Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Ther Med ; 27(3): 123, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38410190

ABSTRACT

As the proportion of the elderly population grows rapidly, the senescence-delaying effects of Traditional Chinese Medicine is being investigated. The aim of the present study was to investigate the senescence-delaying effects of saffron in naturally aging mice. The active ingredients in an aqueous saffron extract were determined using high-performance liquid chromatography (HPLC). Mice were divided into saffron (8- and 16-months-old) and control groups (3-, 8-, and 16-months-old), and saffron extract was administered to the former groups for 8 weeks. The open field test and Barnes maze test were used to evaluate the locomotor activity, learning and memory function of the mice. The levels of inflammatory factors in the brain were determined by ELISA. In addition, the activities of acetylcholinesterase (AChE) and superoxide dismutase, and the contents of malondialdehyde and nicotinamide adenine dinucleotide (NAD+) were detected by enzyme immunoassay, and the content of NAMPT was detected by ELISA, western blotting and reverse transcription-quantitative PCR. The cellular distribution of NAMPT and synaptic density were evaluated by immunofluorescence, and the pathological morphologies of the liver, skin, kidneys were observed by hematoxylin and eosin staining. HPLC revealed that the crocin and picrocrocin contents of the saffron extract were 19.56±0.14 and 12.00±0.13%, respectively. Saffron exhibited the potential to improve the learning and memory function in aging mice as it increased synaptic density and decreased AChE activity. Also, saffron ameliorated the pathological changes associated with organ aging, manifested by increasing the number of hepatocytes and the thickness of the skin, and preventing the aging-induced ballooning and bleeding in the kidneys. Furthermore, saffron increased the contents of NAMPT and NAD+ in the brain and decreased the content of NAMPT in the serum. In addition, it changed the cellular distribution of NAMPT in aging mice, manifested as reduced NAMPT expression in microglia and astrocytes, and increased NAMPT expression in neurons. Saffron also decreased the contents of proinflammatory cytokines and oxidative stress factors in aging mice. Altogether, these findings indicate that saffron exerts senescence-delaying effects in naturally aging mice, which may be associated with the NAMPT-NAD+ pathway.

2.
Plant Physiol Biochem ; 158: 43-52, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33296845

ABSTRACT

Globally, salinity threatens the agricultural crops productivity by inhibiting plant growth and development through osmotic stress and ionic cytotoxicity. The polygenic nature of salinity offers several pragmatic shotgun approaches to improve salinity tolerance. The present study investigated the potential of glutathione (GSH; 1 mM) as an antioxidant and moringa leaf extract (MLE; 3%) as an organic biostimulant applied in sequence as seed priming and foliar spray on wheat growth, physiology and metabolic adaptation under saline conditions (9.16 dS m-1). Plants without any treatment and water spray (H2O) were considered controls. Salinity induced osmotic stress reduced the plant tissue water status and photosynthetic performance, and perturbed ionic (K+/Na+, Ca2+/Na+, K++Ca2+/Na+) and hormonal (IAA, GA3, zeatin, ABA) homeostasis, consequently affected growth and yield in wheat. Sequenced applied MLE and/or GSH improved osmotic stress tolerance by stabilizing membrane integrity and decreasing electrolyte leakage. These positive results were owed to enhanced endogenous GSH and ascorbate levels. Improved tissue water status was attributed to increased osmotic adjustment, better ionic and hormonal homeostasis contributed to improving photosynthetic efficiency and growth under salinity. Exogenously applied MLE and GSH sequences improved grain yield, which was attributed to the maintenance of green leaf area and delayed senescence associated with an increase in photosynthetic pigments and chlorophyll fluorescence traits. In crux, exogenous applied MLE and/or GSH can be the best physiological strategy to reduce the deleterious effects of salinity and improve physiological and metabolic adaptation in wheat under saline field conditions.


Subject(s)
Antioxidants/pharmacology , Glutathione/pharmacology , Plant Extracts/pharmacology , Salt Stress , Triticum/physiology , Adaptation, Physiological , Moringa/chemistry , Photosynthesis
3.
Genes (Basel) ; 11(9)2020 09 01.
Article in English | MEDLINE | ID: mdl-32883037

ABSTRACT

This study was conducted to dissect the genetic basis and to explore the candidate genes underlying one of the important genomic regions on an SBI-10 long arm (L), governing the complex stay-green trait contributing to post-flowering drought-tolerance in sorghum. A fine-mapping population was developed from an introgression line cross-RSG04008-6 (stay-green) × J2614-11 (moderately senescent). The fine-mapping population with 1894 F2 was genotyped with eight SSRs and a set of 152 recombinants was identified, advanced to the F4 generation, field evaluated with three replications over 2 seasons, and genotyped with the GBS approach. A high-resolution linkage map was developed for SBI-10L using 260 genotyping by sequencing-Single Nucleotide Polymorphism (GBS-SNPs). Using the best linear unpredicted means (BLUPs) of the percent green leaf area (%GL) traits and the GBS-based SNPs, we identified seven quantitative trait loci (QTL) clusters and single gene, mostly involved in drought-tolerance, for each QTL cluster, viz., AP2/ERF transcription factor family (Sobic.010G202700), NBS-LRR protein (Sobic.010G205600), ankyrin-repeat protein (Sobic.010G205800), senescence-associated protein (Sobic.010G270300), WD40 (Sobic.010G205900), CPK1 adapter protein (Sobic.010G264400), LEA2 protein (Sobic.010G259200) and an expressed protein (Sobic.010G201100). The target genomic region was thus delimited from 15 Mb to 8 genes co-localized with QTL clusters, and validated using quantitative real-time (qRT)-PCR.


Subject(s)
Cellular Senescence , Chromosome Mapping/methods , Genetic Linkage , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Sorghum/genetics , Plant Leaves/genetics , Plant Leaves/physiology , Sorghum/physiology
4.
Plants (Basel) ; 8(12)2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31779090

ABSTRACT

Plants respond to abiotic stresses by activating a specific genetic program that supports survival by developing robust adaptive mechanisms. This leads to accelerated senescence and reduced growth, resulting in negative agro-economic impacts on crop productivity. Cytokinins (CKs) customarily regulate various biological processes in plants, including growth and development. In recent years, cytokinins have been implicated in adaptations to osmotic stresses with improved plant growth and yield. Endogenous CK content under osmotic stresses can be enhanced either by transforming plants with a bacterial isopentenyl transferase (IPT) gene under the control of a stress inducible promoter or by exogenous application of synthetic CKs. CKs counteract osmotic stress-induced premature senescence by redistributing soluble sugars and inhibiting the expression of senescence-associated genes. Elevated CK contents under osmotic stress antagonize abscisic acid (ABA) signaling and ABA mediated responses, delay leaf senescence, reduce reactive oxygen species (ROS) damage and lipid peroxidation, improve plant growth, and ameliorate osmotic stress adaptability in plants.

5.
J Aging Phys Act ; 27(4): 510-514, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30507277

ABSTRACT

Telomeres act as a mitotic clock and telomere-related senescence has been linked to age-related physiological decline. There is increasing evidence lifestyle factors can influence telomere length (TL). The purpose of this study was to determine the effect of competitive triathlon training on TL. Seven competitive male triathletes and seven recreationally active males participated in the study. Relative TL was measured using quantitative polymerase chain reaction. Physiological parameters key to athletic performance such as maximal oxygen intake, lactate threshold, and running economy were also measured. Triathletes had longer telomeres than the recreationally active (1.257 ± 0.028 vs. 1.002 ± 0.014; p < .0001). Positive association was found between TL and maximal oxygen intake, lactate threshold, and running economy (R2 = .677, .683, and .696, respectively). This study indicates that competitive triathlon training buffers against age-related telomere shortening, and there is a correlation between exercise behaviors, higher maximal oxygen intake, and TL.


Subject(s)
Athletic Performance , Physical Endurance , Telomere Homeostasis , Adult , Athletic Performance/physiology , Case-Control Studies , Exercise Test , Humans , Lactic Acid/blood , Male , Oxygen Consumption , Physical Endurance/physiology , Polymerase Chain Reaction , Telomere Homeostasis/genetics , Telomere Homeostasis/physiology
6.
Gene ; 691: 34-44, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30594634

ABSTRACT

Sucrose non-fermenting-1 (SNF1) -related protein kinase 1 (SnRK1) is a key regulator of catabolic homeostasis and plays critical roles in plant development and stress response. In this study, three SNF1-related protein kinase 1 genes, ZmSnRK1.1, ZmSnRK1.2 and ZmSnRK1.3, which are highly conserved in plants, were isolated from maize (Zea mays L.). Expression profiling experiments indicated that the three genes were constitutively expressed in all tested tissues with the highest expression level in young ears. Subcellular localization analysis indicated that ZmSnRK1.1, ZmSnRK1.2 and ZmSnRK1.3 are localized to both the nucleus and cytoplasm. Transgenic Arabidopsis lines overexpressing ZmSnRK1.1, ZmSnRK1.2 or ZmSnRK1.3 exhibited hypersensitivity to exogenous sugar treatment and accumulated less glucose but more sucrose in the rosette leaves and mature seeds compared to the wild type. Time to flowering was shortened in the ZmSnRK1.1 over-expressing lines but prolonged in the ZmSnRK1.2 and ZmSnRK1.3 lines. Leaf senescence was delayed in all transgenic lines, especially in the ZmSnRK1.3 lines, which led to enhanced biomass and seed yield at maturity. Key genes that are involved in carbon metabolism, senescence and flowering time were differentially regulated in the transgenic lines as revealed by the RNA-seq analysis. This study demonstrated that maize ZmSnRK1 members play important roles in energy sensing and carbon metabolism, they regulate the architecture shaping and developmental transition when heterogeneously expressed in Arabidopsis and may provide potentially valuable characteristics for high yield breeding of crops in the future.


Subject(s)
Arabidopsis/growth & development , Carbon/metabolism , Gene Expression Profiling/methods , Protein Serine-Threonine Kinases/genetics , Zea mays/enzymology , Arabidopsis/genetics , Arabidopsis/metabolism , Biomass , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cellular Senescence , Cloning, Molecular , Cytoplasm/genetics , Cytoplasm/metabolism , Gene Expression Regulation, Plant , Multigene Family , Plant Leaves/cytology , Plant Leaves/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Protein Serine-Threonine Kinases/metabolism , Sucrose/metabolism , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL