Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 521
Filter
1.
J Am Coll Cardiol ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39217549

ABSTRACT

BACKGROUND: Recurrent pericarditis (RP) is a complex condition associated with significant morbidity. Prior studies have evaluated which variables are associated with clinical remission. However, there is currently no established risk-stratification model for predicting outcomes in these patients. OBJECTIVES: We developed a risk stratification model that can predict long-term outcomes in patients with RP and enable identification of patients with characteristics that portend poor outcomes. METHODS: We retrospectively studied a total of 365 consecutive patients with RP from 2012 to 2019. The primary outcome was clinical remission (CR), defined as cessation of all anti-inflammatory therapy with complete resolution of symptoms. Five machine learning survival models were used to calculate the likelihood of CR within 5 years and stratify patients into high-risk, intermediate-risk, and low-risk groups. RESULTS: Among the cohort, the mean age was 46 ± 15 years, and 205 (56%) were women. CR was achieved in 118 (32%) patients. The final model included steroid dependency, total number of recurrences, pericardial late gadolinium enhancement, age, etiology, sex, ejection fraction, and heart rate as the most important parameters. The model predicted the outcome with a C-index of 0.800 on the test set and exhibited a significant ability in stratification of patients into low-risk, intermediate-risk, and high-risk groups (log-rank test; P < 0.0001). CONCLUSIONS: We developed a novel risk-stratification model for predicting CR in RP. Our model can also aid in stratifying patients, with high discriminative ability. The use of an explainable machine learning model can aid physicians in making individualized treatment decision in RP patients.

3.
Geohealth ; 8(9): e2024GH001027, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39234601

ABSTRACT

Childhood stunting is a serious public health concern in Rwanda. Although stunting causes have been documented, we still lack a more in-depth understanding of their local factors at a more detailed geographic level. We cross-sectionally examined 615 height-for-age prevalence observations in the Northern Province of Rwanda, linked with their related covariates, to explore the spatial heterogeneity in the low height-for-age prevalence by fitting linear and non-linear spatial regression models and explainable machine learning. Specifically, complemented with generalized additive models, we fitted the ordinary least squares (OLS), a standard geographically weighted regression (GWR), and multiscale geographically weighted regression (MGWR) models to characterize the imbalanced distribution of stunting risk factors and uncover the nonlinear effect of significant predictors, explaining the height-for-age variations. The results reveal that 27% of the children measured were stunted, and that likelihood was found to be higher in the districts of Musanze, Gakenke, and Gicumbi. The local MGWR model outperformed the ordinary GWR and OLS, with coefficients of determination of 0.89, 0.84, and 0.25, respectively. At specific ranges, the study shows that height-for-age decreases with an increase in the number of days a child was left alone, elevation, and rainfall. In contrast, land surface temperature is positively associated with height-for-age. However, variables like the normalized difference vegetation index, slope, soil fertility, and urbanicity exhibited bell-shaped and U-shaped non-linear associations with the height-for-age prevalence. Identifying areas with the highest rates of stunting will help determine the most effective measures for reducing the burden of undernutrition.

4.
J Environ Manage ; 370: 122361, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39255573

ABSTRACT

This research aims to use the power of geospatial artificial intelligence (GeoAI), employing the categorical boosting (CatBoost) machine learning model in conjunction with two metaheuristic algorithms, the firefly algorithm (CatBoost-FA) and the fruit fly optimization algorithm (CatBoost-FOA), to spatially assess and map noise pollution prone areas in Tehran city, Iran. To spatially model areas susceptible to noise pollution, we established a comprehensive spatial database encompassing data for the annual average Leq (equivalent continuous sound level) from 2019 to 2022. This database was enriched with critical spatial criteria influencing noise pollution, including urban land use, traffic volume, population density, and normalized difference vegetation index (NDVI). Our study evaluated the predictive accuracy of these models using key performance metrics, including root mean square error (RMSE), mean absolute error (MAE), and receiver operating characteristic (ROC) indices. The results demonstrated the superior performance of the CatBoost-FA algorithm, with RMSE and MAE values of 0.159 and 0.114 for the training data and 0.437 and 0.371 for the test data, outperforming both the CatBoost-FOA and CatBoost models. ROC analysis further confirmed the efficacy of the models, achieving an accuracy of 0.897, CatBoost-FOA with an accuracy of 0.871, and CatBoost with an accuracy of 0.846, highlighting their robust modeling capabilities. Additionally, we employed an explainable artificial intelligence (XAI) approach, utilizing the SHAP (Shapley Additive Explanations) method to interpret the underlying mechanisms of our models. The SHAP results revealed the significant influence of various factors on noise-pollution-prone areas, with airport, commercial, and administrative zones emerging as pivotal contributors.

5.
Clin Neurophysiol ; 167: 14-25, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39265288

ABSTRACT

OBJECTIVE: Clinical visual intraoperative electrocorticography (ioECoG) reading intends to localize epileptic tissue and improve epilepsy surgery outcome. We aimed to understand whether machine learning (ML) could complement ioECoG reading, how subgroups affected performance, and which ioECoG features were most important. METHODS: We included 91 ioECoG-guided epilepsy surgery patients with Engel 1A outcome. We allocated 71 training and 20 test set patients. We trained an extra trees classifier (ETC) with 14 spectral features to classify ioECoG channels as covering resected or non-resected tissue. We compared the ETC's performance with clinical ioECoG reading and assessed whether patient subgroups affected performance. Explainable artificial intelligence (xAI) unveiled the most important ioECoG features learnt by the ETC. RESULTS: The ETC outperformed clinical reading in five test set patients, was inferior in six, and both were inconclusive in nine. The ETC performed best in the tumor subgroup (area under ROC curve: 0.84 [95%CI 0.79-0.89]). xAI revealed predictors of resected (relative theta, alpha, and fast ripple power) and non-resected tissue (relative beta and gamma power). CONCLUSIONS: Combinations of subtle spectral ioECoG changes, imperceptible by the human eye, can aid healthy and pathological tissue discrimination. SIGNIFICANCE: ML with spectral ioECoG features can support, rather than replace, clinical ioECoG reading, particularly in tumors.

6.
J Hazard Mater ; 480: 135787, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39265398

ABSTRACT

Antibiotics are misused and discharged into environmental water, posing a constant potential threat to the ecosystem. Utilising plasma's physical and chemical effects to remove antibiotics has emerged as a promising wastewater treatment technology. However, the complexity and high cost of reactor configurations represent significant limitations to the practical application of this technology. Furthermore, evaluating the degradation efficiency of antibiotics necessitates using costly and sophisticated testing instruments, coupled with time-consuming and labour-intensive experiments. The present study developed a generalised model using machine learning algorithms to predict the removal efficiency of antibiotics by a plasma system. Of the eight machine learning algorithms constructed, the ensemble model XGBoost exhibited the highest prediction accuracy, as indicated by a Pearson correlation coefficient of 0.943. This correlation indicates a strong relationship between the predicted removal rates and the experimental values. Moreover, the accuracy of the prediction was enhanced through the utilisation of a multi-model stacking approach. A further quantitative assessment of the key factors affecting the efficiency of the plasma process, and their synergistic effects, is provided by the interpretable analysis of the model's behaviour. It is anticipated that the results will facilitate the design of efficient plasma systems, reduce the need for extensive experimental screening, and improve practical applications in the removal of antibiotic contamination. This provides an informative view of the applications of plasma technology, opening the way for new environmental research questions.

7.
Crit Care ; 28(1): 301, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39267172

ABSTRACT

In the high-stakes realm of critical care, where daily decisions are crucial and clear communication is paramount, comprehending the rationale behind Artificial Intelligence (AI)-driven decisions appears essential. While AI has the potential to improve decision-making, its complexity can hinder comprehension and adherence to its recommendations. "Explainable AI" (XAI) aims to bridge this gap, enhancing confidence among patients and doctors. It also helps to meet regulatory transparency requirements, offers actionable insights, and promotes fairness and safety. Yet, defining explainability and standardising assessments are ongoing challenges and balancing performance and explainability can be needed, even if XAI is a growing field.


Subject(s)
Artificial Intelligence , Humans , Artificial Intelligence/trends , Artificial Intelligence/standards , Critical Care/methods , Critical Care/standards , Clinical Decision-Making/methods , Physicians/standards
8.
Sci Rep ; 14(1): 20940, 2024 09 09.
Article in English | MEDLINE | ID: mdl-39251780

ABSTRACT

Recent advancements in artificial intelligence (AI) have prompted researchers to expand into the field of oculomics; the association between the retina and systemic health. Unlike conventional AI models trained on well-recognized retinal features, the retinal phenotypes that most oculomics models use are more subtle. Consequently, applying conventional tools, such as saliency maps, to understand how oculomics models arrive at their inference is problematic and open to bias. We hypothesized that neuron activation patterns (NAPs) could be an alternative way to interpret oculomics models, but currently, most existing implementations focus on failure diagnosis. In this study, we designed a novel NAP framework to interpret an oculomics model. We then applied our framework to an AI model predicting systolic blood pressure from fundus images in the United Kingdom Biobank dataset. We found that the NAP generated from our framework was correlated to the clinically relevant endpoint of cardiovascular risk. Our NAP was also able to discern two biologically distinct groups among participants who were assigned the same predicted systolic blood pressure. These results demonstrate the feasibility of our proposed NAP framework for gaining deeper insights into the functioning of oculomics models. Further work is required to validate these results on external datasets.


Subject(s)
Artificial Intelligence , Humans , Neurons/physiology , Blood Pressure/physiology , Male , Female , United Kingdom , Retina/physiology , Middle Aged
9.
Stud Health Technol Inform ; 316: 678-682, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39176833

ABSTRACT

Emergency department (ED) overcrowding is a complex problem that is intricately linked with the operations of other hospital departments. Leveraging ED real-world production data provides a unique opportunity to comprehend this multifaceted problem holistically. This paper introduces a novel approach to analyse healthcare production data, treating the length of stay of patients, and the follow up decision regarding discharge or admission to the hospital as a time-to-event analysis problem. Our methodology employs traditional survival estimators and machine learning models, and Shapley additive explanations values to interpret the model outcomes. The most relevant features influencing length of stay were whether the patient received a scan at the ED, emergency room urgent visit, age, triage level, and the medical alarm unit category. The clinical insights derived from the explanation of the models holds promise for increase understanding of the overcrowding from the data. Our work demonstrates that a time-to-event approach to the over- crowding serves as a valuable initial to uncover crucial insights for further investigation and policy design.


Subject(s)
Crowding , Emergency Service, Hospital , Length of Stay , Machine Learning , Humans , Triage
10.
Food Res Int ; 192: 114836, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147524

ABSTRACT

The classification of carambola, also known as starfruit, according to quality parameters is usually conducted by trained human evaluators through visual inspections. This is a costly and subjective method that can generate high variability in results. As an alternative, computer vision systems (CVS) combined with deep learning (DCVS) techniques have been introduced in the industry as a powerful and an innovative tool for the rapid and non-invasive classification of fruits. However, validating the learning capability and trustworthiness of a DL model, aka black box, to obtain insights can be challenging. To reduce this gap, we propose an integrated eXplainable Artificial Intelligence (XAI) method for the classification of carambolas at different maturity stages. We compared two Residual Neural Networks (ResNet) and Visual Transformers (ViT) to identify the image regions that are enhanced by a Random Forest (RF) model, with the aim of providing more detailed information at the feature level for classifying the maturity stage. Changes in fruit colour and physicochemical data throughout the maturity stages were analysed, and the influence of these parameters on the maturity stages was evaluated using the Gradient-weighted Class Activation Mapping (Grad-CAM), the Attention Maps using RF importance. The proposed approach provides a visualization and description of the most important regions that led to the model decision, in wide visualization follows the models an importance features from RF. Our approach has promising potential for standardized and rapid carambolas classification, achieving 91 % accuracy with ResNet and 95 % with ViT, with potential application for other fruits.


Subject(s)
Averrhoa , Fruit , Neural Networks, Computer , Fruit/growth & development , Fruit/classification , Averrhoa/chemistry , Deep Learning , Artificial Intelligence , Color
11.
PeerJ Comput Sci ; 10: e2150, 2024.
Article in English | MEDLINE | ID: mdl-39145242

ABSTRACT

Virtual reality (VR) and immersive technology have emerged as powerful tools with numerous applications. VR technology creates a computer-generated simulation that immerses users in a virtual environment, providing a highly realistic and interactive experience. This technology finds applications in various fields, including gaming, healthcare, education, architecture, and training simulations. Understanding user immersion levels in VR is crucial and challenging for optimizing the design of VR applications. Immersion refers to the extent to which users feel absorbed and engrossed in the virtual environment. This research primarily aims to detect user immersion levels in VR using an efficient machine-learning model. We utilized a benchmark dataset based on user experiences in VR environments to conduct our experiments. Advanced deep and machine learning approaches are applied in comparison. We proposed a novel technique called Polynomial Random Forest (PRF) for feature generation mechanisms. The proposed PRF approach extracts polynomial and class prediction probability features to generate a new feature set. Extensive research experiments show that random forest outperformed state-of-the-art approaches, achieving a high immersion level detection rate of 98%, using the proposed PRF technique. We applied hyperparameter optimization and cross-validation approaches to validate the performance scores. Additionally, we utilized explainable artificial intelligence (XAI) to interpret the reasoning behind the decisions made by the proposed model for user immersion level detection in VR. Our research has the potential to revolutionize user immersion level detection in VR, enhancing the design process.

12.
Glob Chang Biol ; 30(8): e17466, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39152655

ABSTRACT

Global patterns in soil microbiomes are driven by non-linear environmental thresholds. Fertilization is known to shape the soil microbiome of terrestrial ecosystems worldwide. Yet, whether fertilization influences global thresholds in soil microbiomes remains virtually unknown. Here, utilizing optimized machine learning models with Shapley additive explanations on a dataset of 10,907 soil samples from 24 countries, we discovered that the microbial community response to fertilization is highly dependent on environmental contexts. Furthermore, the interactions among nitrogen (N) addition, pH, and mean annual temperature contribute to non-linear patterns in soil bacterial diversity. Specifically, we observed positive responses within a soil pH range of 5.2-6.6, with the influence of higher temperature (>15°C) on bacterial diversity being positive within this pH range but reversed in more acidic or alkaline soils. Additionally, we revealed the threshold effect of soil organic carbon and total nitrogen, demonstrating how temperature and N addition amount interacted with microbial communities within specific edaphic concentration ranges. Our findings underscore how complex environmental interactions control soil bacterial diversity under fertilization.


Subject(s)
Bacteria , Fertilizers , Microbiota , Nitrogen , Soil Microbiology , Soil , Temperature , Nitrogen/analysis , Nitrogen/metabolism , Fertilizers/analysis , Hydrogen-Ion Concentration , Soil/chemistry , Carbon/analysis , Carbon/metabolism , Machine Learning , Biodiversity
13.
Cogn Neurodyn ; 18(4): 1609-1625, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39104684

ABSTRACT

In this study, attention deficit hyperactivity disorder (ADHD), a childhood neurodevelopmental disorder, is being studied alongside its comorbidity, conduct disorder (CD), a behavioral disorder. Because ADHD and CD share commonalities, distinguishing them is difficult, thus increasing the risk of misdiagnosis. It is crucial that these two conditions are not mistakenly identified as the same because the treatment plan varies depending on whether the patient has CD or ADHD. Hence, this study proposes an electroencephalogram (EEG)-based deep learning system known as ADHD/CD-NET that is capable of objectively distinguishing ADHD, ADHD + CD, and CD. The 12-channel EEG signals were first segmented and converted into channel-wise continuous wavelet transform (CWT) correlation matrices. The resulting matrices were then used to train the convolutional neural network (CNN) model, and the model's performance was evaluated using 10-fold cross-validation. Gradient-weighted class activation mapping (Grad-CAM) was also used to provide explanations for the prediction result made by the 'black box' CNN model. Internal private dataset (45 ADHD, 62 ADHD + CD and 16 CD) and external public dataset (61 ADHD and 60 healthy controls) were used to evaluate ADHD/CD-NET. As a result, ADHD/CD-NET achieved classification accuracy, sensitivity, specificity, and precision of 93.70%, 90.83%, 95.35% and 91.85% for the internal evaluation, and 98.19%, 98.36%, 98.03% and 98.06% for the external evaluation. Grad-CAM also identified significant channels that contributed to the diagnosis outcome. Therefore, ADHD/CD-NET can perform temporal localization and choose significant EEG channels for diagnosis, thus providing objective analysis for mental health professionals and clinicians to consider when making a diagnosis. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-023-10028-2.

14.
Front Artif Intell ; 7: 1363531, 2024.
Article in English | MEDLINE | ID: mdl-39109323

ABSTRACT

Deep learning models have achieved state-of-the-art performance for text classification in the last two decades. However, this has come at the expense of models becoming less understandable, limiting their application scope in high-stakes domains. The increased interest in explainability has resulted in many proposed forms of explanation. Nevertheless, recent studies have shown that rationales, or language explanations, are more intuitive and human-understandable, especially for non-technical stakeholders. This survey provides an overview of the progress the community has achieved thus far in rationalization approaches for text classification. We first describe and compare techniques for producing extractive and abstractive rationales. Next, we present various rationale-annotated data sets that facilitate the training and evaluation of rationalization models. Then, we detail proxy-based and human-grounded metrics to evaluate machine-generated rationales. Finally, we outline current challenges and encourage directions for future work.

15.
Sci Rep ; 14(1): 18219, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107390

ABSTRACT

Ultra-precision machining requires system modelling that both satisfies explainability and conforms to data fidelity. Existing modelling approaches, whether based on data-driven methods in present artificial intelligence (AI) or on first-principle knowledge, fall short of these qualities in high-demanding industrial applications. Therefore, this paper develops an explainable and generalizable 'grey-box' AI informatics method for real-world dynamic system modelling. Such a grey-box model serves as a multiscale 'world model' by integrating the first principles of the system in a white-box architecture with data-fitting black boxes for varying hyperparameters of the white box. The physical principles serve as an explainable global meta-structure of the real-world system driven by physical knowledge, while the black boxes enhance local fitting accuracy driven by training data. The grey-box model thus encapsulates implicit variables and relationships that a standalone white-box model or black-box model fails to capture. Case study on an industrial cleanroom high-precision temperature regulation system verifies that the grey-box method outperforms existing modelling methods and is suitable for varying operating conditions.

16.
BMC Med Imaging ; 24(1): 206, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123118

ABSTRACT

A recent global health crisis, COVID-19 is a significant global health crisis that has profoundly affected lifestyles. The detection of such diseases from similar thoracic anomalies using medical images is a challenging task. Thus, the requirement of an end-to-end automated system is vastly necessary in clinical treatments. In this way, the work proposes a Squeeze-and-Excitation Attention-based ResNet50 (SEA-ResNet50) model for detecting COVID-19 utilizing chest X-ray data. Here, the idea lies in improving the residual units of ResNet50 using the squeeze-and-excitation attention mechanism. For further enhancement, the Ranger optimizer and adaptive Mish activation function are employed to improve the feature learning of the SEA-ResNet50 model. For evaluation, two publicly available COVID-19 radiographic datasets are utilized. The chest X-ray input images are augmented during experimentation for robust evaluation against four output classes namely normal, pneumonia, lung opacity, and COVID-19. Then a comparative study is done for the SEA-ResNet50 model against VGG-16, Xception, ResNet18, ResNet50, and DenseNet121 architectures. The proposed framework of SEA-ResNet50 together with the Ranger optimizer and adaptive Mish activation provided maximum classification accuracies of 98.38% (multiclass) and 99.29% (binary classification) as compared with the existing CNN architectures. The proposed method achieved the highest Kappa validation scores of 0.975 (multiclass) and 0.98 (binary classification) over others. Furthermore, the visualization of the saliency maps of the abnormal regions is represented using the explainable artificial intelligence (XAI) model, thereby enhancing interpretability in disease diagnosis.


Subject(s)
COVID-19 , Radiography, Thoracic , COVID-19/diagnostic imaging , Humans , Radiography, Thoracic/methods , SARS-CoV-2 , Artificial Intelligence , Radiographic Image Interpretation, Computer-Assisted/methods , Algorithms , Deep Learning , Lung/diagnostic imaging
17.
Bioengineering (Basel) ; 11(8)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39199780

ABSTRACT

The global prevalence of cardiovascular diseases (CVDs) as a leading cause of death highlights the imperative need for refined risk assessment and prognostication methods. The traditional approaches, including the Framingham Risk Score, blood tests, imaging techniques, and clinical assessments, although widely utilized, are hindered by limitations such as a lack of precision, the reliance on static risk variables, and the inability to adapt to new patient data, thereby necessitating the exploration of alternative strategies. In response, this study introduces CardioRiskNet, a hybrid AI-based model designed to transcend these limitations. The proposed CardioRiskNet consists of seven parts: data preprocessing, feature selection and encoding, eXplainable AI (XAI) integration, active learning, attention mechanisms, risk prediction and prognosis, evaluation and validation, and deployment and integration. At first, the patient data are preprocessed by cleaning the data, handling the missing values, applying a normalization process, and extracting the features. Next, the most informative features are selected and the categorical variables are converted into a numerical form. Distinctively, CardioRiskNet employs active learning to iteratively select informative samples, enhancing its learning efficacy, while its attention mechanism dynamically focuses on the relevant features for precise risk prediction. Additionally, the integration of XAI facilitates interpretability and transparency in the decision-making processes. According to the experimental results, CardioRiskNet demonstrates superior performance in terms of accuracy, sensitivity, specificity, and F1-Score, with values of 98.7%, 98.7%, 99%, and 98.7%, respectively. These findings show that CardioRiskNet can accurately assess and prognosticate the CVD risk, demonstrating the power of active learning and AI to surpass the conventional methods. Thus, CardioRiskNet's novel approach and high performance advance the management of CVDs and provide healthcare professionals a powerful tool for patient care.

18.
IEEE J Transl Eng Health Med ; 12: 569-579, 2024.
Article in English | MEDLINE | ID: mdl-39155922

ABSTRACT

Brain microstructural changes already occur in the earliest phases of Alzheimer's disease (AD) as evidenced in diffusion magnetic resonance imaging (dMRI) literature. This study investigates the potential of the novel dMRI Apparent Measures Using Reduced Acquisitions (AMURA) as imaging markers for capturing such tissue modifications.Tract-based spatial statistics (TBSS) and support vector machines (SVMs) based on different measures were exploited to distinguish between amyloid-beta/tau negative (A[Formula: see text]-/tau-) and A[Formula: see text]+/tau+ or A[Formula: see text]+/tau- subjects. Moreover, eXplainable Artificial Intelligence (XAI) was used to highlight the most influential features in the SVMs classifications and to validate the results by seeing the explanations' recurrence across different methods.TBSS analysis revealed significant differences between A[Formula: see text]-/tau- and other groups in line with the literature. The best SVM classification performance reached an accuracy of 0.73 by using advanced measures compared to more standard ones. Moreover, the explainability analysis suggested the results' stability and the central role of the cingulum to show early sign of AD.By relying on SVM classification and XAI interpretation of the outcomes, AMURA indices can be considered viable markers for amyloid and tau pathology. Clinical impact: This pre-clinical research revealed AMURA indices as viable imaging markers for timely AD diagnosis by acquiring clinically feasible dMR images, with advantages compared to more invasive methods employed nowadays.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Brain , Support Vector Machine , tau Proteins , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , tau Proteins/metabolism , tau Proteins/analysis , Amyloid beta-Peptides/metabolism , Male , Female , Aged , Brain/diagnostic imaging , Brain/pathology , Brain/metabolism , Image Interpretation, Computer-Assisted/methods , Diffusion Magnetic Resonance Imaging/methods
19.
Front Artif Intell ; 7: 1347815, 2024.
Article in English | MEDLINE | ID: mdl-39188356

ABSTRACT

The development of computer technology has revolutionized how people live and interact in society. The Internet of Things (IoT) has enabled the development of the Internet of Medical Things (IoMT) to transform healthcare delivery. Artificial intelligence has been used to improve the IoMT. Despite the significance of bibliometric analysis in a research area, to the best of the authors' knowledge, based on searches conducted in academic databases, no bibliometric analysis on artificial intelligence (AI) for the IoMT has been conducted. To address this gap, this study proposes performing a comprehensive bibliometric analysis of AI applications in the IoMT. A bibliometric analysis of top literature sources, main disciplines, countries, prolific authors, trending topics, authorship, citations, author-keywords, and co-keywords was conducted. In addition, the structural development of AI in the IoMT highlights its growing popularity. This study found that security and privacy issues are serious concerns hindering the massive adoption of the IoMT. Future research directions on the IoMT, including perspectives on artificial general intelligence, generative artificial intelligence, and explainable artificial intelligence, have been outlined and discussed.

20.
Health Inf Sci Syst ; 12(1): 43, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39188905

ABSTRACT

Cardiovascular disease, which remains one of the main causes of death, can be prevented by early diagnosis of heart sounds. Certain noisy signals, known as murmurs, may be present in heart sounds. On auscultation, the degree of murmur is closely related to the patient's clinical condition. Computer-aided decision-making systems can help doctors to detect murmurs and make faster decisions. The Mel spectrograms were generated from raw phonocardiograms and then presented to the OpenL3 network for transfer learning. In this way, the signals were classified to predict the presence or absence of murmurs and their level of severity. Pitch level (healthy, low, medium, high) and Levine scale (healthy, soft, loud) were used. The results obtained without prior segmentation are very impressive. The model used was then interpreted using an Explainable Artificial Intelligence (XAI) method, Occlusion Sensitivity. This approach shows that XAI methods are necessary to know the features used internally by the artificial neural network then to explain the automatic decision taken by the model. The averaged image of the occlusion sensitivity maps can give us either an overview or a precise detail per pixel of the features used. In the field of healthcare, particularly cardiology, for rapid diagnostic and preventive purposes, this work could provide more detail on the important features of the phonocardiogram.

SELECTION OF CITATIONS
SEARCH DETAIL