Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.379
Filter
1.
Cent Eur J Public Health ; 32(3): 200-204, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39352096

ABSTRACT

OBJECTIVES: The dietary composition is able to rapidly and significantly influence the diversity of the gut microbiome. This article focuses on how various types of diet affect the composition of the gut microbiome and how dietary changes are able to prevent or slow down the development of non-communicable diseases including obesity, type 2 diabetes mellitus, cardiovascular diseases, and low-grade inflammation. METHODS: A review in PubMed and a hand search using references in identified articles were performed. Studies published in English from 2000 to 2024 were included. RESULTS: The studies showed the significant effect of diet on the development of non-communicable diseases dependent on the state of the gut microbiota and molecules it produces. The Western diet that continues to gain in popularity for Czech people, leads to dysbiosis and production of bacterial lipopolysaccharide or trimethylamine N-oxide causing systemic chronic inflammation in the body and thus promoting the development of non-communicable diseases. CONCLUSIONS: Findings from this review emphasize the importance of healthy eating habits in the prevention of intestinal dysbiosis and still increasing prevalence and incidence of obesity and other non-communicable diseases.


Subject(s)
Diet , Gastrointestinal Microbiome , Noncommunicable Diseases , Humans , Gastrointestinal Microbiome/physiology , Noncommunicable Diseases/epidemiology , Noncommunicable Diseases/prevention & control , Obesity/microbiology , Obesity/epidemiology , Dysbiosis , Diabetes Mellitus, Type 2/prevention & control , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Type 2/epidemiology , Czech Republic/epidemiology , Inflammation
2.
Sci Rep ; 14(1): 23457, 2024 10 08.
Article in English | MEDLINE | ID: mdl-39379558

ABSTRACT

Developmental stuttering is a complex neurodevelopmental disorder characterized by disfluent speech. It has been associated with mutations in genes involved in lysosomal enzyme trafficking. Mice with mutations in one such gene, Gnptab, exhibit atypical vocalizations analogous to stuttering in humans. This mouse model has enabled the study of various molecular mechanisms related to the disorder. Simultaneously, an increasing number of reports have suggested the role of gut microbiota in altered brain function and development in neurological disorders. In this study, we compared gut microbiota profiles from Gnptab mutant mice to wildtype control mice. Microbiome analysis demonstrated a distinct microbiota profile in Gnptab mutant mice. The most significant alteration was an increased relative abundance of Akkermansia, a genus of mucin degrading bacteria, which has previously been associated with multiple neurological disorders. Moreover, the altered microbiota profile of these mice was predicted to result in differences in abundance of several metabolic pathways, including short chain fatty acid and lipopolysaccharide synthesis. These pathways may play a role in the onset, progression and persistence of developmental stuttering. This is the first study to show a potential link between developmental stuttering and changes in the gut microbiota, laying the groundwork for a new research direction.


Subject(s)
Disease Models, Animal , Gastrointestinal Microbiome , Stuttering , Animals , Stuttering/microbiology , Stuttering/genetics , Mice , Akkermansia , Male
3.
J Headache Pain ; 25(1): 171, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39379796

ABSTRACT

BACKGROUND: Recently, there has been increasing interest in the possible role of the gut microbiota (GM) in the onset of migraine. Our aim was to verify whether bacterial populations associated with intestinal dysbiosis are found in pediatric patients with migraine. We looked for which metabolic pathways, these bacteria were involved and whether they might be associated with gut inflammation and increased intestinal permeability. METHODS: Patients aged between 6 and 17 years were recruited. The GM profiling was performed by the 16S rRNA metataxonomics of faecal samples from 98 patients with migraine and 98 healthy subjects. Alpha and beta diversity analyses and multivariate and univariate analyses were applied to compare the gut microbiota profiles between the two group. To predict functional metabolic pathways, we used phylogenetic analysis of communities. The level of indican in urine was analyzed to investigate the presence of metabolic dysbiosis. To assess gut inflammation, increased intestinal permeability and the mucosal immune activation, we measured the plasmatic levels of lipopolysaccharide, occludin and IgA, respectively. RESULTS: The α-diversity analysis revealed a significant increase of bacterial richness in the migraine group. The ß-diversity analysis showed significant differences between the two groups indicating gut dysbiosis in patients with migraine. Thirty-seven metabolic pathways were increased in the migraine group, which includes changes in tryptophan and phenylalanine metabolism. The presence of metabolic dysbiosis was confirmed by the increased level of indican in urine. Increased levels of plasmatic occludin and IgA indicated the presence of intestinal permeability and mucosal immune activation. The plasmatic LPS levels showed a low intestinal inflammation in patients with migraine. CONCLUSIONS: Pediatric patients with migraine present GM profiles different from healthy subjects, associated with metabolic pathways important in migraine.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Migraine Disorders , Humans , Dysbiosis/epidemiology , Dysbiosis/microbiology , Child , Migraine Disorders/microbiology , Migraine Disorders/metabolism , Gastrointestinal Microbiome/physiology , Adolescent , Female , Male , Inflammation/microbiology , Feces/microbiology , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics
4.
Cancer Med ; 13(19): e70277, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39382253

ABSTRACT

BACKGROUND: Immune stressors, such as lipopolysaccharides (LPS), profoundly affect microbiota balance, leading to gut dysbiosis. This imbalance disrupts the metabolic phenotype and structural integrity of the gut, increasing intestinal permeability. During puberty, a critical surge in estrogen levels is crucial for mammary gland development. However, inflammation originating from the gut in this period may interfere with this development, potentially heightening breast cancer risk later. The long-term effects of pubertal inflammation on mammary development and breast cancer risk are underexplored. Such episodes can dysregulate cytokine levels and microRNA expression, altering mammary cell gene expression, and predisposing them to tumorigenesis. METHODS: This study hypothesizes that prebiotics, specifically Lentinula edodes Cultured Extract (AHCC), can counteract LPS's adverse effects. Using BALB/c mice, an acute LPS dose was administered at puberty, and breast cancer predisposition was assessed at 13 weeks. Cytokine and tumor-related microRNA levels, tumor development, and cancer stem cells were explored through immunoassays and qRT-PCR. RESULTS: Results show that LPS induces lasting effects on cytokine and microRNA expression in mammary glands and tumors. AHCC modulates cytokine expression, including IL-1ß, IL-17A/F, and IL-23, and mitigates LPS-induced IL-6 in mammary glands. It also regulates microRNA expression linked to tumor progression and suppression, particularly counteracting the upregulation of oncogenic miR-21, miR-92, and miR-155. Although AHCC slightly alters some tumor-suppressive microRNAs, these changes are modest, highlighting a complex regulatory role that warrants further study. CONCLUSION: These findings underscore the potential of dietary interventions like AHCC to mitigate pubertal LPS-induced inflammation on mammary gland development and tumor formation, suggesting a preventive strategy against breast cancer.


Subject(s)
Breast Neoplasms , Lipopolysaccharides , Mammary Glands, Animal , Mice, Inbred BALB C , MicroRNAs , Animals , Female , MicroRNAs/genetics , Mice , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/immunology , Mammary Glands, Animal/drug effects , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Cytokines/metabolism , Puberty
5.
J Adv Res ; 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39374734

ABSTRACT

INTRODUCTION: In responses to antibiotics exposure, gut dysbiosis is a risk factor not only for pathogen infection but also for facilitating pathobiont expansion, resulting in increased inflammatory responses in the gut and distant organs. However, how this process is regulated has not been fully elucidated. OBJECTIVES: In this study, we investigated the role of sialic acid, a host-derived carbohydrate, in the pathogenesis of gut dysbiosis-derived inflammation in distant organs. METHODS: Ampicillin (Amp)-induced gut dysbiotic mice were treated with N-glycolylneuraminic acid (Neu5Gc) and N-acetylneuraminic acid (Neu5Ac) for three weeks to assess the role of sialic acids in mastitis. The underlying mechanism by which sialic acids regulate mastitis was explored using 16S rRNA sequencing, transcriptomics and employed multiple molecular approaches. RESULTS: Administration of Neu5Ac and Neu5Gc exacerbated gut dysbiosis-induced mastitis and systemic inflammation. The gut dysbiosis caused by Amp was also aggravated by sialic acid. Notably, increased Enterococcus expansion, which was positively correlated with inflammatory markers, was observed in both Neu5Ac- and Neu5Gc-treated gut dysbiotic mice. Treatment of mice with Enterococcus cecorum (E. cecorum) aggravated gut dysbiosis-induced mastitis. Mechanically, sialic acid-facilitated E. cecorum expansion promoted muramyl dipeptide (MDP) release, which induced inflammatory responses by activating the NOD2-RIP2-NF-κB axis. CONCLUSIONS: Collectively, our data reveal a role of sialic acid-facilitated postantibiotic pathobiont expansion in gut dysbiosis-associated inflammation, highlighting a potential strategy for disease prevention by regulating the MDP-NOD2-RIP2 axis.

6.
Gut Microbes ; 16(1): 2412376, 2024.
Article in English | MEDLINE | ID: mdl-39377231

ABSTRACT

The human intestine hosts a complex ecosystem of various microorganisms, collectively known as the gut microbiome, which significantly impacts human health. Disruptions in the gut microbiome are linked to various disorders, including gastrointestinal diseases, such as Clostridioides difficile infection and inflammatory bowel disease, as well as metabolic, neurological, oncologic conditions. Fecal microbiota transplantation (FMT) and live biotherapeutic products (LBPs) have emerged as prospective therapeutic procedures to restore microbial and metabolic balance in the gut. This review assesses the latest advancements, challenges, and therapeutic efficacy of FMT and LBPs, highlighting the need for standardization, safety, and long-term evaluation to optimize their clinical application.


Subject(s)
Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Humans , Animals , Clostridium Infections/therapy , Clostridium Infections/microbiology , Inflammatory Bowel Diseases/therapy , Inflammatory Bowel Diseases/microbiology , Biological Products/therapeutic use , Gastrointestinal Diseases/therapy , Gastrointestinal Diseases/microbiology
7.
Cell Mol Neurobiol ; 44(1): 64, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377830

ABSTRACT

The increasing prevalence of neurological disorders such as Alzheimer's, Parkinson's, and multiple sclerosis presents a significant global health challenge. Despite extensive research, the precise mechanisms underlying these conditions remain elusive, with current treatments primarily addressing symptoms rather than root causes. Emerging evidence suggests that gut permeability and the kynurenine pathway are involved in the pathogenesis of these neurological conditions, offering promising targets for novel therapeutic and preventive strategies. Gut permeability refers to the intestinal lining's ability to selectively allow essential nutrients into the bloodstream while blocking harmful substances. Various factors, including poor diet, stress, infections, and genetic predispositions, can compromise gut integrity, leading to increased permeability. This condition facilitates the translocation of toxins and bacteria into systemic circulation, triggering widespread inflammation that impacts neurological health via the gut-brain axis. The gut-brain axis (GBA) is a complex communication network between the gut and the central nervous system. Dysbiosis, an imbalance in the gut microbiota, can increase gut permeability and systemic inflammation, exacerbating neuroinflammation-a key factor in neurological disorders. The kynurenine pathway, the primary route for tryptophan metabolism, is significantly implicated in this process. Dysregulation of the kynurenine pathway in the context of inflammation leads to the production of neurotoxic metabolites, such as quinolinic acid, which contribute to neuronal damage and the progression of neurological disorders. This narrative review highlights the potential and progress in understanding these mechanisms. Interventions targeting the kynurenine pathway and maintaining a balanced gut microbiota through diet, probiotics, and lifestyle modifications show promise in reducing neuroinflammation and supporting brain health. In addition, pharmacological approaches aimed at modulating the kynurenine pathway directly, such as inhibitors of indoleamine 2,3-dioxygenase, offer potential avenues for new treatments. Understanding and targeting these interconnected pathways are crucial for developing effective strategies to prevent and manage neurological disorders.


Subject(s)
Brain-Gut Axis , Gastrointestinal Microbiome , Kynurenine , Nervous System Diseases , Neuroinflammatory Diseases , Permeability , Humans , Kynurenine/metabolism , Brain-Gut Axis/physiology , Animals , Nervous System Diseases/metabolism , Gastrointestinal Microbiome/physiology , Neuroinflammatory Diseases/metabolism , Brain/metabolism , Brain/pathology , Inflammation/metabolism , Inflammation/pathology
8.
Cardiovasc Toxicol ; 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377990

ABSTRACT

Myocardial infarction (MI) is a lethal cardiovascular disease worldwide. Emerging evidence has revealed the critical role of gut dysbiosis and impaired gut-brain axis in the pathological progression of MI. Tanshinone IIA (Tan IIA), a traditional Chinese medicine, has been demonstrated to exert therapeutic effects for MI. However, the effects of Tan IIA on gut-brain communication and its potential mechanisms post-MI are still unclear. In this study, we initially found that Tan IIA significantly reduced myocardial inflammation, apoptosis and fibrosis, therefore alleviating hypertrophy and improving cardiac function following MI, suggesting the cardioprotective effect of Tan IIA against MI. Additionally, we observed that Tan IIA improved the gut microbiota as evidenced by changing the α-diversity and ß-diversity, and reduced histopathological impairments by decreasing inflammation and permeability in the intestinal tissues, indicating the substantial improvement of Tan IIA in gut function post-MI. Lastly, Tan IIA notably reduced lipopolysaccharides (LPS) level in serum, inflammation responses in paraventricular nucleus (PVN) and sympathetic hyperexcitability following MI, suggesting that restoration of Tan IIA on MI-induced brain alterations. Collectively, these results indicated that the cardioprotective effects of Tan IIA against MI might be associated with improvement in gut-brain axis, and LPS might be the critical factor linking gut and brain. Mechanically, Tan IIA-induced decreased intestinal damage reduced LPS release into serum, and reduced serum LPS contributes to decreased neuroinflammation with PVN and sympathetic inactivation, therefore protecting the myocardium against MI-induced injury.

9.
Front Cell Infect Microbiol ; 14: 1402389, 2024.
Article in English | MEDLINE | ID: mdl-39380726

ABSTRACT

Introduction: Genitourinary syndrome of menopause (GSM) describes the symptoms and signs resulting from the effect of estrogen deficiency on the female genitourinary tract, including genital, urinary, and sexual symptoms. However, besides estrogen deficiency, little is known about the etiology of GSM. The objective of this study was to investigate the effects of vaginal microbiota dysbiosis on the occurrence and development of GSM in perimenopausal and postmenopausal women. Methods: In total, 96 women were enrolled in this cross-sectional study and clinical data were collected. GSM symptoms were divided into three types: genital, urological, and sexual symptoms. Full-length 16S rRNA gene sequencing using the third-generation PacBio sequencing technology was performed to analyze the vaginal microbiome using vaginal swabs of non-GSM and GSM women with different types of GSM symptoms. Live Lactobacillus Capsule for Vaginal Use (LLCVU) treatment was used to verify the effects of Lactobacillus on GSM symptoms. Results: We found that 83.58% (56/67) of women experienced GSM symptoms in the perimenopausal and postmenopausal stages. Among these women with GSM, 23.21% (13/56), 23.21% (13/56), and 53.57% (30/56) had one type, two types, and three types of GSM symptoms, respectively. The richness and diversity of vaginal microbiota gradually increased from reproductive to postmenopausal women. There were significant differences in vaginal microbial community among non-GSM women and GSM women with different types of symptoms. Lactobacillus was found to be negatively associated with the onset, severity, and type of GSM while some bacteria, such as Escherichia-shigella, Anaerococcus, Finegoldia, Enterococcus, Peptoniphilus_harei, and Streptococcus, were found to be positively associated with these aspects of GSM, and these bacteria were especially associated with the types of genital and sexual symptoms in GSM women. LLCVU significantly relieved genital symptoms and improved the sexual life of GSM women in shortterm observation. Conclusions: The onset, severity, and type of GSM symptoms may be associated with changes in vaginal microbiota in perimenopausal and postmenopausal women. Vaginal microbiota dysbiosis probably contributes to the occurrence and development of GSMsymptoms, especially vaginal and sexual symptoms. Lactobacillus used in the vagina may be a possible option for non-hormonal treatment of GSM women with genital and sexual symptoms. Clinical Trial Registration: https://www.chictr.org.cn/indexEN.html, identifier ChiCTR2100044237.


Subject(s)
Dysbiosis , Lactobacillus , Menopause , Microbiota , RNA, Ribosomal, 16S , Vagina , Humans , Female , Vagina/microbiology , Middle Aged , Cross-Sectional Studies , RNA, Ribosomal, 16S/genetics , Dysbiosis/microbiology , Lactobacillus/isolation & purification , Lactobacillus/genetics , Female Urogenital Diseases/microbiology , Adult , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Syndrome , Postmenopause
10.
Arch Toxicol ; 2024 Oct 06.
Article in English | MEDLINE | ID: mdl-39370473

ABSTRACT

Despite offering significant conveniences, plastic materials contribute substantially in developing environmental hazards and pollutants. Plastic trash that has not been adequately managed may eventually break down into fragments caused by human or ecological factors. Arguably, the crucial element for determining the biological toxicities of plastics are micro/nano-forms of plastics (MPs/NPs), which infiltrate the mammalian tissue through different media and routes. Infiltration of MPs/NPs across the intestinal barrier leads to microbial architectural dysfunction, which further modulates the population of gastrointestinal microbes. Thereby, it triggers inflammatory mediators (e.g., IL-1α/ß, TNF-α, and IFN-γ) by activating specific receptors located in the gut barrier. Mounting evidence indicates that MPs/NPs disrupt host pathophysiological function through modification of junctional proteins and effector cells. Moreover, the alteration of microbial diversity by MPs/NPs causes the breakdown of the blood-brain barrier and translocation of metabolites (e.g., SCFAs, LPS) through the vagus nerve. Potent penetration affects the neuronal networks, neuronal protein accumulation, acceleration of oxidative stress, and alteration of neurofibrillary tangles, and hinders distinctive communicating pathways. Conclusively, alterations of these neurotoxic factors are possibly responsible for the associated neurodegenerative disorders due to the exposure of MPs/NPs. In this review, the hypothesis on MPs/NPs associated with gut microbial dysbiosis has been interlinked to the distinct neurological impairment through the gut-brain axis.

11.
Allergy ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39370939

ABSTRACT

The prevalence of many chronic noncommunicable diseases has been steadily rising over the past six decades. During this time, over 350,000 new chemical substances have been introduced to the lives of humans. In recent years, the epithelial barrier theory came to light explaining the growing prevalence and exacerbations of these diseases worldwide. It attributes their onset to a functionally impaired epithelial barrier triggered by the toxicity of the exposed substances, associated with microbial dysbiosis, immune system activation, and inflammation. Diseases encompassed by the epithelial barrier theory share common features such as an increased prevalence after the 1960s or 2000s that cannot (solely) be accounted for by the emergence of improved diagnostic methods. Other common traits include epithelial barrier defects, microbial dysbiosis with loss of commensals and colonization of opportunistic pathogens, and circulating inflammatory cells and cytokines. In addition, practically unrelated diseases that fulfill these criteria have started to emerge as multimorbidities during the last decades. Here, we provide a comprehensive overview of diseases encompassed by the epithelial barrier theory and discuss evidence and similarities for their epidemiology, genetic susceptibility, epithelial barrier dysfunction, microbial dysbiosis, and tissue inflammation.

12.
Sci Total Environ ; 954: 176604, 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39353487

ABSTRACT

Ground-level ozone (O3) has been shown to induce airway inflammation, the underlying mechanisms remain unclear. The aim of this study was to determine whether gut and airway microbiota dysbiosis, and airway metabolic alterations were associated with O3-induced airway inflammation. Thirty-six 8-week-old male C57BL/6 N mice were divided into 2 groups: sterile water group and broad-spectrum antibiotics group (Abx). Each group was further divided into two subgroups, filtered air group (Air) and O3 group (O3), with 9 mice in each subgroup. Mice in the Air and O3 groups were exposed to filtered air or 1 ppm O3, 4 h/d for 5 consecutive days, respectively. Mice in Abx + Air and Abx + O3 groups were exposed to filtered air or O3, respectively, after drinking broad-spectrum Abx. 24 h after the final O3 exposure, mouse feces and bronchoalveolar lavage fluids (BALF) were collected and subjected to measurements of airway oxidative stress and inflammation biomarkers, 16S rRNA sequencing and metabolite profiling. Hematoxylin-eosin staining of lung tissues was applied to examine the pathological changes of lung tissue. The results showed that O3 exposure resulted in airway oxidative stress and inflammation, as well as gut and airway microbiota dysbiosis, and airway metabolism alteration. Abx pre-treatment markedly changed gut and airway microbiota and promoted O3-induced metabolic disorder and airway inflammation. Spearman correlation analyses indicated that inter-related gut and airway microbiota dysbiosis and airway metabolic disorder were associated with O3-induced airway inflammation. Together, inhaled O3 causes airway inflammation, which may implicate gut and airway microbiota dysbiosis and airway metabolic alterations.

13.
Front Cell Infect Microbiol ; 14: 1477143, 2024.
Article in English | MEDLINE | ID: mdl-39359935

ABSTRACT

Oral mucositis is a common and debilitating oral complication in head and neck cancer patients undergoing radiotherapy, resulting in diminished quality of life and potential treatment disruptions. Oral microbiota has long been recognized as a contributing factor in the initiation and progression of radiation-induced oral mucositis (RIOM). Numerous studies have indicated that the radiation-induced oral microbial dysbiosis promotes the occurrence and severity of oral mucositis. Therefore, approaches that modulate oral microbial ecology are promising for the management of RIOM. Probiotics as a relatively predicable and safe measure that modulates microecology have garnered significant interest. In this review, we discussed the correlation between RIOM and oral microbiota, with a particular focus on the efficacy of probiotics in the control of RIOM, in order to provide novel paradigm for the management of this disease.


Subject(s)
Dysbiosis , Probiotics , Radiation Injuries , Stomatitis , Probiotics/therapeutic use , Humans , Stomatitis/etiology , Stomatitis/microbiology , Stomatitis/therapy , Stomatitis/prevention & control , Radiation Injuries/therapy , Microbiota , Head and Neck Neoplasms/radiotherapy , Radiotherapy/adverse effects , Mouth/microbiology , Quality of Life
14.
J Transl Int Med ; 12(4): 355-366, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39360163

ABSTRACT

Background and Objectives: Symptom-based subtyping for functional gastrointestinal disorders (FGIDs) has limited value in identifying underlying mechanisms and guiding therapeutic strategies. Small intestinal dysbiosis is implicated in the development of FGIDs. We tested if machine learning (ML) algorithms utilizing both gastrointestinal (GI) symptom characteristics and lactulose breath tests could provide distinct clusters. Materials and Methods: This was a prospective cohort study. We performed lactulose hydrogen methane breath tests and hydrogen sulfide breath tests in 508 patients with GI symptoms. An unsupervised ML algorithm was used to categorize subjects by integrating GI symptoms and breath gas characteristics. Generalized Estimating Equation (GEE) models were used to examine the longitudinal associations between cluster patterns and breath gas time profiles. An ML-based prediction model for identifying excessive gas production in FGIDs patients was developed and internal validation was performed. Results: FGIDs were confirmed in 300 patients. K-means clustering identified 4 distinct clusters. Cluster 2, 3, and 4 showed enrichments for abdominal distention and diarrhea with a high proportion of excessive gas production, whereas Cluster 1 was characterized by moderate lower abdominal discomforts with the most psychological complaints and the lowest proportion of excessive gas production. GEE models showed that breath gas concentrations varied among different clusters over time. We further sought to develop an ML-based prediction model to determine excessive gas production. The model exhibited good predictive capabilities. Conclusion: ML-based phenogroups and prediction model approaches could provide distinct FGIDs subsets and efficiently determine FGIDs subsets with greater gas production, thereby facilitating clinical decision-making and guiding treatment.

15.
Clin Liver Dis ; 28(4): 663-679, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39362714

ABSTRACT

Alcohol-associated liver disease (ALD) poses a significant global public health challenge, with high patient mortality rates and economic burden. The gut microbiome plays an important role in the onset and progression of alcohol-associated liver disease. Excessive alcohol consumption disrupts the intestinal barrier, facilitating the entry of harmful microbes and their products into the liver, exacerbating liver damage. Dysbiosis, marked by imbalance in gut bacteria, correlates with ALD severity. Promising microbiota-centered therapies include probiotics, phages, and fecal microbiota transplantation. Clinical trials demonstrate the potential of these interventions to improve liver function and patient outcomes, offering a new frontier in ALD treatment.


Subject(s)
Dysbiosis , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Liver Diseases, Alcoholic , Probiotics , Humans , Gastrointestinal Microbiome/physiology , Liver Diseases, Alcoholic/microbiology , Liver Diseases, Alcoholic/therapy , Probiotics/therapeutic use , Bacteriophages
16.
World J Clin Cases ; 12(28): 6159-6164, 2024 Oct 06.
Article in English | MEDLINE | ID: mdl-39371567

ABSTRACT

The gut microbiome has emerged as a critical player in cancer pathogenesis and treatment response. Dysbiosis, an imbalance in the gut microbial community, impacts tumor initiation, progression, and therapy outcomes. Specific bacterial species have been associated with either promoting or inhibiting tumor growth, offering potential targets for therapeutic intervention. The gut microbiome influences the efficacy and toxicity of conventional treatments and cutting-edge immunotherapies, highlighting its potential as a therapeutic target in cancer care. However, translating microbiome research into clinical practice requires addressing challenges such as standardizing methodologies, validating microbial biomarkers, and ensuring ethical considerations. Here, we provide a comprehensive overview of the gut microbiome's role in cancer highlighting the need for ongoing research, collaboration, and innovation to harness its full potential for improving patient outcomes in oncology. The current editorial aims to explore these insights and emphasizes the need for standardized methodologies, validation of microbial biomarkers, and interdisciplinary collaboration to translate microbiome research into clinical applications. Furthermore, it underscores ethical considerations and regulatory challenges surrounding the use of microbiome-based therapies. Together, this article advocates for ongoing research, collaboration, and innovation to realize the full potential of microbiome-guided oncology in improving patient care and outcomes.

17.
World J Gastroenterol ; 30(36): 4078-4082, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39351246

ABSTRACT

This letter emphasizes the need to expand discussions on gut microbiome's role in inflammatory bowel disease (IBD) and colorectal cancer (CRC) by including the often-overlooked non-bacterial components of the human gut flora. It highlights how viral, fungal and archaeal inhabitants of the gut respond towards gut dys-biosis and contribute to disease progression. Viruses such as bacteriophages target certain bacterial species and modulate the immune system. Other viruses found associated include Epstein-Barr virus, human papillomavirus, John Cunningham virus, cytomegalovirus, and human herpes simplex virus type 6. Fungi such as Candida albicans and Malassezia contribute by forming tissue-invasive filaments and producing inflammatory cytokines, respectively. Archaea, mainly metha-nogens are also found altering the microbial fermentation pathways. This corres-pondence, thus underscores the significance of considering the pathological and physiological mechanisms of the entire spectrum of the gut microbiota to develop effective therapeutic interventions for both IBD and CRC.


Subject(s)
Colorectal Neoplasms , Disease Progression , Dysbiosis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Gastrointestinal Microbiome/immunology , Gastrointestinal Microbiome/physiology , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/immunology , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/immunology , Dysbiosis/immunology , Bacteria , Fungi/immunology , Fungi/pathogenicity
18.
World J Gastrointest Pathophysiol ; 15(5): 96446, 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39355345

ABSTRACT

Microbiome is an endocrine organ that refers to both the complicated biological system of microbial species that colonize our bodies and their genomes and surroundings. Recent studies confirm the connection between the microbiome and eye diseases, which are involved in the pathogenesis of eye diseases, including age-related macular disorders, diabetic retinopathy, glaucoma, retinitis pigmentosa, dry eye, and uveitis. The aim of this review is to investigate the microbiome in relation to eye health. First, a brief introduction of the characteristics of the gut microorganisms terms of composition and work, the role of dysbiosis, the gut microbiome and the eye microbiome in the progression of eye illnesses are highlighted, then the relationship among the microbiome and the function of the immune system and eye diseases, the role of inflammation and aging and the immune system, It has been reviewed and finally, the control and treatment goals of microbiome and eye diseases, the role of food factors and supplements, biotherapy and antibiotics in relation to microbiome and eye health have been reviewed.

19.
Eur J Pharmacol ; : 177022, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39362390

ABSTRACT

Numerous studies conducted over the last ten years have shown a strong correlation between the gut microbiota and the onset and progression of Alzheimer's disease (AD). However, the exact underlying mechanism is still unknown. An ongoing communication mechanism linking the gut and the brain is highlighted by the term "microbiota-gut-brain axis," which was originally coined the "gut-brain axis." Key metabolic, endocrine, neurological, and immunological mechanisms are involved in the microbiota‒gut‒brain axis and are essential for preserving brain homeostasis. Thus, the main emphasis of this review is how the gut microbiota contributes to the development of AD and how various natural products intervene in this disease. The first part of the review provides an outline of various pathways and relationships between the brain and gut microbiota, and the second part provides various mechanisms involved in the gut microbiota and AD. Finally, this review provides knowledge about natural products and their effectiveness in treating gut microbiota-induced AD. AD may be treated in the future by altering the gut microbiota with a customized diet, probiotics/prebiotics, plant products, and natural products. This entails altering the microbiological partners and products (such as amyloid protein) that these partners generate.

20.
Front Bioeng Biotechnol ; 12: 1437301, 2024.
Article in English | MEDLINE | ID: mdl-39359265

ABSTRACT

Over the past 2 decades, rapid advances in synthetic biology have enabled the design of increasingly intricate and biologically relevant systems with broad applications in healthcare. A growing area of interest is in designing bacteria that sense and respond to endogenous disease-associated signals, creating engineered theranostics that function as disease surveyors for human health. In particular, engineered cells hold potential in facilitating greatly enhanced temporal and spatial control over the release of a range of therapeutics. Such systems are particularly useful for targeting challenging, under-drugged disease targets in a more nuanced manner than is currently possible. This review provides an overview of the recent advances in the design, delivery, and dynamics of bacterial theranostics to enable safe, robust, and genetically tractable therapies to treat disease. It outlines the primary challenges in theranostic clinical translation, proposes strategies to overcome these issues, and explores promising future avenues for the field.

SELECTION OF CITATIONS
SEARCH DETAIL