Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
1.
Arq. bras. oftalmol ; Arq. bras. oftalmol;88(1): e2023, 2025. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1568848

ABSTRACT

ABSTRACT Purpose: The epithelial-mesenchymal transition of human lens epithelial cells plays a role in posterior capsule opacification, a fibrotic process that leads to a common type of cataract. Hyaluronic acid has been implicated in this fibrosis. Studies have investigated the role of transforming growth factor (TGF)-β2 in epithelial-mesenchymal transition. However, the role of TGF-β2 in hyaluronic acid-mediated fibrosis of lens epithelial cell remains unknown. We here examined the role of TGF-β2 in the hyaluronic acid-mediated epithelial-mesenchymal transition of lens epithelial cells. Methods: Cultured human lens epithelial cells (HLEB3) were infected with CD44-siRNA by using the Lipofectamine 3000 transfection reagent. The CCK-8 kit was used to measure cell viability, and the scratch assay was used to determine cell migration. Cell oxidative stress was analyzed in a dichloro-dihydro-fluorescein diacetate assay and by using a flow cytometer. The TGF-β2 level in HLEB3 cells was examined through immunohistochemical staining. The TGF-β2 protein level was determined through western blotting. mRNA expression levels were determined through quantitative real-time polymerase chain reaction. Results: Treatment with hyaluronic acid (1.0 μM, 24 h) increased the epithelial-mesenchymal transition of HLEB3 cells. The increase in TGF-β2 levels corresponded to an increase in CD44 levels in the culture medium. However, blocking the CD44 function significantly reduced the TGF-β2-mediated epithelial-mesenchymal transition response of HLEB3 cells. Conclusions: Our study showed that both CD44 and TGF-β2 are critical contributors to the hyaluronic acid-mediated epithelial-mesenchymal transition of lens epithelial cells, and that TGF-β2 in epithelial-mesenchymal transition is regulated by CD44. These results suggest that CD44 could be used as a target for preventing hyaluronic acid-induced posterior capsule opacification. Our findings suggest that CD44/TGF-β2 is crucial for the hyaluronic acid-induced epithelial-mesenchymal transition of lens epithelial cells.

2.
Front Cell Dev Biol ; 12: 1435708, 2024.
Article in English | MEDLINE | ID: mdl-39156975

ABSTRACT

Introduction: Breast cancer (BC) is the leading cause of death among women, primarily due to its potential for metastasis. As BC progresses, the extracellular matrix (ECM) produces more type-I collagen, resulting in increased stiffness. This alteration influences cellular behaviors such as migration, invasion, and metastasis. Specifically, cancer cells undergo changes in gene expression that initially promote an epithelial-to-mesenchymal transition (EMT) and subsequently, a transition from a mesenchymal to an amoeboid (MAT) migration mode. In this way, cancer cells can migrate more easily through the stiffer microenvironment. Despite their importance, understanding MATs remains challenging due to the difficulty of replicating in vitro the conditions for cell migration that are observed in vivo. Methods: To address this challenge, we developed a three-dimensional (3D) growth system that replicates the different matrix properties observed during the progression of a breast tumor. We used this model to study the migration and invasion of the Triple-Negative BC (TNBC) cell line MDA-MB-231, which is particularly subject to metastasis. Results: Our results indicate that denser collagen matrices present a reduction in porosity, collagen fiber size, and collagen fiber orientation, which are associated with the transition of cells to a rounder morphology with bleb-like protrusions. We quantified how this transition is associated with a more persistent migration, an enhanced invasion capacity, and a reduced secretion of matrix metalloproteinases. Discussion: Our findings suggest that the proposed 3D growth conditions (especially those with high collagen concentrations) mimic key features of MATs, providing a new platform to study the physiology of migratory transitions and their role in BC progression.

3.
Front Pharmacol ; 15: 1432851, 2024.
Article in English | MEDLINE | ID: mdl-39114357

ABSTRACT

The xenobiotic transporter ABCC4/MRP4 is highly expressed in pancreatic ductal adenocarcinoma (PDAC) and correlates with a more aggressive phenotype and metastatic propensity. Here, we show that ABCC4 promotes epithelial-mesenchymal transition (EMT) in PDAC, a hallmark process involving the acquisition of mesenchymal traits by epithelial cells, enhanced cell motility, and chemoresistance. Modulation of ABCC4 levels in PANC-1 and BxPC-3 cell lines resulted in the dysregulation of genes present in the EMT signature. Bioinformatic analysis on several cohorts including tumor samples, primary patient-derived cultured cells, patient-derived xenografts, and cell lines, revealed a positive correlation between ABCC4 expression and EMT markers. We also characterized the ABCC4 cistrome and identified four candidate clusters in the distal promoter and intron one that showed differential binding of pro-epithelial FOXA1 and pro-mesenchymal GATA2 transcription factors in low ABCC4-expressing HPAF-II and high ABCC4-expressing PANC-1 xenografts. HPAF-II xenografts showed exclusive binding of FOXA1, and PANC-1 xenografts exclusive binding of GATA2, at ABCC4 clusters, consistent with their low and high EMT phenotype respectively. Our results underscore ABCC4/MRP4 as a valuable prognostic marker and a potential therapeutic target to treat PDAC subtypes with prominent EMT features, such as the basal-like/squamous subtype, characterized by worse prognosis and no effective therapies.

4.
Biology (Basel) ; 13(7)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39056658

ABSTRACT

Breast cancer is the most prevalent cancer among women worldwide. Therapeutic strategies to control tumors and metastasis are still challenging. Three-dimensional (3D) spheroid-type systems more accurately replicate the features of tumors in vivo, working as a better platform for performing therapeutic response analysis. This work aimed to characterize the epithelial-mesenchymal transition and doxorubicin (dox) response in a mammary tumor spheroid (MTS) model. We evaluated the doxorubicin treatment effect on MCF-7 spheroid diameter, cell viability, death, migration and proteins involved in the epithelial-mesenchymal transition (EMT) process. Spheroids were also produced from tumors formed from 4T1 and 67NR cell lines. MTSs mimicked avascular tumor characteristics, exhibited adherens junction proteins and independently produced their own extracellular matrix. Our spheroid model supports the 3D culturing of cells isolated from mice mammary tumors. Through the migration assay, we verified a reduction in E-cadherin expression and an increase in vimentin expression as the cells became more distant from spheroids. Dox promoted cytotoxicity in MTSs and inhibited cell migration and the EMT process. These results suggest, for the first time, that this model reproduces aspects of the EMT process and describes the potential of dox in inhibiting the metastatic process, which can be further explored.

5.
Genes (Basel) ; 15(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927713

ABSTRACT

Members of the SOX (SRY-related HMG box) family of transcription factors are crucial for embryonic development and cell fate determination. This review investigates the role of SOX3 in cancer, as aberrations in SOX3 expression have been implicated in several cancers, including osteosarcoma, breast, esophageal, endometrial, ovarian, gastric, hepatocellular carcinomas, glioblastoma, and leukemia. These dysregulations modulate key cancer outcomes such as apoptosis, epithelial-mesenchymal transition (EMT), invasion, migration, cell cycle, and proliferation, contributing to cancer development. SOX3 exhibits varied expression patterns correlated with clinicopathological parameters in diverse tumor types. This review aims to elucidate the nuanced role of SOX3 in tumorigenesis, correlating its expression with clinical and pathological characteristics in cancer patients and cellular modelsBy providing a comprehensive exploration of SOX3 involvement in cancer, this review underscores the multifaceted role of SOX3 across distinct tumor types. The complexity uncovered in SOX3 function emphasizes the need for further research to unravel its full potential in cancer therapeutics.


Subject(s)
Carcinogenesis , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Carcinogenesis/genetics , Epithelial-Mesenchymal Transition/genetics , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Animals
6.
Arch Oral Biol ; 165: 106017, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852529

ABSTRACT

OBJECTIVE: To evaluate and compare the expression of E-cadherin, Snail1 and Twist1 in pleomorphic adenomas (PAs), adenoid cystic carcinomas (AdCCa) and carcinoma ex-pleomorphic adenomas (CaexPA) of salivary glands, as well as investigate possible associations with clinicopathological parameters. STUDY DESIGN: E-cadherin, Snail1 and Twist1 antibody immunostaining were analyzed semiquantitatively in 20 PAs, 20 AdCCas and 10 CaexPAs. Cases were classified as low and high expression for analysis of the association with clinicopathological parameters. RESULTS: Compared to PAs, AdCCas and CaexPAs exhibited higher nuclear expression of Snail1 (p = 0.021 and p = 0.028, respectively) and Twist1 (p = 0.009 and p = 0.001). Membranous and cytoplasmic expression of E-cadherin were positively correlated in PAs, AdCCas and CaexPAs (r = 0.645, p = 0.002; r = 0.824, p < 0.001; r = 0.677, p = 0.031). In PAs, positive correlation was found between nuclear expression of Snail1 and membrane expression of E-cadherin (r = 0.634; p = 0.003), as well as between nuclear expression of Snail1 and Twist1 (r = 0.580; p = 0.007). Negative correlations were detected between membrane expression of E-cadherin and cytoplasmic expression of Snail1 in AdCCas (r = - 0.489; p = 0.029). CONCLUSIONS: E-cadherin, Twist1, and Snail1 may participate in modulating events related to cell differentiation and adhesion in PAs and to biological behavior in AdCCas and CaexPAs, which indicates the involvement of EMT in these processes. Furthermore, the expression of these proteins in these carcinomas may reflect the plasticity feature of EMT.


Subject(s)
Adenoma, Pleomorphic , Cadherins , Carcinoma, Adenoid Cystic , Epithelial-Mesenchymal Transition , Nuclear Proteins , Salivary Gland Neoplasms , Snail Family Transcription Factors , Twist-Related Protein 1 , Humans , Salivary Gland Neoplasms/pathology , Salivary Gland Neoplasms/metabolism , Snail Family Transcription Factors/metabolism , Cadherins/metabolism , Female , Male , Twist-Related Protein 1/metabolism , Middle Aged , Carcinoma, Adenoid Cystic/pathology , Carcinoma, Adenoid Cystic/metabolism , Nuclear Proteins/metabolism , Adult , Adenoma, Pleomorphic/metabolism , Adenoma, Pleomorphic/pathology , Aged , Twist Transcription Factors/metabolism , Immunohistochemistry , Transcription Factors/metabolism , Biomarkers, Tumor/metabolism
7.
Head Neck Pathol ; 18(1): 40, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727794

ABSTRACT

BACKGROUND: Odontogenic lesions constitute a heterogeneous group of lesions. CLIC4 protein regulates different cellular processes, including epithelial-mesenchymal transition and fibroblast-myofibroblast transdifferentiation. This study analyzed CLIC4, E-cadherin, Vimentin, and α-SMA immunoexpression in epithelial odontogenic lesions that exhibit different biological behavior. METHODS: It analyzed the immunoexpression of CLIC4, E-cadherin, and Vimentin in the epithelial cells, as well as CLIC4 and α-SMA in the mesenchymal cells, of ameloblastoma (AM) (n = 16), odontogenic keratocyst (OKC) (n = 20), and adenomatoid odontogenic tumor (AOT) (n = 8). Immunoexpressions were categorized as score 0 (0% positive cells), 1 (< 25%), 2 (≥ 25% - < 50%), 3 (≥ 50% - < 75%), or 4 (≥ 75%). RESULTS: Cytoplasmic CLIC4 immunoexpression was higher in AM and AOT (p < 0.001) epithelial cells. Nuclear-cytoplasmic CLIC4 was higher in OKC's epithelial lining (p < 0.001). Membrane (p = 0.012) and membrane-cytoplasmic (p < 0.001) E-cadherin immunoexpression were higher in OKC, while cytoplasmic E-cadherin expression was higher in AM and AOT (p < 0.001). Vimentin immunoexpression was higher in AM and AOT (p < 0.001). Stromal CLIC4 was higher in AM and OKC (p = 0.008). Similarly, α-SMA immunoexpression was higher in AM and OKC (p = 0.037). Correlations in these proteins' immunoexpression were observed in AM and OKC (p < 0.05). CONCLUSIONS: CLIC4 seems to regulate the epithelial-mesenchymal transition, modifying E-cadherin and Vimentin expression. In mesenchymal cells, CLIC4 may play a role in fibroblast-myofibroblast transdifferentiation. CLIC4 may be associated with epithelial odontogenic lesions with aggressive biological behavior.


Subject(s)
Ameloblastoma , Cadherins , Chloride Channels , Epithelial-Mesenchymal Transition , Odontogenic Tumors , Vimentin , Humans , Epithelial-Mesenchymal Transition/physiology , Chloride Channels/metabolism , Chloride Channels/analysis , Cadherins/metabolism , Odontogenic Tumors/pathology , Odontogenic Tumors/metabolism , Ameloblastoma/pathology , Ameloblastoma/metabolism , Vimentin/metabolism , Adult , Female , Odontogenic Cysts/pathology , Odontogenic Cysts/metabolism , Male , Actins/metabolism , Young Adult , Middle Aged , Antigens, CD/metabolism , Adolescent
8.
Sci Rep ; 14(1): 10583, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719848

ABSTRACT

Identifying marker combinations for robust prognostic validation in primary tumour compartments remains challenging. We aimed to assess the prognostic significance of CSC markers (ALDH1, CD44, p75NTR, BMI-1) and E-cadherin biomarkers in OSCC. We analysed 94 primary OSCC and 67 metastatic lymph node samples, including central and invasive tumour fronts (ITF), along with clinicopathological data. We observed an increase in ALDH1+/CD44+/BMI-1- tumour cells in metastatic lesions compared to primary tumours. Multivariate analysis highlighted that elevated p75NTR levels (at ITF) and reduced E-cadherin expression (at the tumour centre) independently predicted metastasis, whilst ALDH1high exhibited independent predictive lower survival at the ITF, surpassing the efficacy of traditional tumour staging. Then, specifically at the ITF, profiles characterized by CSChighE-cadherinlow (ALDH1highp75NTRhighE-cadherinlow) and CSCintermediateE-cadherinlow (ALDH1 or p75NTRhighE-cadherinlow) were significantly associated with worsened overall survival and increased likelihood of metastasis in OSCC patients. In summary, our study revealed diverse tumour cell profiles in OSCC tissues, with varying CSC and E-cadherin marker patterns across primary tumours and metastatic sites. Given the pivotal role of reduced survival rates as an indicator of unfavourable prognosis, the immunohistochemistry profile identified as CSChighE-cadherinlow at the ITF of primary tumours, emerges as a preferred prognostic marker closely linked to adverse outcomes in OSCC.


Subject(s)
Aldehyde Dehydrogenase 1 Family , Biomarkers, Tumor , Cadherins , Carcinoma, Squamous Cell , Mouth Neoplasms , Adult , Aged , Female , Humans , Male , Middle Aged , Aldehyde Dehydrogenase 1 Family/metabolism , Biomarkers, Tumor/metabolism , Cadherins/metabolism , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/mortality , Hyaluronan Receptors/metabolism , Immunohistochemistry , Lymphatic Metastasis , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/mortality , Mouth Neoplasms/diagnosis , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Nerve Tissue Proteins/metabolism , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 1/genetics , Prognosis , Receptors, Nerve Growth Factor/metabolism , Retinal Dehydrogenase/metabolism
9.
Oral Dis ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764396

ABSTRACT

OBJECTIVES: To isolate cancer stem cells (CSC) from a metastatic oral squamous cell carcinoma (OSCC) cell line and investigate their in vitro and in vivo phenotypic characteristics. MATERIALS AND METHODS: Subpopulations with individual staining intensities for CD44 and CD326 were isolated from the OSCC cell line LN-1A by FACS: CD44Low/CD326- (CSC-M1), CD44Low/CD326High (CSC-E), and CD44High/CD326- (CSC-M2). Proliferation, clonogenic potential, adhesion, migration, epithelial-mesenchymal transition markers, and sensitivity to cisplatin and TVB-3166 were analyzed in vitro. Tumor formation and metastasis were assessed by subcutaneous and orthotopic inoculations into BALB/c mice. RESULTS: E-cadherin levels were higher in CSC-E cells while vimentin and Slug more produced by CSC-M2 cells. CSC-M1 and CSC-M2 subpopulations showed higher proliferation, produced more colonies, and have stronger adhesion to the extracellular matrix. All cell lines established tumors; however, CSC-E and CSC-M2 formed larger masses and produced more metastases. CONCLUSION: The CSC subpopulations here described show increased cancer capabilities in vitro, tumorigenic and metastatic potential in vivo, and may be exploited in the search for novel therapeutic targets for OSCC.

10.
Oncol Rep ; 51(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38639184

ABSTRACT

The complex evolution of genetic alterations in cancer that occurs in vivo is a selective process involving numerous factors and mechanisms. Chemotherapeutic agents that prevent the growth and spread of cancer cells induce selective pressure, leading to rapid artificial selection of resistant subclones. This rapid evolution is possible because antineoplastic drugs promote alterations in tumor­cell metabolism, thus creating a bottleneck event. The few resistant cells that survive in this new environment obtain differential reproductive success that enables them to pass down the newly selected resistant gene pool. The present review aims to summarize key findings of tumor evolution, epithelial­mesenchymal transition and resistance to cetuximab therapy in head and neck squamous cell carcinoma.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Humans , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cetuximab/pharmacology , Cetuximab/therapeutic use , Drug Resistance, Neoplasm/genetics , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics
11.
J Oral Pathol Med ; 53(4): 246-257, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38503722

ABSTRACT

BACKGROUND: Cholesterol in cell membranes is crucial for cell signaling, adhesion, and migration. Membranes feature cholesterol-rich caveolae with caveolin proteins, playing roles in epithelial-mesenchymal transition and cancer progression. Despite elevated cholesterol levels in tumors, its precise function and the effects of its depletion in oral squamous cell carcinoma remain unclear. The aim of this study was to evaluate the influence of cholesterol depletion in oral squamous cell carcinoma cell line and epithelial-mesenchymal transition process. METHODS: Cholesterol depletion was induced on SCC-9 cells by methyl-ß-cyclodextrin and cell viability, proliferation, apoptosis, and colony formation capacities were evaluated. Gene and protein expressions were evaluated by reverse transcription polymerase chain reaction (RT-qPCR) and Western Blot, respectively, and cell sublocalization was assessed by immunofluorescence. RESULTS: Cholesterol depletion resulted in alteration of oral squamous cell carcinoma cell morphology at different concentrations of methyl-ß-cyclodextrin, as well as decreased cell proliferation and viability rates. Analysis of CAV1 transcript expression revealed increased gene expression in the treated SCC-9 during the 24 h period, at different concentrations of methyl-ß-cyclodextrin: 5 , 7.5, 10, and 15 mM, in relation to parental SCC-9. CAV1 protein expression was increased, with subsequent dose-dependent decrease. A statistically significant difference was observed in samples treated with 5 mM of methyl-ß-cyclodextrin (p = 0.02, Kruskal-Wallis test). The immunofluorescence assay showed lower cytoplasmic and membrane labeling intensity in the treated samples for CAV1. CONCLUSION: These findings indicate the modulation of cholesterol as a possible mechanism underlying the regulation of these molecules and activation of epithelial-mesenchymal transition in oral squamous cell carcinoma.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck , Mouth Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Cholesterol , Epithelial-Mesenchymal Transition/genetics , Cell Movement
12.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542313

ABSTRACT

The RE-1 silencing transcription factor (REST) is a repressor factor related to neuroendocrine prostate cancer (PCa) (NEPC), a poor prognostic stage mainly associated with castration-resistant PCa (CRPC). NEPC is associated with cell transdifferentiation and the epithelial-mesenchymal transition (EMT) in cells undergoing androgen deprivation therapy (ADT) and enzalutamide (ENZ). The effect of REST overexpression in the 22rv1 cell line (xenograft-derived prostate cancer) on EMT, migration, invasion, and the viability for ENZ was evaluated. EMT genes, Twist and Zeb1, and the androgen receptor (AR) were evaluated through an RT-qPCR and Western blot in nuclear and cytosolic fractions of REST-overexpressing 22rv1 cells (22rv1-REST). The migratory and invasive capacities of 22rv1-REST cells were evaluated via Transwell® assays with and without Matrigel, respectively, and their viability for enzalutamide via MTT assays. The 22rv1-REST cells showed decreased nuclear levels of Twist, Zeb1, and AR, and a decreased migration and invasion and a lower viability for ENZ compared to the control. Results were expressed as the mean + SD of three independent experiments (Mann-Whitney U test, Kruskal-Wallis, Tukey test). REST behaves like a tumor suppressor, decreasing the aggressiveness of 22rv1 cells, probably through the repression of EMT and the neuroendocrine phenotype. Furthermore, REST could represent a response marker to ENZ in PCa patients.


Subject(s)
Benzamides , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/metabolism , Androgen Antagonists , Transcription Factors , Cell Line, Tumor , Receptors, Androgen/metabolism , Epithelial-Mesenchymal Transition/genetics , Prostatic Neoplasms, Castration-Resistant/pathology
13.
Rev Invest Clin ; 76(1): 45-59, 2024.
Article in English | MEDLINE | ID: mdl-38442372

ABSTRACT

Background: Triple-negative breast cancer (TNBC) is a subtype of breast cancer (BC) that lacks receptors for targeted therapy. Deeper insight into the molecular mechanisms regulating TNBC metastasis is urgently needed. The epithelial-mesenchymal transition process facilitates the metastasis of neighboring epithelial tumor cells. Protein kinase, membrane-associated tyrosine/threonine 1 (PKMYT1), a member of the Wee family of protein kinases, is upregulated in BC, and its high expression predicts poor prognosis in BC patients. Notch signaling activation is a pathognomonic feature of TNBC. PKMYT1 has been found to induce EMT in non-small cell lung cancer by activating Notch signaling. However, whether PKMYT1 exerts effects on TNBC progression by regulating Notch signaling remains unknown. Objectives: The objective of this study was to investigate whether PKMYT1 exerts effects on TNBC progression by regulating Notch signaling. Methods: Fifty cases of surgically resected BC samples (tumor and adjacent non-tumor tissue samples) were collected from patients diagnosed with BC. We measured the expression of PKMYT1 in clinical samples with real-time quantitative polymerase chain reaction (RT-qPCR). For in vitro analysis, RT-qPCR and Western blotting were conducted to evaluate PKMYT1 expression in TNBC cells. Then, the viability, migration, and invasion of TNBC cells were detected by cell counting kit-8 assays, wound healing assays, and Transwell assays. The EMT event was examined by evaluating the levels of EMT-associated proteins. For in vivo analysis, xenograft models in nude mice were established to explore PKMYT1 roles. E-cadherin and Ki67 expression in xenograft models were estimated by immunohistochemistry staining. Hematoxylin and eosin staining was performed to assess tumor metastasis. The underlying mechanisms by which PKMYT1 affected the malignant phenotypes of TNBC cells were explored by Western blotting measuring the pathway-associated proteins. Results: PKMYT1 was upregulated in BC tissues and cells, and its knockdown prevented cell proliferation, migration, invasion, and EMT event in TNBC. Mechanistically, Notch signaling was inactivated by PKMYT1 depletion, and Notch activation abolished the PKMYT1 silencing-induced inhibition in the malignant phenotypes of TNBC cells. For in vivo analysis, PKMYT1 knockdown inhibited tumorigenesis and metastasis of TNBC. Conclusion: PKMYT1 promotes EMT, proliferation, migration, and invasion of TNBC cells and facilitates tumor growth and metastasis by activating Notch signaling.


Subject(s)
Epithelial-Mesenchymal Transition , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Triple Negative Breast Neoplasms , Animals , Humans , Mice , Membrane Proteins/metabolism , Mice, Nude , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
14.
Biochim Biophys Acta Rev Cancer ; 1879(2): 189087, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395237

ABSTRACT

Cofilin-1 (CFL1) modulates dynamic actin networks by severing and enhancing depolymerization. The upregulation of cofilin-1 expression in several cancer types is associated with tumor progression and metastasis. However, recent discoveries indicated relevant cofilin-1 functions under oxidative stress conditions, interplaying with mitochondrial dynamics, and apoptosis networks. In this scenario, these emerging roles might impact the response to clinical therapy and could be used to enhance treatment efficacy. Here, we highlight new perspectives of cofilin-1 in the therapy resistance context and discussed how cofilin-1 is involved in these events, exploring aspects of its contribution to therapeutic resistance. We also provide an analysis of CFL1 expression in several tumors predicting survival. Therefore, understanding how exactly coflin-1 plays, particularly in therapy resistance, may pave the way to the development of treatment strategies and improvement of patient survival.


Subject(s)
Actins , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics
16.
J Oral Pathol Med ; 53(3): 193-200, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38351435

ABSTRACT

BACKGROUND: Transcription factors are important in the epithelial-mesenchymal transition process and are possibly related to the development of a more invasive tumor phenotype. Thus, the objective of this study was to analyze the expression and identify the localization of cellular markers related to the epithelial-mesenchymal transition process in salivary gland tumors. STUDY DESIGN: The expression and localization of E-CADERIN, N-CADERIN, SLUG, SNAIL, and TWIST were evaluated, using immunohistochemistry, in 48 salivary gland tumors, being 17 pleomorphic adenomas (PA), 14 adenoid cystic carcinomas (ACC), and 17 mucoepidermoid carcinomas (MEC). these proteins were compared to clinical and histopathologic parameters. normal gland tissues were included for immunohistochemical comparisons. RESULTS: ACC and MEC cases showed higher expression of SNAIL compared to PA. MEC showed high expression of SLUG and TWIST. Low expression of N-CADHERIN, SNAIL, and TWIST in ACC was frequent in T3 and T4. High expression of TWIST in MEC was more frequent at age ≥ 40 years A positive correlation was only observed between N-cadherin/SNAIL in ACC, between SNAIL/TWIST in MEC, and between SLUG/TWIST in PA. CONCLUSION: This study provided insight into EMT-related proteins (E-cadherin, N-cadherin, SNAIL, SLUG, and TWIST) and their contribution to the maintenance of morphogenesis and the development of the salivary gland tumors and showed a positive correlation among N-CADHERIN/SNAIL in ACC and SNAIL/TWIST in MEC.


Subject(s)
Adenoma, Pleomorphic , Carcinoma, Adenoid Cystic , Carcinoma, Mucoepidermoid , Salivary Gland Neoplasms , Humans , Adult , Snail Family Transcription Factors , Nuclear Proteins/genetics , Salivary Gland Neoplasms/pathology , Carcinoma, Adenoid Cystic/pathology , Carcinoma, Mucoepidermoid/pathology , Adenoma, Pleomorphic/pathology , Cadherins/genetics , Epithelial-Mesenchymal Transition/genetics , Biomarkers, Tumor , Twist-Related Protein 1/genetics
17.
Rev. invest. clín ; Rev. invest. clín;76(1): 45-59, Jan.-Feb. 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1560128

ABSTRACT

ABSTRACT Background: Triple-negative breast cancer (TNBC) is a subtype of breast cancer (BC) that lacks receptors for targeted therapy. Deeper insight into the molecular mechanisms regulating TNBC metastasis is urgently needed. The epithelial-mesenchymal transition process facilitates the metastasis of neighboring epithelial tumor cells. Protein kinase, membrane-associated tyrosine/threonine 1 (PKMYT1), a member of the Wee family of protein kinases, is upregulated in BC, and its high expression predicts poor prognosis in BC patients. Notch signaling activation is a pathognomonic feature of TNBC. PKMYT1 has been found to induce EMT in non-small cell lung cancer by activating Notch signaling. However, whether PKMYT1 exerts effects on TNBC progression by regulating Notch signaling remains unknown. Objectives: The objective of this study was to investigate whether PKMYT1 exerts effects on TNBC progression by regulating Notch signaling. Methods: Fifty cases of surgically resected BC samples (tumor and adjacent non-tumor tissue samples) were collected from patients diagnosed with BC. We measured the expression of PKMYT1 in clinical samples with real-time quantitative polymerase chain reaction (RT-qPCR). For in vitro analysis, RT-qPCR and Western blotting were conducted to evaluate PKMYT1 expression in TNBC cells. Then, the viability, migration, and invasion of TNBC cells were detected by cell counting kit-8 assays, wound healing assays, and Transwell assays. The EMT event was examined by evaluating the levels of EMT-associated proteins. For in vivo analysis, xenograft models in nude mice were established to explore PKMYT1 roles. E-cadherin and Ki67 expression in xenograft models were estimated by immunohistochemistry staining. Hematoxylin and eosin staining was performed to assess tumor metastasis. The underlying mechanisms by which PKMYT1 affected the malignant phenotypes of TNBC cells were explored by Western blotting measuring the pathway-associated proteins. Results: PKMYT1 was upregulated in BC tissues and cells, and its knockdown prevented cell proliferation, migration, invasion, and EMT event in TNBC. Mechanistically, Notch signaling was inactivated by PKMYT1 depletion, and Notch activation abolished the PKMYT1 silencing-induced inhibition in the malignant phenotypes of TNBC cells. For in vivo analysis, PKMYT1 knockdown inhibited tumorigenesis and metastasis of TNBC. Conclusion: PKMYT1 promotes EMT, proliferation, migration, and invasion of TNBC cells and facilitates tumor growth and metastasis by activating Notch signaling.

18.
Clin Transl Oncol ; 26(4): 951-965, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37848695

ABSTRACT

BACKGROUND: Patients with pancreatic cancer have a dismal prognosis due to tumor cell infiltration and metastasis. Many reports have documented that EMT and PI3K-AKT-mTOR axis control pancreatic cancer cell infiltration and metastasis. Chloroxine is an artificially synthesized antibacterial compound that demonstrated anti-pancreatic cancer effects in our previous drug-screening trial. We have explored the impact of chloroxine on pancreatic cancer growth, infiltration, migration, and apoptosis. METHODS: The proliferation of pancreatic cancer cell lines (PCCs) treated with chloroxine was assessed through real-time cell analysis (RTCA), colony formation assay, CCK-8 assay, as well as immunofluorescence. Chloroxine effects on the infiltrative and migratory capacities of PCCs were assessed via Transwell invasion and scratch experiments. To assess the contents of EMT- and apoptosis-associated proteins in tumor cells, we adopted Western immunoblotting as well as immunofluorescence assays, and flow cytometry to determine chloroxine effects on PCCs apoptosis. The in vivo chloroxine antineoplastic effects were explored in nude mice xenografts. RESULTS: Chloroxine repressed pancreatic cancer cell growth, migration, and infiltration in vitro, as well as in vivo, and stimulated apoptosis of the PCCs. Chloroxine appeared to inhibit PCC growth by Ki67 downregulation; this targeted and inhibited aberrant stimulation of the PI3K-AKT-mTOR signaling cascade, triggered apoptosis in PCC via mitochondria-dependent apoptosis, and modulated the EMT to inhibit PCC infiltration and migration. CONCLUSIONS: Chloroxine targeted and inhibited the PI3K-AKT-mTOR cascade to repress PCCs growth, migration, as well as invasion, and triggered cellular apoptosis. Therefore, chloroxine may constitute a potential antineoplastic drug for the treatment of pancreatic cancer.


Subject(s)
Antineoplastic Agents , Chloroquinolinols , Pancreatic Neoplasms , Animals , Humans , Mice , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chloroquinolinols/pharmacology , Chloroquinolinols/therapeutic use , Mice, Nude , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
19.
Ann Hepatol ; 29(1): 101160, 2024.
Article in English | MEDLINE | ID: mdl-37774837

ABSTRACT

INTRODUCTION AND OBJECTIVES: Cavin1 is a cell membrane caveolin, with controversial function in different tumors. Meanwhile, the role of Cavin1 in hepatocellular carcinoma (HCC) progression remains unclear. In this study, we attempted to elucidate the significance of Cavin1 in HCC occurrence and progression. MATERIALS AND METHODS: Cavin1 content was examined in HCC tissues and paired adjacent normal liver tissues by qRT-PCR and IHC among 81 HCC patients. The Cavin1-mediated regulation of HCC proliferation and metastasis was assessed through in vitro and in vivo experiments. Finally, using GSEA, we found out Cavin1 could be a potential regulator of the Wnt pathway. The alterations of the Wnt pathway-related proteins were identified by Western Blot analysis. RESULTS: Cavin1 was lower expressed in HCC, which implied poor survival outcomes in HCC patients. Phenotypic experiments revealed that Cavin1 strongly suppressed HCC proliferation and migration in vitro and in vivo. Besides, altered epithelial-mesenchymal transition (EMT)-related protein expressions were detected. Based on our GSEA analysis, Cavin1 activated the Wnt pathway, and Western Blot analysis revealed diminished ß-catenin, c-Myc, and MMP9 contents upon Cavin1 overexpression. CONCLUSIONS: Cavin1 suppresses HCC progression by modulating HCC proliferation and migration via inhibiting the Wnt/ß-catenin axis activation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , beta Catenin/genetics , beta Catenin/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Wnt Signaling Pathway
20.
Biol Res ; 56(1): 64, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38041162

ABSTRACT

BACKGROUND: Asthma is a heterogenous disease that characterized by airway remodeling. SYVN1 (Synoviolin 1) acts as an E3 ligase to mediate the suppression of endoplasmic reticulum (ER) stress through ubiquitination and degradation. However, the role of SYVN1 in the pathogenesis of asthma is unclear. RESULTS: In the present study, an ovalbumin (OVA)-induced murine model was used to evaluate the effect of SYVN1 on asthma. An increase in SYVN1 expression was observed in the lungs of mice after OVA induction. Overexpression of SYVN1 attenuated airway inflammation, goblet cell hyperplasia and collagen deposition induced by OVA. The increased ER stress-related proteins and altered epithelial-mesenchymal transition (EMT) markers were also inhibited by SYVN1 in vivo. Next, TGF-ß1-induced bronchial epithelial cells (BEAS-2B) were used to induce EMT process in vitro. Results showed that TGF-ß1 stimulation downregulated the expression of SYVN1, and SYVN1 overexpression prevented ER stress response and EMT process in TGF-ß1-induced cells. In addition, we identified that SYVN1 bound to SIRT2 and promoted its ubiquitination and degradation. SIRT2 overexpression abrogated the protection of SYVN1 on ER stress and EMT in vitro. CONCLUSIONS: These data suggest that SYVN1 suppresses ER stress through the ubiquitination and degradation of SIRT2 to block EMT process, thereby protecting against airway remodeling in asthma.


Subject(s)
Asthma , Transforming Growth Factor beta1 , Animals , Mice , Airway Remodeling , Asthma/chemically induced , Asthma/metabolism , Asthma/pathology , Epithelial-Mesenchymal Transition , Sirtuin 2/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL