Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.865
Filter
1.
Brain Res ; 1845: 149210, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218333

ABSTRACT

Cerebral asymmetry is a defining feature of the human brain, but some controversy exists with respect to the relationship between structural brain asymmetry and the dimensions of the corpus callosum, the brain's major inter-hemispheric commissure. On the one hand, more asymmetric brains might house a proportionally smaller corpus callosum (negative link), potentially due to intra-hemispheric connections dominating over inter-hemispheric connections. On the other hand, asymmetric brains may contain a proportionately larger corpus callosum (positive link), to facilitate a possibly enhanced demand of interhemispheric communication, either through excitatory or inhibitory channels. The scientific literature on this topic is relatively sparse, but we have identified 13 studies that directly assess the relationship between structural asymmetries and callosal morphology. The studies suggest a multitude of effects on the global, regional, and local levels, where findings range from negative links, to positive links, to no links whatsoever. These links are systematically summarized, detailed, and discussed in the present review. Discrepancies between study outcomes might arise from the application of different morphometric approaches, the differential treatment of possible confounds, as well as the size and characteristics of the study sample.

3.
Brain ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39241118

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder of motor neurons in the brain and spinal cord. Accumulation of misfolded proteins is central in the pathogenesis of ALS and the glymphatic system is emerging as a potential therapeutic target to reduce proteinopathy. Using diffusion tensor imaging analysis along the perivascular spaces (DTI-ALPS) to assess glymphatic function, we perform a longitudinal analysis of glymphatic function in ALS and compare it to a disorder in the motor neuron disease spectrum, primary lateral sclerosis (PLS). From a cohort of 45 participants from the Calgary site in the CALSNIC study (Canadian ALS Neuroimaging Consortium), including 18 ALS, 5 PLS and 22 control participants, DTI-ALPS was analyzed and correlated to clinical features (age, sex, disease presentation, disease severity and progression rate), and white matter hyperintensity (WMH) burden. This included longitudinal measurements at three time points, 4 months apart. The DTI-ALPS index was reduced in ALS participants compared to PLS and control participants across all three time points. There was no association with clinical factors, however the index tended to decline with advancing age. Our study suggests heterogeneity in glymphatic dysfunction in motor neuron diseases that may be related to the underlying pathogenesis.

4.
Ups J Med Sci ; 1292024.
Article in English | MEDLINE | ID: mdl-39238951

ABSTRACT

Background: Diffuse astrocytomas preferentially infiltrate eloquent areas affecting the outcome. A preoperative understanding of isocitrate dehydrogenase (IDH) status may offer opportunities for specific targeted therapies impacting treatment management. The aim of this study was to analyze clinical, topographical, radiological in WHO 2 astrocytomas with different IDH status and the long-term patient's outcome. Methods: A series of confirmed WHO 2 astrocytoma patients (between 2005 and 2015) were retrospectively analyzed. MRI sequences (FLAIR) were used for tumor volume segmentation and to create a frequency map of their locations into the Montreal Neurological Institute (MNI) space. The Brain-Grid (BG) system (standardized radiological tool of intersected lines according to anatomical landmarks) was used as an overlay for infiltration analysis of each tumor. Long-term follow-up was used to perform a survival analysis. Results: Forty patients with confirmed IDH status (26 IDH-mutant, IDHm/14 IDH-wild type, IDHwt) according to WHO 2021 classification were included with a mean follow-up of 7.8 years. IDHm astrocytomas displayed a lower number of BG-voxels (P < 0.05) and were preferentially located in the anterior insular region. IDHwt group displayed a posterior insular and peritrigonal location. IDHwt group displayed a shorter OS compared with IDHm (P < 0.05), with the infiltration of 7 or more BG-voxels as an independent factor predicting a shorter OS. Conclusions: IDHm and IDHwt astrocytomas differed in preferential location, number of BG-voxels and OS at long follow-up time. The number of BG-voxels affected the OS in IDHwt was possibly reflecting higher tumor invasiveness. We encourage the systematic use of alternative observational tools, such as gradient maps and the Brain-Grid analysis, to better detect differences of tumor invasiveness in diffuse low-grade gliomas subtypes.


Subject(s)
Astrocytoma , Brain Neoplasms , Isocitrate Dehydrogenase , Magnetic Resonance Imaging , Humans , Isocitrate Dehydrogenase/genetics , Astrocytoma/pathology , Astrocytoma/diagnostic imaging , Astrocytoma/genetics , Female , Male , Retrospective Studies , Brain Neoplasms/pathology , Brain Neoplasms/diagnostic imaging , Prognosis , Middle Aged , Adult , Mutation , Aged , Neoplasm Invasiveness , Survival Analysis , Young Adult
5.
Mult Scler Relat Disord ; 91: 105856, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39265269

ABSTRACT

BACKGROUND: Few studies have quantitatively analyzed the imaging disparities between multiple sclerosis (MS) and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). We aimed to compare the imaging characteristics of MS and CADASIL in middle-aged patients. MATERIALS AND METHODS: This retrospective study used a single-center database and included patients aged 40-60 years with MS and CADASIL who underwent the designated imaging protocol including 3D T1-weighted imaging and fluid attenuated inversion recovery (FLAIR), diffusion tensor imaging and susceptibility-weighted imaging between January 2018 and March 2023. Patients with MRI-detected macrobleeds were excluded. RESULTS: A total of 27 patients with MS (mean age, 46.7 years ± 4.4, 8 men) and 30 patients with CADASIL (mean age, 51.6 years ± 5.8, 14 men) were included. No significant differences were observed in the Fazekas grades of white matter lesions (WMLs). Patients with CADASIL exhibited greater external capsule involvement (56.7% vs.18.5 %; p = 0.006), whereas the MS group had more lesions in the corpus callosum (81.5% vs. 53.3 %, p = 0.02) and brainstem (74.1% vs. 46.7 %, p = 0.04). The CADASIL group exhibited a higher incidence of microbleeds (12.07 vs. 0.11, p = 0.001). The WMLs in the MS group exhibited a lower T1 lesion/cerebrospinal fluid signal index (2.206 vs. 2.882, p < 0.001). A value of ≤2.57 demonstrated a sensitivity of 92.6 % and a specificity of 90.0 % in differentiating MS. Patients with MS had a thinner corpus callosum (7.18 mm vs 7.86 mm, p = 0.04), while patients with CADASIL showed significantly higher mean diffusivity (0.8776 × 10-3 vs. 0.7637 × 10-3 mm2/s, p = 0.03) and lower fractional anisotropy (0.7581 vs. 0.8389, p = 0.04) in the splenium of the corpus callosum. CONCLUSION: Middle-aged patients with MS and CADASIL showed comparable Fazekas grades for WMLs. However, lesion distribution, T1 signal characteristics, and splenic diffusivity changes can help differentiate between MS and CADASIL.

6.
J Neurol ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39223359

ABSTRACT

BACKGROUND AND OBJECTIVES: Clinical factors are not sufficient to fix a prognosis of recovery after stroke. Pyramidal tract or alternate motor fiber (aMF: reticulo-, rubrospinal pathways and transcallosal fibers) integrity and remodeling processes assessable by diffusion tensor MRI (DTI) and voxel-based morphometry (VBM) may be of interest. The primary objective was to study longitudinal cortical brain changes using VBM and longitudinal corticospinal tract changes using DTI during the first 4 months after lacunar cerebral infarction. The second objective was to determine which changes were correlated to clinical improvement. METHODS: Twenty-one patients with deep brain ischemic infarct with pure motor deficit (NIHSS score ≥ 2) were recruited at Purpan Hospital and included. Motor deficit was measured [Nine peg hole test (NPHT), dynamometer (DYN), Hand-Tapping Test (HTT)], and a 3T MRI scan (VBM and DTI) was performed during the acute and subacute phases. RESULTS: White matter changes: corticospinal fractional anisotropy (FACST) was significantly reduced at follow-up (approximately 4 months) on the lesion side. FAr (FA ratio in affected/unaffected hemispheres) in the corona radiata was correlated to the motor performance at the NPHT, DYN, and HTT at follow-up. The presence of aMFs was not associated with the extent of recovery. Grey matter changes: VBM showed significant increased cortical thickness in the ipsilesional premotor cortex at follow-up. VBM changes in the anterior cingulum positively correlated with improvement in motor measures between baseline and follow-up. DISCUSSION: To our knowledge, this study is original because is a longitudinal study combining VBM and DTI during the first 4 months after stroke in a series of patients selected on pure motor deficit. Our data would suggest that good recovery relies on spared CST fibers, probably from the premotor cortex, rather than on the aMF in this group with mild motor deficit. The present study suggests that VBM and FACST could provide reliable biomarkers of post-stroke atrophy, reorganization, plasticity and recovery. GOV IDENTIFIER: NCT01862172, registered May 24, 2013.

7.
Magn Reson Med ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39250425

ABSTRACT

PURPOSE: To compare postmortem in situ with ex situ MRI parameters, including volumetry, diffusion tensor imaging (DTI), and relaxometry for assessing methodology-induced alterations, which is a crucial prerequisite when performing MRI biomarker validation. METHODS: MRI whole-brain scans of five deceased patients with amyotrophic lateral sclerosis were performed at 3 T. In situ scans were conducted within 32 h after death (SD 18 h), and ex situ scans after brain extraction and 3 months of formalin fixation. The imaging protocol included MP2RAGE, DTI, and multi-contrast spin-echo and multi-echo gradient-echo sequences. Volumetry, fractional anisotropy, mean diffusivity, T1, T2, and T 2 * $$ {T}_2^{\ast } $$ have been assessed for specific brain regions. RESULTS: When comparing ex situ to in situ values, the following results were obtained. Deep gray matter as well as the thalamus and the hippocampus showed a reduced volume. Fractional anisotropy was reduced in the cortex and the whole brain. Mean diffusivity was decreased in white matter and deep gray matter. T1 and T2 were reduced in all investigated structures, whereas T 2 * $$ {T}_2^{\ast } $$ was increased in the cortex. CONCLUSION: The results of this study show that the volumes and MRI parameters of several brain regions are potentially affected by tissue extraction and subsequent formalin fixation, suggesting that methodological alterations are present in ex situ MRI. To avoid overlap of indistinguishable methodological and disease-related changes, we recommend performing in situ postmortem MRI as an additional intermediate step for in vivo MRI biomarker validation.

8.
Front Neurol ; 15: 1432450, 2024.
Article in English | MEDLINE | ID: mdl-39165270

ABSTRACT

Introduction: Post-acute COVID syndrome (PACS) is a growing concern, given its impact on mental health and quality of life. However, its effects on cerebral white matter remain poorly understood, particularly in non-hospitalized cohorts. The goals of this cross-sectional, observational study were to examine (1) whether PACS was associated with distinct alterations in white matter microstructure, compared to symptom-matched non-COVID viral infection; and (2) whether microstructural alterations correlated with indices of post-COVID emotional health. Methods: Data were collected for 54 symptomatic individuals who tested positive for COVID-19 (mean age 41 ± 12 yrs., 36 female) and 14 controls who tested negative for COVID-19 (mean age 41 ± 14 yrs., 8 female), with both groups assessed an average of 4-5 months after COVID testing. Diffusion magnetic resonance imaging data were collected, and emotional health was assessed via the NIH emotion toolbox, with summary scores indexing social satisfaction, well-being and negative affect. Results: Despite similar symptoms, the COVID-19 group had reduced mean and axial diffusivity, along with increased mean kurtosis and neurite dispersion, in deep white matter. After adjusting for social satisfaction, higher levels of negative affect in the COVID-19 group were also correlated with increased mean kurtosis and reduced free water in white matter. Discussion: These results provide preliminary evidence that indices of white matter microstructure distinguish PACS from symptomatic non-COVID infection. Moreover, white matter effects seen in PACS correlate with the severity of emotional sequelae, providing novel insights into this highly prevalent disorder.

9.
Front Neurol ; 15: 1440294, 2024.
Article in English | MEDLINE | ID: mdl-39175757

ABSTRACT

Objectives: SARS-CoV-2 infection is associated with a decline in functional outcomes; many patients experience persistent symptoms, while the underlying pathophysiology remains unclear. This study investigated white matter (WM) integrity on brain MRI in hospitalized COVID-19 patients and its associations with clinical outcomes, including long COVID. Materials and methods: We included hospitalized COVID-19 patients and controls from CORONavirus and Ischemic Stroke (CORONIS), an observational cohort study, who underwent MRI-DWI imaging at baseline shortly after discharge (<3 months after positive PCR) and 3 months after baseline scanning. We assessed WM integrity using diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) and performed comparisons between groups and within patients. Clinical assessment was conducted at 3 and 12 months with functional outcomes such as modified Rankin Scale (mRS), Post-COVID-19 Functional Status scale (PCFS), Visual Analogue Scale (VAS), and long COVID, cognitive assessment was conducted by the Modified Telephone Interview for Cognitive Status (TICS-M), and the Hospital Anxiety and Depression Scale (HADS) was used to assess mood disorder. Associations between WM integrity and clinical outcomes were evaluated using logistic regression and linear regression. Results: A total of 49 patients (mean age 59.5 years) showed higher overall peak width of skeletonized mean diffusivity (PSMD) (p = 0.030) and lower neurite density index (NDI) in several WM regions compared with 25 controls at the baseline (p < 0.05; FWE-corrected) but did not remain statistically significant after adjusting for WM hyperintensities. Orientation dispersion index (ODI) increased after 3-month follow-up in several WM regions within patients (p < 0.05), which remained significant after correction for changes in WMH volume. Patients exhibited worse clinical outcomes compared with controls. Low NDI at baseline was associated with worse performance on the Post-COVID-19 Functional Status scale after 12 months (p = 0.018). Conclusion: After adjusting for WMH, hospitalized COVID-19 patients no longer exhibited lower WM integrity compared with controls. WM integrity was generally not associated with clinical assessments as measured shortly after discharge, suggesting that factors other than underlying WM integrity play a role in worse clinical outcomes or long COVID.

10.
Neurobiol Lang (Camb) ; 5(3): 676-700, 2024.
Article in English | MEDLINE | ID: mdl-39175785

ABSTRACT

Fluent speech production is a complex task that spans multiple processes, from conceptual framing and lexical access, through phonological encoding, to articulatory control. For the most part, imaging studies portraying the neural correlates of speech fluency tend to examine clinical populations sustaining speech impairments and focus on either lexical access or articulatory control, but not both. Here, we evaluated the contribution of the cerebellar peduncles to speech fluency by measuring the different components of the process in a sample of 45 neurotypical adults. Participants underwent an unstructured interview to assess their natural speaking rate and articulation rate, and completed timed semantic and phonemic fluency tasks to assess their verbal fluency. Diffusion magnetic resonance imaging with probabilistic tractography was used to segment the bilateral cerebellar peduncles (CPs) and frontal aslant tract (FAT), previously associated with speech production in clinical populations. Our results demonstrate distinct patterns of white matter associations with different fluency components. Specifically, verbal fluency is associated with the right superior CP, whereas speaking rate is associated with the right middle CP and bilateral FAT. No association is found with articulation rate in these pathways, in contrast to previous findings in persons who stutter. Our findings support the contribution of the cerebellum to aspects of speech production that go beyond articulatory control, such as lexical access, pragmatic or syntactic generation. Further, we demonstrate that distinct cerebellar pathways dissociate different components of speech fluency in neurotypical speakers.

11.
Front Neurosci ; 18: 1417986, 2024.
Article in English | MEDLINE | ID: mdl-39139498

ABSTRACT

Background: Mild cognitive impairment (MCI) is a critical transitional phase from healthy cognitive aging to dementia, offering a unique opportunity for early intervention. However, few studies focus on the correlation of brain structure and functional activity in patients with MCI due to Alzheimer's disease (AD). Elucidating the complex interactions between structural-functional (SC-FC) brain connectivity and glymphatic system function is crucial for understanding this condition. Method: The aims of this study were to explore the relationship among SC-FC coupling values, glymphatic system function and cognitive function. 23 MCI patients and 18 healthy controls (HC) underwent diffusion tensor imaging (DTI) and resting-state functional MRI (fMRI). DTI analysis along the perivascular space (DTI-ALPS) index and SC-FC coupling values were calculated using DTI and fMRI. Correlation analysis was conducted to assess the relationship between Mini-Mental State Examination (MMSE) scores, DTI-ALPS index, and coupling values. Receiver operating characteristic (ROC) curves was conducted on the SC-FC coupling between the whole brain and subnetworks. The correlation of coupling values with MMSE scores was also analyzed. Result: MCI patients (67.74 ± 6.99 years of age) exhibited significantly lower coupling in the whole-brain network and subnetworks, such as the somatomotor network (SMN) and ventral attention network (VAN), than HCs (63.44 ± 6.92 years of age). Whole-brain network coupling was positively correlated with dorsal attention network (DAN), SMN, and visual network (VN) coupling. MMSE scores were significantly positively correlated with whole-brain coupling and SMN coupling. In MCI, whole-brain network demonstrated the highest performance, followed by the SMN and VAN, with the VN, DAN, limbic network (LN), frontoparietal network (FPN), and default mode network (DMN). Compared to HCs, lower DTI-ALPS index was observed in individuals with MCI. Additionally, the left DTI-ALPS index showed a significant positive correlation with MMSE scores and coupling values in the whole-brain network and SMN. Conclusion: These findings reveal the critical role of SC-FC coupling values and the ALPS index in cognitive function of MCI. The positive correlations observed in the left DTI-ALPS and whole-brain and SMN coupling values provide a new insight for investigating the asymmetrical nature of cognitive impairments.

12.
Neuroradiology ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39153088

ABSTRACT

BACKGROUND: It is difficult to distinguish between tumor progression (TP) and treatment-related abnormalities (TRA) in treated glioblastoma patients via conventional MRI, but this distinction is crucial for treatment decision making. Glioblastoma is known to exhibit an invasive growth pattern along white matter architecture and vasculature. This study quantified lesion development patterns in treated glioblastoma lesions and their relation to white matter microstructure to distinguish TP from TRA. MATERIALS AND METHODS: Glioblastoma patients with confirmed TP or TRA with T1-weighted contrast-enhanced and DTI MR scans from two posttreatment follow-up timepoints were reviewed. The contrast-enhancing regions were segmented, and the regions were coregistered to the DTI data. Lesion increase vectors were categorized into two groups: parallel (0-20 degrees) and perpendicular (70-90 degrees) to white matter. FA-values were also extracted. To test for a statistically significant difference between the TP and TRA groups, a Mann‒Whitney U test was performed. RESULTS: Of 73 glioblastoma patients, fifteen were diagnosed with TRA, whereas 58 patients suffered TP. TP had a 25.8% (95% CI 24.1%-27.6%) increase in parallel lesions, and TRA had a 25.4% (95% CI 20.9%-29.9%) increase in parallel lesions. The perpendicular increase was 14.7% for TP (95% CI 13.0%-16.4%) and 18.0% (95% CI 13.5%-22.5%) for TRA. These results were not significantly different (p = 0.978). FA value for TP showed to be 0.248 (SD = 0.054) and for TRA it was 0.231 (SD = 0.075), showing no statistically significant difference (p = 0.121). CONCLUSIONS: Based on our results, quantifying posttreatment contrast-enhancing lesion development directionality with DTI in glioblastoma patients does not appear to effectively distinguish between TP and TRA.

13.
Front Neurosci ; 18: 1439443, 2024.
Article in English | MEDLINE | ID: mdl-39148522

ABSTRACT

Background and objectives: The advent of new clinical subtyping systems for Parkinson's disease (PD) has led to the classification of patients into distinct groups: mild motor predominant (PD-MMP), intermediate (PD-IM), and diffuse malignant (PD-DM). Our goal was to evaluate the efficacy of diffusion tensor imaging (DTI) in the early diagnosis, assessment of clinical progression, and prediction of prognosis of these PD subtypes. Additionally, we attempted to understand the pathological mechanisms behind white matter damage using single-photon emission computed tomography (SPECT) and cerebrospinal fluid (CSF) analyses. Methods: We classified 135 de novo PD patients based on new clinical criteria and followed them up after 1 year, along with 45 healthy controls (HCs). We utilized tract-based spatial statistics to assess the microstructural changes of white matter at baseline and employed multiple linear regression to examine the associations between DTI metrics and clinical data at baseline and after follow-up. Results: Compared to HCs, patients with the PD-DM subtype demonstrated reduced fractional anisotropy (FA), increased axial diffusivity (AD), and elevated radial diffusivity (RD) at baseline. The FA and RD values correlated with the severity of motor symptoms, with RD also linked to cognitive performance. Changes in FA over time were found to be in sync with changes in motor scores and global composite outcome measures. Furthermore, baseline AD values and their rate of change were related to alterations in semantic verbal fluency. We also discovered the relationship between FA values and the levels of α-synuclein and ß-amyloid. Reduced dopamine transporter uptake in the left putamen correlated with RD values in superficial white matter, motor symptoms, and autonomic dysfunction at baseline as well as cognitive impairments after 1 year. Conclusions: The PD-DM subtype is characterized by severe clinical symptoms and a faster progression when compared to the other subtypes. DTI, a well-established technique, facilitates the early identification of white matter damage, elucidates the pathophysiological mechanisms of disease progression, and predicts cognitively related outcomes. The results of SPECT and CSF analyses can be used to explain the specific pattern of white matter damage in patients with the PD-DM subtype.

14.
Sci Rep ; 14(1): 19049, 2024 08 17.
Article in English | MEDLINE | ID: mdl-39152190

ABSTRACT

Patients recovering from COVID-19 commonly exhibit cognitive and brain alterations, yet the specific neuropathological mechanisms and risk factors underlying these alterations remain elusive. Given the significant global incidence of COVID-19, identifying factors that can distinguish individuals at risk of developing brain alterations is crucial for prioritizing follow-up care. Here, we report findings from a sample of patients consisting of 73 adults with a mild to moderate SARS-CoV-2 infection without signs of respiratory failure and 27 with infections attributed to other agents and no history of COVID-19. The participants underwent cognitive screening, a decision-making task, and MRI evaluations. We assessed for the presence of anosmia and the requirement for hospitalization. Groups did not differ in age or cognitive performance. Patients who presented with anosmia exhibited more impulsive alternative changes after a shift in probabilities (r = - 0.26, p = 0.001), while patients who required hospitalization showed more perseverative choices (r = 0.25, p = 0.003). Anosmia correlated with brain measures, including decreased functional activity during the decision-making task, thinning of cortical thickness in parietal regions, and loss of white matter integrity. Hence, anosmia could be a factor to be considered when identifying at-risk populations for follow-up.


Subject(s)
Anosmia , Brain , COVID-19 , Magnetic Resonance Imaging , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/psychology , COVID-19/physiopathology , COVID-19/diagnostic imaging , COVID-19/pathology , Anosmia/etiology , Anosmia/physiopathology , Male , Female , Middle Aged , Adult , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology , SARS-CoV-2/isolation & purification , Aged , Decision Making , Cognition/physiology
15.
Alzheimers Dement ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39132759

ABSTRACT

INTRODUCTION: We investigated the associations of leptin markers with cognitive function and magnetic resonance imaging (MRI) measures of brain atrophy and vascular injury in healthy middle-aged adults. METHODS: We included 2262 cognitively healthy participants from the Framingham Heart Study with neuropsychological evaluation; of these, 2028 also had available brain MRI. Concentrations of leptin, soluble leptin receptor (sOB-R), and their ratio (free leptin index [FLI]), indicating leptin bioavailability, were measured using enzyme-linked immunosorbent assays. Cognitive and MRI measures were derived using standardized protocols. RESULTS: Higher sOB-R was associated with lower fractional anisotropy (FA, ß = -0.114 ± 0.02, p < 0.001), and higher free water (FW, ß = 0.091 ± 0.022, p < 0.001) and peak-width skeletonized mean diffusivity (PSMD, ß = 0.078 ± 0.021, p < 0.001). Correspondingly, higher FLI was associated with higher FA (ß = 0.115 ± 0.027, p < 0.001) and lower FW (ß = -0.096 ± 0.029, p = 0.001) and PSMD (ß = -0.085 ± 0.028, p = 0.002). DISCUSSION: Higher leptin bioavailability was associated with better white matter (WM) integrity in healthy middle-aged adults, supporting the putative neuroprotective role of leptin in late-life dementia risk. HIGHLIGHTS: Higher leptin bioavailability was related to better preservation of white matter microstructure. Higher leptin bioavailability during midlife might confer protection against dementia. Potential benefits might be even stronger for individuals with visceral obesity. DTI measures might be sensitive surrogate markers of subclinical neuropathology.

16.
bioRxiv ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39091832

ABSTRACT

Background: Deep brain stimulation (DBS) of the anterior limb of the internal capsule (ALIC) is an emerging treatment for severe, refractory obsessive-compulsive disorder (OCD). The therapeutic effects of DBS are hypothesized to be mediated by direct modulation of a distributed cortico-striato-thalmo-cortical network underlying OCD symptoms. However, the exact underlying mechanism by which DBS exerts its therapeutic effects still remains unclear. Method: In five participants receiving DBS for severe, refractory OCD (3 responders, 2 non-responders), we conducted a DBS On/Off cycling paradigm during the acquisition of functional MRI to determine the network effects of stimulation across a variety of bipolar configurations. We also performed tractography using diffusion-weighted imaging (DWI) to relate the functional impact of DBS to the underlying structural connectivity between active stimulation contacts and functional brain networks. Results: We found that therapeutic DBS had a distributed effect, suppressing BOLD activity within regions such as the orbitofrontal cortex, dorsomedial prefrontal cortex, and subthalamic nuclei compared to non-therapeutic configurations. Many of the regions suppressed by therapeutic DBS were components of the default mode network (DMN). Moreover, the estimated stimulation field from the therapeutic configurations exhibited significant structural connectivity to core nodes of the DMN. Conclusions: Therapeutic DBS for OCD suppresses BOLD activity within a distributed set of regions within the DMN relative to non-therapeutic configurations. We propose that these effects may be mediated by interruption of communication through structural white matter connections surrounding the DBS active contacts.

17.
Skeletal Radiol ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096374

ABSTRACT

Hypophosphatasia is a rare heritable disorder of bone mineralization, with a spectrum of severity based on age of initial presentation. We describe the case of a 14-year-old boy with gene-confirmed inherited hypophosphatasia and growth hormone deficiency, who presented with short stature, unremarkable radiographs, and only minor physeal and metaphyseal changes on magnetic resonance (MR) imaging. Diffusion tensor imaging (DTI) before growth hormone initiation revealed abundant, non-parallel tracts in the physes and metaphyses with loss of the typical columnar organization. After 8 months of growth hormone treatment, DTI scans revealed realigned, nearly parallel, longer physeal tracts; duplication of tract volume; and decreased and more typical fractional anisotropy values. DTI can thus visualize physeal tract changes over time, could be a more sensitive diagnostic technique in milder physeal abnormality cases, and may be a potential marker of growth hormone treatment response.

18.
Cereb Cortex ; 34(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39214853

ABSTRACT

Learning new motor skills relies on neural plasticity within motor and limbic systems. This study uniquely combined diffusion tensor imaging and multiparametric mapping MRI to detail these neuroplasticity processes. We recruited 18 healthy male participants who underwent 960 min of training on a computer-based motion game, while 14 were scanned without training. Diffusion tensor imaging, which quantifies tissue microstructure by measuring the capacity for, and directionality of, water diffusion, revealed mostly linear changes in white matter across the corticospinal-cerebellar-thalamo-hippocampal circuit. These changes related to performance and reflected different responses to upper- and lower-limb training in brain areas with known somatotopic representations. Conversely, quantitative MRI metrics, sensitive to myelination and iron content, demonstrated mostly quadratic changes in gray matter related to performance and reflecting somatotopic representations within the same brain areas. Furthermore, while myelin and iron-sensitive multiparametric mapping MRI was able to describe time lags between different cortical brain systems, diffusion tensor imaging detected time lags within the white matter of the motor systems. These findings suggest that motor skill learning involves distinct phases of white and gray matter plasticity across the sensorimotor network, with the unique combination of diffusion tensor imaging and multiparametric mapping MRI providing complementary insights into the underlying neuroplastic responses.


Subject(s)
Diffusion Tensor Imaging , Gray Matter , Motor Skills , Neuronal Plasticity , White Matter , Humans , Male , Diffusion Tensor Imaging/methods , Neuronal Plasticity/physiology , Gray Matter/diagnostic imaging , Gray Matter/physiology , White Matter/diagnostic imaging , White Matter/physiology , Motor Skills/physiology , Adult , Young Adult , Learning/physiology , Brain Mapping/methods , Brain/physiology , Brain/diagnostic imaging , Multiparametric Magnetic Resonance Imaging/methods
19.
Eur J Neurosci ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39205547

ABSTRACT

Characterizing cortical plasticity becomes increasingly important for identifying compensatory mechanisms and structural reserve in the ageing population. While cortical thickness (CT) largely contributed to systems neuroscience, it incompletely informs about the underlying neuroplastic pathophysiology. In turn, microstructural characteristics may correspond to atrophy mechanisms in a more sensitive way. Fractional anisotropy, a diffusion tensor imaging (DTI) measure, is inversely related to cortical histologic complexity. Axial diffusivity and radial diffusivity are assumed to be linked to the density of structures oriented perpendicular and parallel to the cortical surface, respectively. We hypothesized (1) that cortical DTI will reveal microstructural correlates for hemispheric specialization, particularly in the language and motor systems, and (2) that lateralization of cortical DTI parameters will show an age effect, paralleling age-related changes in activation, especially in the prefrontal cortex. We analysed data from healthy younger and older adult participants (N = 91). DTI and CT data were extracted from regions of the Destrieux atlas. Diffusion measures showed lateralization in specialized motor, language, visual, auditory and inferior parietal cortices. Age-dependent increased lateralization for DTI measures was observed in the prefrontal, angular, superior temporal and lateral occipital cortex. CT did not show any age-dependent alterations in lateralization. Our observations argue that cortical DTI can capture microstructural properties associated with functional specialization, resembling findings from histology. Age effects on diffusion measures in the integrative prefrontal and parietal areas may shed novel light on the atrophy-related plasticity in healthy ageing.

20.
J Med Imaging (Bellingham) ; 11(4): 044007, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39185477

ABSTRACT

Purpose: As large analyses merge data across sites, a deeper understanding of variance in statistical assessment across the sources of data becomes critical for valid analyses. Diffusion tensor imaging (DTI) exhibits spatially varying and correlated noise, so care must be taken with distributional assumptions. Here, we characterize the role of physiology, subject compliance, and the interaction of the subject with the scanner in the understanding of DTI variability, as modeled in the spatial variance of derived metrics in homogeneous regions. Approach: We analyze DTI data from 1035 subjects in the Baltimore Longitudinal Study of Aging, with ages ranging from 22.4 to 103 years old. For each subject, up to 12 longitudinal sessions were conducted. We assess the variance of DTI scalars within regions of interest (ROIs) defined by four segmentation methods and investigate the relationships between the variance and covariates, including baseline age, time from the baseline (referred to as "interval"), motion, sex, and whether it is the first scan or the second scan in the session. Results: Covariate effects are heterogeneous and bilaterally symmetric across ROIs. Inter-session interval is positively related ( p ≪ 0.001 ) to FA variance in the cuneus and occipital gyrus, but negatively ( p ≪ 0.001 ) in the caudate nucleus. Males show significantly ( p ≪ 0.001 ) higher FA variance in the right putamen, thalamus, body of the corpus callosum, and cingulate gyrus. In 62 out of 176 ROIs defined by the Eve type-1 atlas, an increase in motion is associated ( p < 0.05 ) with a decrease in FA variance. Head motion increases during the rescan of DTI ( Δ µ = 0.045 mm per volume). Conclusions: The effects of each covariate on DTI variance and their relationships across ROIs are complex. Ultimately, we encourage researchers to include estimates of variance when sharing data and consider models of heteroscedasticity in analysis. This work provides a foundation for study planning to account for regional variations in metric variance.

SELECTION OF CITATIONS
SEARCH DETAIL