Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Biosci ; 12(1): 118, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35902915

ABSTRACT

BACKGROUND: The activation of the hypothalamic-pituitary-adrenal (HPA) axis is essential for metabolic adaptation in response to fasting. However, the neurocircuitry connecting changes in the peripheral energy stores to the activity of hypothalamic paraventricular corticotrophin-releasing factor (CRFPVN) neurons, the master controller of the HPA axis activity, is not completely understood. Our main goal was to determine if hypothalamic arcuate nucleus (ARC) POMC and AgRP neurons can communicate fasting-induced changes in peripheral energy stores, associated to a fall in plasma leptin levels, to CRFPVN neurons to modulate the HPA axis activity in mice. RESULTS: We observed increased plasma corticosterone levels associate with increased CRFPVN mRNA expression and increased CRFPVN neuronal activity in 36 h fasted mice. These responses were associated with a fall in plasma leptin levels and changes in the mRNA expression of Agrp and Pomc in the ARC. Fasting-induced decrease in plasma leptin partially modulated these responses through a change in the activity of ARC neurons. The chemogenetic activation of POMCARC by DREADDs did not affect fasting-induced activation of the HPA axis. DREADDs inhibition of AgRPARC neurons reduced the content of CRFPVN and increased its accumulation in the median eminence but had no effect on corticosterone secretion induced by fasting. CONCLUSION: Our data indicate that AgRPARC neurons are part of the neurocircuitry involved in the coupling of PVNCRF activity to changes in peripheral energy stores induced by prolonged fasting.

2.
Front Integr Neurosci ; 16: 765324, 2022.
Article in English | MEDLINE | ID: mdl-35250498

ABSTRACT

Parvalbumin is a calcium-binding protein present in inhibitory interneurons that play an essential role in regulating many physiological processes, such as intracellular signaling and synaptic transmission. Changes in parvalbumin expression are deeply related to epilepsy, which is considered one of the most disabling neuropathologies. Epilepsy is a complex multi-factor group of disorders characterized by periods of hypersynchronous activity and hyperexcitability within brain networks. In this scenario, inhibitory neurotransmission dysfunction in modulating excitatory transmission related to the loss of subsets of parvalbumin-expressing inhibitory interneuron may have a prominent role in disrupted excitability. Some studies also reported that parvalbumin-positive interneurons altered function might contribute to psychiatric comorbidities associated with epilepsy, such as depression, anxiety, and psychosis. Understanding the epileptogenic process and comorbidities associated with epilepsy have significantly advanced through preclinical and clinical investigation. In this review, evidence from parvalbumin altered function in epilepsy and associated psychiatric comorbidities were explored with a translational perspective. Some advances in potential therapeutic interventions are highlighted, from current antiepileptic and neuroprotective drugs to cutting edge modulation of parvalbumin subpopulations using optogenetics, designer receptors exclusively activated by designer drugs (DREADD) techniques, transcranial magnetic stimulation, genome engineering, and cell grafting. Creating new perspectives on mechanisms and therapeutic strategies is valuable for understanding the pathophysiology of epilepsy and its psychiatric comorbidities and improving efficiency in clinical intervention.

3.
J Physiol ; 598(21): 4941-4955, 2020 11.
Article in English | MEDLINE | ID: mdl-32864736

ABSTRACT

KEY POINTS: Stress triggers and exacerbates the symptoms of functional gastrointestinal disorders, such as delayed gastric emptying and impaired gastric motility. Understanding the mechanisms by which the neural circuits, impaired by stress, are restored may help to identify potential targets for more effective therapeutic interventions. Oxytocin administration or release ameliorates the stress-induced delayed gastric emptying and motility. However, is it unclear whether the effects are mediated via the hypothalamic-pituitary-adrenocortical axis or the oxytocinergic projections from the paraventricular nucleus of the hypothalamus to brainstem neurones of the dorsal vagal complex. We used Cre-inducible designer receptors exclusively activated by designer drugs to demonstrate the fundamental role of the oxytocinergic hypothalamic-vagal projections in the gastric adaptation to stress. ABSTRACT: Stress triggers and exacerbates the symptoms of functional gastrointestinal (GI) disorders, such as delayed gastric emptying and impaired gastric motility. The prototypical anti-stress hormone, oxytocin (OXT), plays a major role in the modulation of gastric emptying and motility following stress. It is not clear, however, whether the amelioration of dysregulated GI functions by OXT is mediated via an effect on the hypothalamic-pituitary-adrenocortical axis or the oxytocinergic projections from the paraventricular nucleus of the hypothalamus (PVN) to neurones of the dorsal vagal complex (DVC). In the present study we tested the hypothesis that the activity of hypothalamic-vagal oxytocinergic neurocircuits plays a major role in the gastric adaptation to stress. Cre-inducible designer receptors exclusively activated by designer drugs (DREADDs) were injected into the DVC of rats and retrogradely transported to allow selective expression in OXT neurones in the PVN. Following acute stress and either chronic heterotypic (CHe) or chronic homotypic (CHo) stress, gastric emptying was assessed via the [13 C]-octanoic acid breath test, and gastric tone and motility were assessed via strain gauges sewn on the surface of the stomach. Activation of the hypothalamic-vagal oxytocinergic neurocircuitry, by DREADD agonist clozapine-N-oxide (CNO), prevented the delayed gastric emptying observed following acute or CHe stress, and 4th ventricular administration of CNO increased gastric tone and motility. Conversely, CNO-mediated inhibition of the hypothalamic-vagal oxytocinergic neurocircuitry prevented the CHo-induced adaptation in gastric emptying, and an increase in gastric tone and motility. Taken together, the data support the hypothesis that hypothalamic-vagal oxytocinergic neurocircuits play a major role in the modulation of gastric emptying and motility following stress.


Subject(s)
Gastric Emptying , Vagus Nerve , Animals , Gastrointestinal Motility , Hypothalamus , Oxytocin , Paraventricular Hypothalamic Nucleus , Rats
SELECTION OF CITATIONS
SEARCH DETAIL