Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.065
Filter
1.
J Food Sci Technol ; 61(8): 1516-1524, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966784

ABSTRACT

Escherichia coli and Staphylococcus aureus are the most important food borne pathogen transmitting from animal meat and meat products. Therefore, it is vital to design an accurate and specific diagnostic tool for identifying those food-borne pathogens in animal meat and meat products. In the current study, E. coli, methicillin-resistant and sensitive S. aureus (MRSA and MSSA) were simultaneously detected using a developed triplex PCR-based technique. To obtain an optimal reaction parameter, the multiplex assay was optimised by changing just one parameter while holding the others constant. Specificity of the assay was assessed using several porcine bacterial template DNA. The plasmid DNA was used to test the multiplex PCR assay's sensitivity and interference in spiked pork samples. E. coli, MRSA, and MSSA each have PCR amplified products with sizes of 335, 533, and 209 bp, respectively. The assay detects a minimum microbial load of 102 CFU/µl for all the three pathogens and can identify bacterial DNA as low as 10-2 ng/µl. The assay was validated employing 210 pork samples obtained from retail meat shops and slaughter houses, with MRSA, E. coli, and MSSA with the occurrence rate of 1.9%, 42.38%, and 18.1%, respectively. The rate of mixed bacterial contamination in pork meat samples examined with the developed method was 6.19%, 1.43%, 1.90%, and 1.43% for MSSA & E. coli, MRSA & E. coli, MSSA & MRSA, and E. coli, MSSA & MRSA, respectively. The developed multiplex PCR assay is quick and efficient, and it can distinguish between different bacterial pathogens in a single reaction tube.

2.
Microb Pathog ; : 106780, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969189

ABSTRACT

This study was designed to assess the possibility of using bacteriophage-encoded endolysins for controlling planktonic and biofilm cells. The endolysins, LysEP114 and LysEP135, were obtained from plasmid vectors containing the endolysin genes derived from Escherichia coli phages. The high identity (>96%) was observed between LysEP114 and LysEP135. LysEP114 and LysEP135 were characterized by pH, thermal, and lactic acid stability, lytic spectrum, antibacterial activity, and biofilm eradication. The molecular masses of LysEP114 and LysEP135 were 18.2 kDa, identified as muramidases. LysEP114 and LysEP135 showed high lytic activity against the outer membrane-permeabilized E. coli KCCM 40405 at below 37°C, between pH 5 to 11, and below 70 mM of lactic acid. LysEP114 and LysEP135 showed the broad rang of lytic activity against E. coli KACC 10115, S. Typhimurium KCCM 40253, S. Typhimurium CCARM 8009, tetracycline-resistant S. Typhimurium, polymyxin B-resistant S. Typhimurium, chloramphenicol-resistant S. Typhimurium, K. pneumoniae ATCC 23357, K. pneumoniae CCARM 10237, and Shigella boydii KACC 10792. LysEP114 and LysEP135 effectively reduced the numbers of planktonic E. coli KCCM by 1.7 and 2.1 log, respectively, when treated with 50 mM lactic acid. The numbers of biofilm cells were reduced from 7.3 to 4.1 log CFU/ml and 2.2 log CFU/ml, respectively, when treated with LysEP114- and LysEP135 in the presence of 50 mM lactic acid. The results suggest that the endolysins in combination with lactic acid could be potential alternative therapeutic agents for controlling planktonic and biofilm cells.

3.
Elife ; 132024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959062

ABSTRACT

Bacterial exonuclease III (ExoIII), widely acknowledged for specifically targeting double-stranded DNA (dsDNA), has been documented as a DNA repair-associated nuclease with apurinic/apyrimidinic (AP)-endonuclease and 3'→5' exonuclease activities. Due to these enzymatic properties, ExoIII has been broadly applied in molecular biosensors. Here, we demonstrate that ExoIII (Escherichia coli) possesses highly active enzymatic activities on ssDNA. By using a range of ssDNA fluorescence-quenching reporters and fluorophore-labeled probes coupled with mass spectrometry analysis, we found ExoIII cleaved the ssDNA at 5'-bond of phosphodiester from 3' to 5' end by both exonuclease and endonuclease activities. Additional point mutation analysis identified the critical residues for the ssDNase action of ExoIII and suggested the activity shared the same active center with the dsDNA-targeted activities of ExoIII. Notably, ExoIII could also digest the dsDNA structures containing 3'-end ssDNA. Considering most ExoIII-assisted molecular biosensors require the involvement of single-stranded DNA (ssDNA) or nucleic acid aptamer containing ssDNA, the activity will lead to low efficiency or false positive outcome. Our study revealed the multi-enzymatic activity and the underlying molecular mechanism of ExoIII on ssDNA, illuminating novel insights for understanding its biological roles in DNA repair and the rational design of ExoIII-ssDNA involved diagnostics.


Subject(s)
DNA, Single-Stranded , Escherichia coli , Exodeoxyribonucleases , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/enzymology , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics
4.
Genes Cells ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965067

ABSTRACT

In cells, proteins are synthesized, function, and degraded (dead). Protein synthesis (spring) is important for the life of proteins. However, how proteins die is equally important for organisms. Proteases are secreted from cells and used as nutrients to break down external proteins. Proteases degrade unwanted and harmful cellular proteins. In eukaryotes, a large enzyme complex called the proteasome is primarily responsible for cellular protein degradation. Prokaryotes, such as bacteria, have similar protein degradation systems. In this review, we describe the structure and function of the ClpXP complex in the degradation system, which is an ATP-dependent protease in bacterial cells, with a particular focus on ClpP.

5.
Water Environ Res ; 96(7): e11072, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961619

ABSTRACT

This work assessed the performance of a pilot-scale cascade anaerobic digestion (AD) system when treating mixed municipal wastewater treatment sludges. The cascade system was compared with a conventional continuous stirred tank reactor (CSTR) digester (control) in terms of process performance, stability, and digestate quality. The results showed that the cascade system achieved higher volatile solids removal (VSR) efficiencies (28-48%) than that of the reference (25-41%) when operated at the same solids residence time (SRT) in the range of 11-15 days. When the SRT of the cascade system was reduced to 8 days the VSR (32-36%) was only slightly less than that of the reference digester that was operated at a 15-day SRT (39-43%). Specific hydrolysis rates in the first stage of the cascade system were 66-152% higher than those of the reference. Additionally, the cascade system exhibited relatively stable effluent concentrations of volatile fatty acids (VFAs: 100-120 mg/l), while the corresponding concentrations in the control effluent demonstrated greater fluctuations (100-160 mg/l). The cascade system's effluent pH and VFA/alkalinity ratios were consistently maintained within the optimal range. During a dynamic test when the feed total solids concentration was doubled, total VFA concentrations (85-120 mg/l) in the cascade system were noticeably less than those (100-170 mg/l) of the control, while the pH and VFA/alkalinity levels remained in a stable range. The cascade system achieved higher total solids (TS) content in the dewatered digestate (19.4-26.8%) than the control (17.4-22.1%), and E. coli log reductions (2.0-4.1 log MPN/g TS) were considerably higher (p < 0.05) than those in the control (1.3-2.9 log MPN/g TS). Overall, operating multiple CSTRs in cascade mode at typical SRTs and mixed sludge ratios enhanced the performance, stability digesters, and digestate quality of AD. PRACTITIONER POINTS: Enhanced digestion of mixed sludge digestion with cascade system. Increased hydrolysis rates in the cascade system compared to a reference CSTR. More stable conditions for methanogen growth at both steady and dynamic states. Improved dewaterability and E. coli reduction of digestate from the cascade system.


Subject(s)
Bioreactors , Sewage , Waste Disposal, Fluid , Wastewater , Anaerobiosis , Waste Disposal, Fluid/methods , Pilot Projects , Wastewater/chemistry , Sewage/chemistry , Fatty Acids, Volatile/metabolism , Water Purification/methods
6.
Elife ; 132024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949655

ABSTRACT

Secreted chemokines form concentration gradients in target tissues to control migratory directions and patterns of immune cells in response to inflammatory stimulation; however, how the gradients are formed is much debated. Heparan sulfate (HS) binds to chemokines and modulates their activities. In this study, we investigated the roles of HS in the gradient formation and chemoattractant activity of CCL5 that is known to bind to HS. CCL5 and heparin underwent liquid-liquid phase separation and formed gradient, which was confirmed using CCL5 immobilized on heparin-beads. The biological implication of HS in CCL5 gradient formation was established in CHO-K1 (wild-type) and CHO-677 (lacking HS) cells by Transwell assay. The effect of HS on CCL5 chemoattractant activity was further proved by Transwell assay of human peripheral blood cells. Finally, peritoneal injection of the chemokines into mice showed reduced recruitment of inflammatory cells either by mutant CCL5 (lacking heparin-binding sequence) or by addition of heparin to wild-type CCL5. Our experimental data propose that co-phase separation of CCL5 with HS establishes a specific chemokine concentration gradient to trigger directional cell migration. The results warrant further investigation on other heparin-binding chemokines and allows for a more elaborate insight into disease process and new treatment strategies.


Subject(s)
Chemokine CCL5 , Chemotaxis , Cricetulus , Heparitin Sulfate , Chemokine CCL5/metabolism , Chemokine CCL5/genetics , Animals , Heparitin Sulfate/metabolism , Humans , CHO Cells , Mice , Heparin/metabolism , Heparin/pharmacology , Phase Separation
7.
Photochem Photobiol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958000

ABSTRACT

The thermodynamic characteristics, antioxidant potential, and photoprotective benefits of full-spectrum cannabidiol (FS-CBD) against UVB-induced cellular death were examined in this study. In silico analysis of CBD showed antioxidant capacity via proton donation and UV absorption at 209.09, 254.73, and 276.95 nm, according to the HAT and SPLET methodologies. FS-CBD protected against UVB-induced bacterial death for 30 min. FS-CBD protected against UVB-induced cell death by 42% (1.5 µg/mL) and 35% (3.5 µg/mL) in an in vitro keratinocyte cell model. An in vivo acute irradiated CD-1et/et mouse model (UVB-irradiated for 5 min) presented very low photoprotection when FS-CBD was applied cutaneously, as determined by histological analyses. In vivo skin samples showed that FS-CBD regulated inflammatory responses by inhibiting the inflammatory markers TGF-ß1 and NLRP3. The docking analysis showed that the CBD molecule had a high affinity for TGF-ß1 and NLRP3, indicating that protection against inflammation might be mediated by blocking these proinflammatory molecules. This result was corroborated by the docking interactions between CBD and TGF-ß1 and NLRP3, which resulted in a high affinity and inhibition of both proteins The present work suggested a FS-CBD moderate photoprotective agent against UVB light-induced skin damage and that this effect is partially mediated by its anti-inflammatory activity.

8.
RNA Biol ; 21(1): 31-41, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38952121

ABSTRACT

Large ribosomal RNAs (rRNAs) are modified heavily post-transcriptionally in functionally important regions but, paradoxically, individual knockouts (KOs) of the modification enzymes have minimal impact on Escherichia coli growth. Furthermore, we recently constructed a strain with combined KOs of five modification enzymes (RluC, RlmKL, RlmN, RlmM and RluE) of the 'critical region' of the peptidyl transferase centre (PTC) in 23S rRNA that exhibited only a minor growth defect at 37°C (although major at 20°C). However, our combined KO of modification enzymes RluC and RlmE (not RluE) resulted in conditional lethality (at 20°C). Although the growth rates for both multiple-KO strains were characterized, the molecular explanations for such deficits remain unclear. Here, we pinpoint biochemical defects in these strains. In vitro fast kinetics at 20°C and 37°C with ribosomes purified from both strains revealed, counterintuitively, the slowing of translocation, not peptide bond formation or peptidyl release. Elongation rates of protein synthesis in vivo, as judged by the kinetics of ß-galactosidase induction, were also slowed. For the five-KO strain, the biggest deficit at 37°C was in 70S ribosome assembly, as judged by a dominant 50S peak in ribosome sucrose gradient profiles at 5 mM Mg2+. Reconstitution of this 50S subunit from purified five-KO rRNA and ribosomal proteins supported a direct role in ribosome biogenesis of the PTC region modifications per se, rather than of the modification enzymes. These results clarify the importance and roles of the enigmatic rRNA modifications.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Peptidyl Transferases , Protein Biosynthesis , RNA, Ribosomal , Ribosomes , Peptidyl Transferases/metabolism , Peptidyl Transferases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Ribosomes/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Ribosomal, 23S/metabolism , RNA, Ribosomal, 23S/genetics , Kinetics
9.
Mikrochim Acta ; 191(8): 441, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38954045

ABSTRACT

A ratiometric SERS aptasensor based on catalytic hairpin self-assembly (CHA) mediated cyclic signal amplification strategy was developed for the rapid and reliable determination of Escherichia coli O157:H7. The recognition probe was synthesized by modifying magnetic beads with blocked aptamers, and the SERS probe was constructed by functionalizing gold nanoparticles (Au NPs) with hairpin structured DNA and 4-mercaptobenzonitrile (4-MBN). The recognition probe captured E. coli O157:H7 specifically and released the blocker DNA, which activated the CHA reaction on the SERS probe and turned on the SERS signal of 6-carboxyl-x-rhodamine (ROX). Meanwhile, 4-MBN was used as an internal reference to calibrate the matrix interference. Thus, sensitive and reliable determination and quantification of E. coli O157:H7 was established using the ratio of the SERS signal intensities of ROX to 4-MBN. This aptasensor enabled detection of 2.44 × 102 CFU/mL of E. coli O157:H7 in approximately 3 h without pre-culture and DNA extraction. In addition, good reliability and excellent reproducibility were observed for the determination of E. coli O157:H7 in spiked water and milk samples. This study offered a new solution for the design of rapid, sensitive, and reliable SERS aptasensors.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Escherichia coli O157 , Gold , Limit of Detection , Metal Nanoparticles , Milk , Spectrum Analysis, Raman , Escherichia coli O157/isolation & purification , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Milk/microbiology , Milk/chemistry , Spectrum Analysis, Raman/methods , Biosensing Techniques/methods , Animals , Catalysis , Inverted Repeat Sequences , Food Contamination/analysis , Water Microbiology , Reproducibility of Results
10.
Heliyon ; 10(12): e32210, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975212

ABSTRACT

Control of a bioprocess is a challenging task mainly due to the nonlinearity of the process, the complex nature of microorganisms, and variations in critical parameters such as temperature, pH, and agitator speed. Generally, the optimum values chosen for critical parameters during Escherichia coli (E.coli) K-12fed-batch fermentation are37 ᵒC for temperature, 7 for pH, and 35 % for Dissolved Oxygen (DO). The objective of this research is to enhance biomass concentration while minimizing energy consumption. To achieve this, an Event-Triggered Control (ETC) scheme based on feedback-feed forward control is proposed. The ETC system dynamically adjusts the substrate feed rate in response to variations in critical parameters. We compare the performance of classical Proportional Integral (PI) controllers and advanced Model Predictive Control (MPC) controllers in terms of bioprocess yield. Initially, the data are collected from a laboratory-scaled 3L bioreactor setup under fed-batch operating conditions, and data-driven models are developed using system identification techniques. Then, classical Proportional Integral (PI) and advanced Model Predictive Control (MPC) based feedback controllers are developed for controlling the yield of bioprocess by manipulating substrate flow rate, and their performances are compared. PI and MPC-based Event Triggered Feed Forward Controllers are designed to increase the yield and to suppress the effect of known disturbances due to critical parameters. Whenever there is a variation in the value of a critical parameter, it is considered an event, and ETC initiates a control action by manipulating the substrate feed rate. PI and MPC-based ETC controllers are developed in simulation, and their closed-loop performances are compared. It is observed that the Integral Square Error (ISE) is notably minimized to 4.668 for MPC with disturbance and 4.742 for MPC with Feed Forward Control. Similarly, the Integral Absolute Error (IAE) reduces to 2.453 for MPC with disturbance and 0.8124 for MPC with Feed Forward Control. The simulation results reveal that the MPC-based ETC control scheme enhances the biomass yield by 7 %, and this result is verified experimentally. This system dynamically adjusts the substrate feed rate in response to variations in critical parameters, which is a novel approach in the field of bioprocess control. Also, the proposed control schemes help reduce the frequency of communication between controller and actuator, which reduces power consumption.

11.
Metab Eng ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971492

ABSTRACT

Indigo is widely used in textile industries for denim garments dyeing and is mainly produced by chemical synthesis which, however, raises environmental sustainability issues. Bio-indigo may be produced by fermentation of metabolically engineering bacteria, but current methods are economically incompetent due to low titer and the need for an inducer. To address these problems, we first characterized several synthetic promoters in E. coli and demonstrated the feasibility of inducer-free indigo production from tryptophan using the inducer-free promoter. We next coupled the tryptophan-to-indigo and glucose-to-tryptophan pathways to generate a de novo glucose-to-indigo pathway. By rational design and combinatorial screening, we identified the optimal promoter-gene combinations, which underscored the importance of promoter choice and expression levels of pathway genes. We thus created a new E. coli strain that exploited an indole pathway to enhance the indigo titer to 123 mg/L. We further assessed a panel of heterologous tryptophan synthase homologs and identified a plant indole lyase (TaIGL), which along with modified pathway design, improved the indigo titer to 235 mg/L while reducing the tryptophan byproduct accumulation. The optimal E. coli strain expressed 8 genes essential for rewiring carbon flux from glucose to indole and then to indigo: mFMO, ppsA, tktA, trpD, trpC, TaIGL and feedback-resistant aroG and trpE. Fed-batch fermentation in a 3-L bioreactor with glucose feeding further increased the indigo titer (≈965 mg/L) and total quantity (≈2183 mg) at 72 h. This new synthetic glucose-to-indigo pathway enables high-titer indigo production without the need of inducer and holds promise for bio-indigo production.

12.
Microb Pathog ; 193: 106789, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972365

ABSTRACT

Urinary tract infections (UTIs) by Uropathogenic Escherichia coli (UPEC) are a significant health concern, especially due to the increasing prevalence of antibiotic resistance. This study focuses on isolating and characterizing bacteriophages specific to UPEC strains isolated from UTI samples. The isolated phages were assessed for their ability to target and lyse UPEC in vitro, focusing on their efficacy in disrupting biofilms, a key virulence factor contributing to UTI recurrence and antibiotic resistance. The morphological structure observed by TEM belongs to Myoviridae, the phage exhibited icosahedral symmetry with a long non-constricting tail, the approximate measurement of the phage head was 39 nm in diameter, and the phage tail was 105.317 nm in length. One-step growth experiments showed that the latent period was approximately 20 min, followed by a rise period of 40 min, and a growth plateau was reached within 20 min and the burst size observed was 26 phages/infected bacterial cells. These phages were capable of killing cells within the biofilms, leading to a reduction in living cell counts after a single treatment. This study highlights the potential of phages to play a significant role in disrupting, inactivating, and destroying Uropathogenic Escherichia coli (UPEC) biofilms. Such findings could be instrumental in developing treatment strategies that complement antibiotics and disinfectants. The phage-antibiotic synergistic activity was compared to have the possibility to facilitate the advancement of focused and enduring alternatives to traditional antibiotic therapies for UTIs.

13.
Mikrochim Acta ; 191(8): 453, 2024 07 06.
Article in English | MEDLINE | ID: mdl-38970675

ABSTRACT

An electrochemical biosensor has been developed for detection of Escherichia coli O157 by integrating lateral flow with screen-printed electrodes. The screen-printed electrodes were attached under the lateral flow detection line, and organic-inorganic nanoflowers prepared from E. coli O157-specific antibodies as an organic component were attached to the lateral flow detection line. In the presence of E. coli O157, an organic-inorganic nanoflower-E. coli O157-antimicrobial peptide-labelled ferrocene sandwich structure is formed on the lateral flow detection line. Differential pulse voltammetry is applied using a smartphone-based device to monitor ferrocene on the detection line. The resulting electrochemical biosensor could specifically detect E. coli O157 with a limit of detection of 25 colony-forming units mL-1. Through substitution of antibodies of organic components in organic-inorganic nanoflowers, biosensors have great potential for the detection of other pathogens in biomedical research and clinical diagnosis.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Escherichia coli O157 , Escherichia coli O157/isolation & purification , Escherichia coli O157/immunology , Biosensing Techniques/methods , Immunoassay/methods , Immunoassay/instrumentation , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Limit of Detection , Nanostructures/chemistry , Electrodes , Ferrous Compounds/chemistry , Antibodies, Immobilized/immunology , Metallocenes/chemistry , Antibodies, Bacterial/chemistry , Antibodies, Bacterial/immunology , Antimicrobial Peptides/chemistry
14.
Sci Total Environ ; : 174408, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972407

ABSTRACT

Big data have become increasingly important for policymakers and scientists but have yet to be employed for the development of spatially specific groundwater contamination indices or protecting human and environmental health. The current study sought to develop a series of indices via analyses of three variables: Non-E. coli coliform (NEC) concentration, E. coli concentration, and the calculated NEC:E. coli concentration ratio. A large microbial water quality dataset comprising 1,104,094 samples collected from 292,638 Ontarian wells between 2010 and 2021 was used. Getis-Ord Gi* (Gi*), Local Moran's I (LMI), and space-time scanning were employed for index development based on identified cluster recurrence. Gi* and LMI identify hot and cold spots, i.e., spatially proximal subregions with similarly high or low contamination magnitudes. Indices were statistically compared with mapped well density and age-adjusted enteric infection rates (i.e., campylobacteriosis, cryptosporidiosis, giardiasis, verotoxigenic E. coli (VTEC) enteritis) at a subregional (N = 298) resolution for evaluation and final index selection. Findings suggest that index development via Gi* represented the most efficacious approach. Developed Gi* indices exhibited no correlation with well density, implying that indices are not biased by rural population density. Gi* indices exhibited positive correlations with mapped infection rates, and were particularly associated with higher bacterial (Campylobacter, VTEC) infection rates among younger sub-populations (p < 0.05). Conversely, no association was found between developed indices and giardiasis rates, an infection not typically associated with private groundwater contamination. Findings suggest that a notable proportion of bacterial infections are associated with groundwater and that the developed Gi* index represents an appropriate spatiotemporal reflection of long-term groundwater quality. Bacterial infection correlations with the NEC:E. coli ratio index (p < 0.001) were markedly different compared to correlations with the E. coli index, implying that the ratio may supplement E. coli monitoring as a groundwater assessment metric capable of elucidating contamination mechanisms. This study may serve as a methodological blueprint for the development of big data-based groundwater contamination indices across the globe.

15.
Pharmacol Ther ; : 108688, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972453

ABSTRACT

Antibiotic-resistant bacteria are currently an important public health concern posing a serious threat due to their resistance to the current arsenal of antibiotics. Uropathogens Escherichia coli (UPEC), Proteus mirabilis, Klebsiella pneumoniae and Enterococcus faecalis, antibiotic-resistant gram-negative bacteria, cause serious cases of prolonged UTIs, increasing healthcare costs and potentially even leading to the death of an affected patient. This review discusses current knowledge about the increasing resistance to currently recommended antibiotics for UTI therapy, as well as novel therapeutic options. Traditional antibiotics are still a part of the therapy guidelines for UTIs, although they are often not effective and have serious side effects. Hence, novel drugs are being developed, such as combinations of ß-lactam antibiotics with cephalosporins and carbapenems. Siderophoric cephalosporins, such as cefiderocol, have shown potential in the treatment of individuals with significant gram-negative bacterial infections, as well as aminoglycosides, fluoroquinolones and tetracyclines that are also undergoing clinical trials. The use of cranberry and probiotics is another potential curative and preventive method that has shown antimicrobial and anti-inflammatory effects. However, further studies are needed to assess the efficacy and safety of probiotics containing cranberry extract for UTI prevention and treatment. An emerging novel approach for UTI treatment is the use of immuno-prophylactic vaccines, as well as different nanotechnology solutions such as nanoparticles (Nanoparticles). Nanoparticles have the potential to be used as delivery systems for drugs to specific targets. Furthermore, nanotechnology could enable the development of nano antibiotics with improved features by the application of different Nanoparticles in their structure, such as gold and copper Nanoparticles. However, further high-quality research is required for the synthesis and testing of these novel molecules, such as safety evaluation and pharmacovigilance.

16.
Vet Res Commun ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972932

ABSTRACT

The overuse of antimicrobials in livestock has contributed to the emergence and selection of clinically relevant multidrug-resistant bacteria. In Brazil, there is no conclusive information on the occurrence of Escherichia coli producing extended-spectrum ß-lactamase (ESßL) in cattle breeding, which is an important sector of agribusiness in this country. Herein, we investigated the presence of ESßL-positive E. coli strains in dairy cattle from a commercial farm with routine practice of therapeutic cephalosporins. Ninety-five rectal swab samples were collected from healthy dairy calves and cows under treatment with ceftiofur. Samples were screened for the presence of ESßL producers, and positive isolates were identified by MALDI-TOF, with subsequent screening for genes encoding ESßL variants by PCR and sequencing. The presence of ESßL (CTX-M-15)-producing E. coli was confirmed in calves, and lactating and dry cows. Most ESßL strains with genetic homologies ≥ 90% were grouped into two major PFGE clusters, confirming the suscessful expansion of clonally related lineages in animals from different lactating cycles, on the same property. Four representatives CTX-M-15-positive E. coli strains had their genomes sequenced, belonging to the clonal complex (CC) 23 and sequence type (ST) 90. A phylogeographical landscape of ST90 was performed revealing a global One Health linkage. Our results highlight the intestinal microbiota of dairy cattle as a hotspot for the spread of critical priority ESßL-producing E. coli and demonstrate that ST90 is an international clone genomically adapted to human and animal hosts, which deserve additional investigation to determine its zoonotic potential and impact in food chain.

17.
Front Cell Infect Microbiol ; 14: 1414188, 2024.
Article in English | MEDLINE | ID: mdl-38979511

ABSTRACT

In Escherichia coli, the disaccharide trehalose can be metabolized as a carbon source or be accumulated as an osmoprotectant under osmotic stress. In hypertonic environments, E. coli accumulates trehalose in the cell by synthesis from glucose mediated by the cytosolic enzymes OtsA and OtsB. Trehalose in the periplasm can be hydrolyzed into glucose by the periplasmic trehalase TreA. We have previously shown that a treA mutant of extraintestinal E. coli strain BEN2908 displayed increased resistance to osmotic stress by 0.6 M urea, and reduced production of type 1 fimbriae, reduced invasion of avian fibroblasts, and decreased bladder colonization in a murine model of urinary tract infection. Since loss of TreA likely results in higher periplasmic trehalose concentrations, we wondered if deletion of otsA and otsB genes, which would lead to decreased internal trehalose concentrations, would reduce resistance to stress by 0.6 M urea and promote type 1 fimbriae production. The BEN2908ΔotsBA mutant was sensitive to osmotic stress by urea, but displayed an even more pronounced reduction in production of type 1 fimbriae, with the consequent reduction in adhesion/invasion of avian fibroblasts and reduced bladder colonization in the murine urinary tract. The BEN2908ΔtreAotsBA mutant also showed a reduction in production of type 1 fimbriae, but in contrast to the ΔotsBA mutant, resisted better than the wild type in the presence of urea. We hypothesize that, in BEN2908, resistance to stress by urea would depend on the levels of periplasmic trehalose, but type 1 fimbriae production would be influenced by the levels of cytosolic trehalose.


Subject(s)
Fimbriae, Bacterial , Osmoregulation , Trehalose , Urinary Bladder , Urinary Tract Infections , Animals , Trehalose/metabolism , Mice , Urinary Bladder/microbiology , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/genetics , Urinary Tract Infections/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Disease Models, Animal , Female , Osmotic Pressure , Extraintestinal Pathogenic Escherichia coli/metabolism , Extraintestinal Pathogenic Escherichia coli/genetics , Urea/metabolism , Trehalase/metabolism , Trehalase/genetics , Gene Deletion , Glucose/metabolism
18.
Elife ; 132024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984715

ABSTRACT

The proteasome controls levels of most cellular proteins, and its activity is regulated under stress, quiescence, and inflammation. However, factors determining the proteasomal degradation rate remain poorly understood. Proteasome substrates are conjugated with small proteins (tags) like ubiquitin and Fat10 to target them to the proteasome. It is unclear if the structural plasticity of proteasome-targeting tags can influence substrate degradation. Fat10 is upregulated during inflammation, and its substrates undergo rapid proteasomal degradation. We report that the degradation rate of Fat10 substrates critically depends on the structural plasticity of Fat10. While the ubiquitin tag is recycled at the proteasome, Fat10 is degraded with the substrate. Our results suggest significantly lower thermodynamic stability and faster mechanical unfolding in Fat10 compared to ubiquitin. Long-range salt bridges are absent in the Fat10 structure, creating a plastic protein with partially unstructured regions suitable for proteasome engagement. Fat10 plasticity destabilizes substrates significantly and creates partially unstructured regions in the substrate to enhance degradation. NMR-relaxation-derived order parameters and temperature dependence of chemical shifts identify the Fat10-induced partially unstructured regions in the substrate, which correlated excellently to Fat10-substrate contacts, suggesting that the tag-substrate collision destabilizes the substrate. These results highlight a strong dependence of proteasomal degradation on the structural plasticity and thermodynamic properties of the proteasome-targeting tags.

19.
bioRxiv ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38948722

ABSTRACT

Flagella are highly complex rotary molecular machines that enable bacteria to not only migrate to optimal environments but to also promote range expansion, competitiveness, virulence, and antibiotic survival. Flagellar motility is an energy-demanding process, where the sum of its production (biosynthesis) and operation (rotation) costs has been estimated to total ~10% of the entire energy budget of an E. coli cell. The acquisition of such a costly adaptation process is expected to secure short-term benefits by increasing competitiveness and survival, as well as long-term evolutionary fitness gains. While the role of flagellar motility in bacterial survival has been widely reported, its direct influence on the rate of evolution remains unclear. We show here that both production and operation costs contribute to elevated mutation frequencies. Our findings suggest that flagellar movement may be an important player in tuning the rate of bacterial evolution.

20.
Front Microbiol ; 15: 1423478, 2024.
Article in English | MEDLINE | ID: mdl-38989031

ABSTRACT

Access to safe and nutritious food is critical for maintaining life and supporting good health. Eating food that is contaminated with pathogens leads to serious diseases ranging from diarrhea to cancer. Many foodborne infections can cause long-term impairment or even death. Hence, early detection of foodborne pathogens such as pathogenic Escherichia coli strains is essential for public safety. Conventional methods for detecting these bacteria are based on culturing on selective media and following standard biochemical identification. Despite their accuracy, these methods are time-consuming. PCR-based detection of pathogens relies on sophisticated equipment and specialized technicians which are difficult to find in areas with limited resources. Whereas CRISPR technology is more specific and sensitive for identifying pathogenic bacteria because it employs programmable CRISPR-Cas systems that target particular DNA sequences, minimizing non-specific binding and cross-reactivity. In this project, a robust detection method based on CRISPR-Cas12a sensing was developed, which is rapid, sensitive and specific for detection of pathogenic E. coli isolates that were collected from the fecal samples from adult goats from 17 farms in Tennessee. Detection reaction contained amplified PCR products for the pathogenic regions, reporter probe, Cas12a enzyme, and crRNA specific to three pathogenic genes-stx1, stx2, and hlyA. The CRISPR reaction with the pathogenic bacteria emitted fluorescence when excited under UV light. To evaluate the detection sensitivity and specificity of this assay, its results were compared with PCR based detection assay. Both methods resulted in similar results for the same samples. This technique is very precise, highly sensitive, quick, cost effective, and easy to use, and can easily overcome the limitations of the present detection methods. This project can result in a versatile detection method that is easily adaptable for rapid response in the detection and surveillance of diseases that pose large-scale biosecurity threats to human health, and plant and animal production.

SELECTION OF CITATIONS
SEARCH DETAIL
...