Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Cells ; 13(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38920644

ABSTRACT

Hepatocellular carcinoma (HCC) development is associated with altered modifications in DNA methylation, changing transcriptional regulation. Emerging evidence indicates that DNA methyltransferase 1 (DNMT1) plays a key role in the carcinogenesis process. This study aimed to investigate how pirfenidone (PFD) modifies this pathway and the effect generated by the association between c-Myc expression and DNMT1 activation. Rats F344 were used for HCC development using 50 mg/kg of diethylnitrosamine (DEN) and 25 mg/kg of 2-Acetylaminofluorene (2-AAF). The HCC/PFD group received simultaneous doses of 300 mg/kg of PFD. All treatments lasted 12 weeks. On the other hand, HepG2 cells were used to evaluate the effects of PFD in restoring DNA methylation in the presence of the inhibitor 5-Aza. Histopathological, biochemical, immunohistochemical, and western blot analysis were carried out and our findings showed that PFD treatment reduced the amount and size of tumors along with decreased Glipican-3, ß-catenin, and c-Myc expression in nuclear fractions. Also, this treatment improved lipid metabolism by modulating PPARγ and SREBP1 signaling. Interestingly, PFD augmented DNMT1 and DNMT3a protein expression, which restores global methylation, both in our in vivo and in vitro models. In conclusion, our results suggest that PFD could slow down HCC development by controlling DNA methylation.


Subject(s)
Carcinoma, Hepatocellular , DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methylation , Proliferating Cell Nuclear Antigen , Pyridones , Animals , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA Methylation/drug effects , DNA Methylation/genetics , Pyridones/pharmacology , Rats , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Humans , Hep G2 Cells , Proliferating Cell Nuclear Antigen/metabolism , Male , Rats, Inbred F344 , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Gene Expression Regulation, Neoplastic/drug effects , Diethylnitrosamine , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/pathology , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/genetics
2.
Chem Biol Drug Des ; 100(2): 245-255, 2022 08.
Article in English | MEDLINE | ID: mdl-35451561

ABSTRACT

Phenolic acids represent a large collection of phytochemical molecules present in the plant kingdom; they have an important role as epigenetic regulators, particularly as inhibitors of DNA methylation. In the present study, 14 methyl benzoate and cinnamate analogs were synthesized (11-24). Their cytotoxic activity on hepatocellular carcinoma cells (Hep3B) and immortalized human hepatocyte cells was then evaluated. In addition, its effect on the inhibition of global DNA methylation in Hep3B was also determined. Our results showed that the cinnamic derivatives 11-14 and 20-22 were more potent than the free caffeic acid (IC50 109.7-364.2 µM), being methyl 3,4-dihydroxycinammate (12) the most active with an IC50  = 109.7 ± 0.8 µM. Furthermore, 11-14, 20-23 compounds decreased overall DNA methylation levels by 63% to 97%. The analogs methyl 4-hydroxycinnamate (11), methyl 3,4,5-trimethoxycinnamate (14), methyl 4-methoxycinnamate (21), and methyl 3,4-dimethoxycinnamate (22) showed relevant activities of both cytotoxicity and global DNA methylation inhibition. The molecular docking of 21 and 14 suggested that they partly bind to the SAH-binding pocket of DNA methyltransferase 1. These results emphasize the importance of natural products and their analogs as potential sources of DNA methylation modulating agents.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Benzoates , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Cinnamates/pharmacology , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation , Humans , Liver Neoplasms/drug therapy , Molecular Docking Simulation
3.
Phytomedicine ; 95: 153885, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34920321

ABSTRACT

BACKGROUND: Cancer is an outcome of uncontrolled cell division eventually associated with dysregulated epigenetic mechanisms, including DNA methylation. DNA methyltransferase 1 is ubiquitously expressed in the proliferating cells and is essential for the maintenance of DNA methylation. It causes the abnormal silencing of tumor suppressor genes in human cancer which is necessary for proliferation, cell cycle progression, and survival. DNMT1 is involved in tumorigenesis of several cancers, its upregulation potentially upscale the promoter level inactivation of transcription of a tumor inhibitory gene by introducing repressive methylation marks on the CpG islands. This epigenetic perturbation caused by DNMT is targeted for cancer therapeutics. PURPOSE: To demonstrate the proliferative inhibitory potential of brazilin in human breast cancer cell line (MCF-7) with concurrent mitigation of DNMT1 functional expression and to understand its effect on downstream targets like cell cycle inhibitor p21. STUDY DESIGN/ METHODS: The impact of brazilin on the growth and proliferation of the MCF-7 cells was determined using the XTT assay. The global DNA 5-methyl cytosine methylation pattern was analyzed upon brazilin treatment. The gene and protein expression of DNMTs were determined with quantitative RTPCR and western blots respectively. The potential binding sites of transcription factors in the human DNMT1 promoter were predicted using the MatInspector tool on the Genomatix software. The chromatin immunoprecipitation (ChIP) assay was performed to demonstrate the transcription factors occupancy at the promoter. Methylation of promoter CpG islands was determined by the methylation-specific PCR (MSP) upon brazilin treatment. The molecular docking of the human DNMT1 with brazilin (ligand) was performed using the Schrödinger suite. RESULTS: The heterotetracyclic compound brazilin, present in the wood of Caesalpinia sappan, inhibited the proliferation of the human breast cancer cell line (MCF-7) and reduced the DNMT1 expression with a decrease in global DNA methylation. Brazilin, by activating p38 MAPK and elevating p53 levels within the exposed cells. The elevated level of p53 enriched the occupancy at binding sites within 200 bp upstream to the transcription start site in the DNMT1 promoter, resulting in reduced DNMT1 gene expression. Furthermore, the brazilin restored the p21 levels in the exposed cells as the CpGs in the p21 promoter (-128 bp/+17 bp) were significantly demethylated as observed in the methylation-specific PCR (MSP). CONCLUSION: Highly potential anti-proliferative molecule brazilin can modulate the DNMT1 functional expression and restore the cell cycle inhibitor p21expression. We propose that brazilin can be used in therapeutic interventions to restore the deregulated epigenetic mechanisms in cancer.


Subject(s)
Benzopyrans/pharmacology , Cyclin-Dependent Kinase Inhibitor p21/genetics , DNA (Cytosine-5-)-Methyltransferase 1 , Epigenesis, Genetic , Tumor Suppressor Protein p53 , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA Methylation , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Molecular Docking Simulation , Phytochemicals , Promoter Regions, Genetic , Tumor Suppressor Protein p53/genetics
4.
Chem Biol Interact ; 349: 109641, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34534549

ABSTRACT

Breast cancer (BC) is the most frequently diagnosed female cancer and second leading cause of death. Despite the discovery of many antineoplastic drugs for BC, the current therapy is not totally efficient. In this study, we investigated the potential of repurposing the well-known diabetes type II drug liraglutide to modulate epigenetic modifications in BC cells lines in vitro and in vivo via Ehrlich mice tumors models. The in vitro results revealed a significant reduction on cell viability, migration, DNMT activity and displayed lower levels of global DNA methylation in BC cell lines after liraglutide treatment. The interaction between liraglutide and the DNMT enzymes resulted in a decrease profile of DNA methylation for the CDH1, ESR1 and ADAM33 gene promoter regions and, consequently, increased their gene and protein expression levels. To elucidate the possible interaction between liraglutide and the DNMT1 protein, we performed an in silico study that indicates liraglutide binding in the catalytic cleft via hydrogen bonds and salt bridges with the interdomain contacts and disturbs the overall enzyme conformation. The in vivo study was also able to reveal that liraglutide and the combined treatment of liraglutide and paclitaxel or methotrexate were effective in reducing tumor growth. Moreover, the modulation of CDH1 and ADAM33 mouse gene expression by DNA demethylation suggests a role for liraglutide in DNMT activity in vivo. Altogether, these results indicate that liraglutide may be further analysed as a new adjuvant treatment for BC.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors , Enzyme Inhibitors/therapeutic use , Liraglutide/therapeutic use , ADAM Proteins/genetics , Animals , Antigens, CD/genetics , Breast Neoplasms/pathology , Cadherins/genetics , Cell Line, Tumor , DNA Methylation/drug effects , Estrogen Receptor alpha/genetics , Female , Humans , Mice , Promoter Regions, Genetic
5.
Biol Res ; 54(1): 25, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34362460

ABSTRACT

BACKGROUND: Peroxisome proliferator-activated receptor alpha (PPARα) is associated with diabetic retinopathy (DR), and the underlying mechanism is still unclear. Aim of this work was to investigate the mechanism of PPARα in DR. METHODS: Human retinal capillary pericytes (HRCPs) were treated with high glucose (HG) to induce DR cell model. DR mouse model was established by streptozotocin injection, and then received 5-Aza-2-deoxycytidine (DAC; DNA methyltransferase inhibitor) treatment. Hematoxylin-eosin staining was performed to assess retinal tissue damage. PPARα methylation was examined by Methylation-Specific PCR. Flow cytometry and DCFH-DA fluorescent probe was used to estimate apoptosis and reactive oxygen species (ROS). The interaction between DNA methyltransferase-1 (DNMT1) and PPARα promoter was examined by Chromatin Immunoprecipitation. Quantitative real-time PCR and western blot were performed to assess gene and protein expression. RESULTS: HG treatment enhanced the methylation levels of PPARα, and repressed PPARα expression in HRCPs. The levels of apoptotic cells and ROS were significantly increased in HRCPs in the presence of HG. Moreover, DNMT1 was highly expressed in HG-treated HRCPs, and DNMT1 interacted with PPARα promoter. PPARα overexpression suppressed apoptosis and ROS levels of HRCPs, which was rescued by DNMT1 up-regulation. In DR mice, DAC treatment inhibited PPARα methylation and reduced damage of retinal tissues. CONCLUSION: DNMT1-mediated PPARα methylation promotes apoptosis and ROS levels of HRCPs and aggravates damage of retinal tissues in DR mice. Thus, this study may highlight novel insights into DR pathogenesis.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Diabetic Retinopathy , PPAR alpha/genetics , Retina/pathology , Animals , Apoptosis , Cells, Cultured , DNA Methylation , Diabetes Mellitus , Disease Models, Animal , Humans , Methylation , Mice , Promoter Regions, Genetic , Retina/cytology
6.
Biol. Res ; 54: 25-25, 2021. ilus, graf
Article in English | LILACS | ID: biblio-1505814

ABSTRACT

BACKGROUND: Peroxisome proliferator-activated receptor alpha (PPARα) is associated with diabetic retinopathy (DR), and the underlying mechanism is still unclear. Aim of this work was to investigate the mechanism of PPARα in DR. METHODS: Human retinal capillary pericytes (HRCPs) were treated with high glucose (HG) to induce DR cell model. DR mouse model was established by streptozotocin injection, and then received 5-Aza-2-deoxycytidine (DAC; DNA methyltransferase inhibitor) treatment. Hematoxylin-eosin staining was performed to assess retinal tissue damage. PPARα methylation was examined by Methylation-Specific PCR. Flow cytometry and DCFH-DA fluorescent probe was used to estimate apoptosis and reactive oxygen species (ROS). The interaction between DNA methyltransferase-1 (DNMT1) and PPARα promoter was examined by Chromatin Immunoprecipitation. Quantitative real-time PCR and western blot were performed to assess gene and protein expression. RESULTS: HG treatment enhanced the methylation levels of PPARα, and repressed PPARα expression in HRCPs. The levels of apoptotic cells and ROS were significantly increased in HRCPs in the presence of HG. Moreover, DNMT1 was highly expressed in HG-treated HRCPs, and DNMT1 interacted with PPARα promoter. PPARα overexpression suppressed apoptosis and ROS levels of HRCPs, which was rescued by DNMT1 up-regulation. In DR mice, DAC treatment inhibited PPARα methylation and reduced damage of retinal tissues. CONCLUSION: DNMT1-mediated PPARα methylation promotes apoptosis and ROS levels of HRCPs and aggravates damage of retinal tissues in DR mice. Thus, this study may highlight novel insights into DR pathogenesis.


Subject(s)
Humans , Animals , Mice , Retina/pathology , PPAR alpha/genetics , Diabetic Retinopathy , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Retina/cytology , Cells, Cultured , Promoter Regions, Genetic , Apoptosis , DNA Methylation , Diabetes Mellitus , Disease Models, Animal , Methylation
7.
Lasers Med Sci ; 31(7): 1521-6, 2016 09.
Article in English | MEDLINE | ID: mdl-27349246

ABSTRACT

The use of light emitting diodes (LED) as a therapeutic resource for wound healing has increased over the last years; however, little is still known about the molecular pathways associated to LED exposure. In the present study, we verified the effects of LED therapy on DNA methylation and expression of the DNA methyltransferase (Dnmt) genes, Dnmt1 and Dnmt3a, in an in vivo model of epithelial wound healing. Male Wistar rats were submitted to epithelial excision in the dorsal region and subsequently distributed within the experimental groups: group 1, animals that received irradiation of 0.8 J/cm(2) of LED (604 nm); group 2, animals that received 1.6 J/cm(2) of LED (604 nm); control (CTL), animals not submitted to therapeutic intervention. LED applications were performed during 7 days, and tissues from the periphery of the wound area were obtained for molecular analysis. The Image-J software was used for analysis of the wound area. DNA methylation was evaluated by ELISA-based method and gene expressions were quantified by real-time PCR. Decrease on global DNA methylation profile was observed in all experimental groups (CTL, 1, and 2) revealing the participation of DNA methylation in the healing process. Significant decrease in the wound area accompanied by increase in the Dnmt3a expression was associated to group 2. Based on our findings, we propose that DNA methylation is an important molecular mechanism associated to wound healing and that irradiation with 1.6 J/cm(2) of LED evokes an increase in the expression of the Dnmt3a that might associates to the efficiency of the epithelial wound healing.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/radiation effects , Gene Expression Regulation, Enzymologic/radiation effects , Laser Therapy , Skin/pathology , Wound Healing/genetics , Wound Healing/radiation effects , Animals , DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methyltransferase 3A , Disease Models, Animal , Male , Rats, Wistar , Real-Time Polymerase Chain Reaction , Skin/radiation effects
8.
Behav Brain Res ; 296: 286-289, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26342282

ABSTRACT

Epigenetics has recently been linked to molecular adaptive responses evoked by physical exercise and stress. Herein we evaluated the effects of physical exercise on global DNA methylation and expression of the Dnmt1 gene in the rat brain and also verified its potential to modulate responses evoked by repeated restraint stress (RRS). Wistar rats were classified into the following experimental groups: (1) physically active (EX): animals submitted to swimming during postnatal days 53-78 (PND); (2) stress (ST): animals submitted to RRS during 75-79PND; (3) exercise-stress (EX-ST): animals submitted to swimming during 53-78PND and to RRS during 75-79PND, and (4) control (CTL): animals that were not submitted to intervention. Samples from the hippocampus, cortex and hypothalamus were obtained at 79PND. The global DNA methylation profile was assessed using an ELISA-based method and the expression of Dnmt1 was evaluated by real-time PCR. Significantly increased methylation was observed in the hypothalamus of animals from the EX group in comparison to CTL. Comparative analysis involving the EX-ST and ST groups revealed increased global DNA methylation in the hippocampus, cortex, and hypothalamus of EX-ST, indicating the potential of physical exercise in modulating the responses evoked by RRS. Furthermore, decreased expression of the Dnmt1 gene was observed in the hippocampus and hypothalamus of animals from the EX-ST group. In summary, our data indicate that physical exercise affects DNA methylation of the hypothalamus and might modulate epigenetic responses evoked by RRS in the hippocampus, cortex, and hypothalamus.


Subject(s)
Adaptation, Physiological/physiology , Cerebral Cortex/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , Epigenesis, Genetic , Hippocampus/metabolism , Hypothalamus/metabolism , Physical Conditioning, Animal/physiology , Stress, Psychological/metabolism , Animals , DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methylation/physiology , Male , Rats , Rats, Wistar , Restraint, Physical
9.
Braz. arch. biol. technol ; Braz. arch. biol. technol;59: e2016150510, 2016. graf
Article in English | LILACS | ID: biblio-951302

ABSTRACT

ABSTRACT Cyclin-dependent kinase-like 5 (CDKL5) is a protein kinase that is homologous to mitogen-activated protein kinases (MAPKs) and cyclin-dependent kinases (CDKs). Mutations in the CDKL5 gene cause X-linked infantile spasms and phenotypes that overlap with that of Rett syndrome, which is a neurodevelopmental disorder caused primarily by mutations in the methyl CpG binding protein 2 gene (MECP2). Previous studies in transfected cell lines showed that CDKL5 interacts with MeCP2 and DNA (cytosine-5)-methyltransferase 1 (Dnmt1). However, little is known about the relationships of CDKL5 with interacting proteins in primary neuronal cultures. In this study, we investigated the expression patterns of CDKL5, MeCP2 and Dnmt1, and their interaction in cultured rat cortical neurons. Using real-time PCR analysis, we found that CDKL5, MeCP2 and Dnmt1 have similar expression patterns at the mRNA level. In contrast, the expression patterns of those proteins at the protein level are different and could be inversely correlated, as shown by western blotting. Using co-immunoprecipitation, we further demonstrated that CDKL5 interacts with MeCP2 and Dnmt1 in primary rat cortical neurons. These data suggest that a functional link exists among CDKL5, MeCP2 and Dnmt1 during neuronal development and may provide further insight into the pathogenesis of Rett syndrome.

10.
Exp Mol Pathol ; 98(2): 200-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25746661

ABSTRACT

Methylation of CpG islands in promoter gene regions is frequently observed in lymphomas. DNA methylation is established by DNA methyltransferases (DNMTs). DNMT1 maintains methylation patterns, while DNMT3A and DNMT3B are critical for de novo DNA methylation. Little is known about the expression of DNMTs in lymphomas. DNMT3A and 3B genes can be regulated post-transcriptionally by miR-29 family. Here, we demonstrated for the first time the overexpression of DNMT1 and DNMT3B in Burkitt lymphoma (BL) tumor samples (69% and 86%, respectively). Specifically, the treatment of two BL cell lines with the DNMT inhibitor 5-aza-dC decreased DNMT1 and DNMT3B protein levels and inhibited cell growth. Additionally, miR-29a, miR-29b and miR-29c levels were significantly decreased in the BL tumor samples. Besides, the ectopic expression of miR-29a, miR-29b and miR-29c reduced the DNMT3B expression and miR-29a and miR-29b lead to increase of p16(INK4a) mRNA expression. Altogether, our data suggest that deregulation of DNMT1, DNMT3B and miR29 may be involved in BL pathogenesis.


Subject(s)
Burkitt Lymphoma/genetics , DNA (Cytosine-5-)-Methyltransferases/biosynthesis , MicroRNAs/biosynthesis , Adolescent , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Burkitt Lymphoma/pathology , Cell Line, Tumor , Child , Child, Preschool , Cyclin-Dependent Kinase Inhibitor p16/biosynthesis , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cytidine Triphosphate/analogs & derivatives , Cytidine Triphosphate/pharmacology , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , DNA Methylation , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Promoter Regions, Genetic , RNA, Messenger/biosynthesis , DNA Methyltransferase 3B
11.
Behav Brain Res ; 279: 123-8, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25449846

ABSTRACT

The vulnerability of epigenetic marks of brain cells to environmental stimuli and its implication for health have been recently debated. Thus, we used the rat model of acute restraint stress (ARS) to evaluate the impact of stress on the global DNA methylation and on the expression of the Dnmt1 and Bdnf genes of hippocampus, cortex, hypothalamus and periaqueductal gray (PAG). Furthermore, we verified the potential of physical exercise to modulate epigenetic responses evoked by ARS. Sedentary male Wistar rats were submitted to ARS at the 75th postnatal day (PND), whereas animals from a physically active group were previously submitted to swimming sessions (35-74th PND) and to ARS at the 75th PND. Global DNA methylation profile was quantified using an ELISA-based method and the quantitative expression of the Dnmt1 and Bdnf genes was evaluated by real-time PCR. ARS induced a decrease in global DNA methylation in hippocampus, cortex and PAG of sedentary animals and an increased expression of Bdnf in PAG. No change in DNA methylation was associated with ARS in the exercised animals, although it was associated with abnormal expression of Dnmt1 and Bdnf in cortex, hypothalamus and PAG. Our data reveal that ARS evokes adaptive changes in global DNA methylation of rat brain that are independent of the expression of the Dnmt1 gene but might be linked to abnormal expression of the Bdnf gene in the PAG. Furthermore, our evidence indicates that physical exercise has the potential to modulate changes in DNA methylation and gene expression consequent to ARS.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Brain/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation , Physical Conditioning, Animal , Stress, Psychological/genetics , Animals , Cerebral Cortex/metabolism , Corticosterone/blood , DNA (Cytosine-5-)-Methyltransferase 1 , Epigenesis, Genetic , Hippocampus/metabolism , Hypothalamus/metabolism , Male , Periaqueductal Gray/metabolism , Rats , Rats, Wistar , Restraint, Physical , Swimming
12.
Sleep ; 36(8): 1257-9, 1259A, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23904686

ABSTRACT

STUDY OBJECTIVES: Autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN) is caused by DNMT1 mutations. Diagnosing the syndrome can be difficult, as all clinical features may not be present at onset, HLA-DQB1*06:02 is often negative, and sporadic cases occur. We report on clinical and genetic findings in a 31-year-old woman with cerebellar ataxia, deafness, and narcolepsy, and discuss diagnostic challenges. DESIGN: Clinical and genetic investigation in a patient and family members. SETTING: Ataxia clinic, São Paulo, Brazil. PATIENTS OR PARTICIPANTS: One patient and her family members. INTERVENTIONS: N/A. MEASUREMENTS AND RESULTS: Narcolepsy was supported by polysomnographic and multiple sleep latency testing. HLA-DQB1*06:02 was positive. CSF hypocretin-1 was 191 pg/mL (normal values > 200 pg/mL). Mild brain atrophy was observed on MRI, with cerebellar involvement. The patient, her asymptomatic mother, and 3 siblings gave blood samples for genetic analysis. DNMT1 exons 20 and 21 were sequenced. Haplotyping of polymorphic markers surrounding the mutation was performed. The proband had a novel DNMT1 mutation in exon 21, p.Cys596Arg, c.1786T > C. All 4 parental haplotypes could be characterized in asymptomatic siblings without the mutation, indicating that the mutation is de novo in the patient. CONCLUSIONS: The Brazilian patient reported here further adds to the worldwide distribution of ADCA-DN. The mutation is novel, and illustrates a sporadic case with de novo mutation. We believe that many more cases with this syndrome are likely to be diagnosed in the near future, mandating knowledge of this condition and consideration of the diagnosis.


Subject(s)
Cerebellar Ataxia/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Deafness/genetics , Narcolepsy/genetics , Polymorphism, Single Nucleotide/genetics , Adult , Brazil , Cerebellar Ataxia/complications , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/physiology , Deafness/complications , Exons/genetics , Exons/physiology , Female , Humans , Narcolepsy/complications , Polysomnography
SELECTION OF CITATIONS
SEARCH DETAIL