 7,059,027 bp with 44.8% G + C content. The DNA-DNA relatedness values between strain HS21T and C. luojiensis HY-22RT and C. lupini RLAHU4BT were 18.1% and 13.8%, respectively. The major cellular fatty acids (> 5%) of the isolate were anteiso-C15:0, iso-C16:0, C16:0, and iso-C15:0. The polar lipids present were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, lysylphosphatidylglycerol, and three unidentified aminophospholipids. Based on its phenotypic, phylogenetic, genomic, and chemotaxonomic properties, strain HS21T represents a novel species of the genus Cohnella, for which the name Cohnella abietis sp. nov. is proposed. The type strain is HS21T (= KCTC 43028T = CCTCC AB 2019010T).


Subject(s)
Abies/microbiology , Bacillales/classification , Bacillales/isolation & purification , Phylogeny , Rhizosphere , Soil Microbiology , Bacillales/genetics , Bacillales/physiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Lipids/chemistry , Lysine/chemistry , Phosphatidylglycerols/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Republic of Korea , Root Nodules, Plant/microbiology , Sequence Analysis, DNA , Soil , Whole Genome Sequencing
19.
Int J Syst Evol Microbiol ; 69(7): 2004-2009, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31063121

ABSTRACT

A Gram-stain-positive, aerobic, rod-shaped, endospore-forming bacterium, designated strain M2MS4P-1T, was isolated from surface-sterilized bark of Sonneratiaapetala sampled in Guangxi, China. The bacterium was characterized by a polyphasic approach to determine its taxonomic position. 16S rRNA gene sequence comparisons revealed that strain M2MS4P-1T belonged to the genus Cohnella and was most closely to Cohnella luojiensis HY-22RT (98.4 % similarity). The average nucleotide identity value and estimated DDH value between strain M2MS4P-1T and the type strain of C. luojiensis HY-22RT were 79.2 and 20.1 %, respectively. Neither substrate nor aerial mycelia were formed, and no diffusible pigments were observed on the media tested. Strain M2MS4P-1T grew in the pH range 6.0-9.0 (optimum, pH 7.0-8.0), at temperatures between 10-37 °C (30 °C) and in 0-1 % (w/v) NaCl (0 %). The predominant isoprenoid quinone in strain M2MS4P-1T was menaquinone-7. The major fatty acids were anteiso-C15 : 0 and iso-C16 : 0. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, lysyl-phosphatidylglycerol, four unidentified aminophospholipids and two unidentified phospholipids. The DNA G+C content was 51.5 mol%. According to the phylogenetic, phenotypic and chemotaxonomic evidence, strain M2MS4P-1T was clearly distinguishable from other species with validly published names in the genus Cohnella and should therefore be classified as a novel species, for which we suggest the name Cohnellaendophytica sp. nov. The type strain is M2MS4P-1T (=KCTC 43011T=CGMCC 1.13745T).


Subject(s)
Bacillales/classification , Lythraceae/microbiology , Phylogeny , Plant Bark/microbiology , Bacillales/isolation & purification , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Peptidoglycan/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
20.
Rev. argent. microbiol ; 51(1): 77-80, mar. 2019. graf
Article in English | LILACS | ID: biblio-1041818

ABSTRACT

Cohnella is a highly cellulolytic bacterial genus, which can be found in a variety of habitats. The aim of this study was to assess its presence in the digestive tract of termite species collected in North-eastern Argentina: Nasutitermes aquilinus, N. corniger and Cortaritermes fulviceps. Gut homogenates were incubated with cellulosic substrate for bacterial growth. Bacterial 16S rDNA was partially amplified using new primers for Cohnella spp. and cloned. Sequences obtained showed highest similarity (97.2-99.9%) with those of Cohnella spp. previously reported from diverse environments. Phylogenetic analysis tended to group the clones according to their host species and sampling sites. These results indicate the association of Cohnella-related intestinal symbionts with three common Neotropical termites. Their potential industrial application encourages further research.


Cohnella es un género de bacterias celulolíticas que puede ser encontrado en una variedad de hábitats. El propósito de este estudio fue registrar su presencia en el tracto digestivo de termitas (Nasutitermes aquilinus, N. corniger y Cortaritermes fulviceps) colectadas en el noreste argentino (NEA). Se incubaron homogenados de intestinos en sustrato celulósico para multiplicar las bacterias. Utilizando nuevos cebadores para Cohnella spp., se amplificó una porción del ADN ribosomal 16S bacteriano, el cual fue posteriormente clonado. Las secuencias obtenidas mostraron su mayor porcentaje de similitud (97,2-99,9%) con Cohnella spp., previamente reportadas en diversos ambientes. El análisis filogenético tendió a agrupar a los clones de acuerdo a la especie hospedante y al sitio de muestreo. Estos resultados indican que especies de termitas frecuentes en el NEA albergan simbiontes intestinales relacionados con el género Cohnella. Las potenciales aplicaciones industriales de estos microorganismos animan a profundizar los estudios.


Subject(s)
Isoptera/microbiology , Paenibacillus/isolation & purification , Paenibacillus/growth & development , Bacterial Growth/analysis , Sequence Analysis, DNA/methods , Gastrointestinal Tract/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL