Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
J Bone Miner Res ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896028

ABSTRACT

In previous studies, we have demonstrated that stress response-induced high glucocorticoid levels could be the underlying cause of traumatic heterotopic ossification (HO), and we have developed a glucocorticoid-induced ectopic mineralization (EM) mouse model by systemic administration of a high dose of dexamethasone (DEX) to animals with muscle injury induced by cardiotoxin injection. In this model, dystrophic calcification (DC) developed into HO in a cell autonomous manner. However, it is not clear how DC is formed after DEX treatment. Therefore, in this study, we aimed to explore how glucocorticoids initiate muscle EM at a cellular and molecular level. We showed that DEX treatment inhibited inflammatory cell infiltration into injured muscle but inflammatory cytokine production in the muscle was significantly increased, suggesting that other non-inflammatory muscle cell types may regulate the inflammatory response and the muscle repair process. Accompanying this phenotype, transforming growth factor ß1 (TGF-ß1) expression in fibro-adipogenic progenitors (FAPs) was greatly down-regulated. Since TGF-ß1 is a strong immune suppressor and FAP's regulatory role has a large impact on muscle repair, we hypothesized that down-regulation of TGF-ß1 in FAPs after DEX treatment resulted in this hyperinflammatory state and subsequent failed muscle repair and EM formation. To test our hypothesis, we utilized a transgenic mouse model to specifically knock out Tgfb1 gene in PDGFRα positive FAPs to investigate if the transgenic mice could recapitulate the phenotype that was induced by DEX treatment. Our results showed that the transgenic mice completely phenocopied this hyperinflammatory state and spontaneously developed EM following muscle injury. On the contrary, therapeutics that enhanced TGF-ß1 signaling in FAPs inhibited the inflammatory response and attenuated muscle EM. In summary, these results indicate that FAPs-derived TGF-ß1 is a key molecule in regulating muscle inflammatory response and subsequent EM, and that glucocorticoids exert their effect via down-regulating TGF-ß1 in FAPs.


Heterotopic ossification (HO) is abnormal bone formation in soft tissue. Glucocorticoids, which have strong anti-inflammatory properties, have usually been used as HO therapeutics. However, our findings suggest that glucocorticoids can also promote HO formation. In this study, we tried to explain the underlying reason for these seemingly contradictory observations. We showed that glucocorticoids, in addition to exerting an anti-inflammatory effect on inflammatory cells, can also target another type of muscle cell to exert a pro-inflammatory effect. These cells are called fibro-adipogenic progenitors (FAPs), and we demonstrated that FAPs played a master regulatory role in the muscle inflammatory response by modulating the expression of transforming growth factor ß1 (TGF-ß1), a well-known immune suppressor. In summary, our findings highlighted the importance of FAP TGF-ß1 levels in affecting the progression and regression of muscle HO, and provided new treatment options for HO based on their ability to elevate TGF-ß1 levels in FAPs.

2.
Mol Aspects Med ; 97: 101277, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788527

ABSTRACT

Excessive accumulation of intermuscular adipose tissue (IMAT) is a common pathological feature in various metabolic and health conditions and can cause muscle atrophy, reduced function, inflammation, insulin resistance, cardiovascular issues, and unhealthy aging. Although IMAT results from fat accumulation in muscle, the mechanisms underlying its onset, development, cellular components, and functions remain unclear. IMAT levels are influenced by several factors, such as changes in the tissue environment, muscle type and origin, extent and duration of trauma, and persistent activation of fibro-adipogenic progenitors (FAPs). FAPs are a diverse and transcriptionally heterogeneous population of stromal cells essential for tissue maintenance, neuromuscular stability, and tissue regeneration. However, in cases of chronic inflammation and pathological conditions, FAPs expand and differentiate into adipocytes, resulting in the development of abnormal and ectopic IMAT. This review discusses the role of FAPs in adipogenesis and how they remodel IMAT. It highlights evidence supporting FAPs and FAP-derived adipocytes as constituents of IMAT, emphasizing their significance in adipose tissue maintenance and development, as well as their involvement in metabolic disorders, chronic pathologies and diseases. We also investigated the intricate molecular pathways and cell interactions governing FAP behavior, adipogenesis, and IMAT accumulation in chronic diseases and muscle deconditioning. Finally, we hypothesize that impaired cellular metabolic flexibility in dysfunctional muscles impacts FAPs, leading to IMAT. A deeper understanding of the biology of IMAT accumulation and the mechanisms regulating FAP behavior and fate are essential for the development of new therapeutic strategies for several debilitating conditions.


Subject(s)
Adipogenesis , Adipose Tissue , Humans , Adipose Tissue/cytology , Adipose Tissue/metabolism , Animals , Stem Cells/metabolism , Stem Cells/cytology , Adipocytes/metabolism , Adipocytes/cytology , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology , Cell Differentiation
3.
Matrix Biol ; 130: 36-46, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723870

ABSTRACT

Cellular Communication Network Factor 2, CCN2, is a profibrotic cytokine implicated in physiological and pathological processes in mammals. The expression of CCN2 is markedly increased in dystrophic muscles. Interestingly, diminishing CCN2 genetically or inhibiting its function improves the phenotypes of chronic muscular fibrosis in rodent models. Elucidating the cell-specific mechanisms behind the induction of CCN2 is a fundamental step in understanding its relevance in muscular dystrophies. Here, we show that the small lipids LPA and 2S-OMPT induce CCN2 expression in fibro/adipogenic progenitors (FAPs) through the activation of the LPA1 receptor and, to a lower extent, by also the LPA6 receptor. These cells show a stronger induction than myoblasts or myotubes. We show that the LPA/LPARs axis requires ROCK kinase activity and organized actin cytoskeleton upstream of YAP/TAZ signaling effectors to upregulate CCN2 levels, suggesting that mechanical signals are part of the mechanism behind this process. In conclusion, we explored the role of the LPA/LPAR axis on CCN2 expression, showing a strong cytoskeletal-dependent response in muscular FAPs.


Subject(s)
Adipogenesis , Connective Tissue Growth Factor , Lysophospholipids , Animals , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/genetics , Mice , Lysophospholipids/metabolism , Cell Communication , Signal Transduction , Receptors, Lysophosphatidic Acid/metabolism , Receptors, Lysophosphatidic Acid/genetics , Stem Cells/metabolism , Stem Cells/cytology , Gene Expression Regulation , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Cell Differentiation , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology , Humans , Actin Cytoskeleton/metabolism
4.
Environ Int ; 185: 108553, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38460240

ABSTRACT

A reliable determination of equivalent black carbon (eBC) mass concentrations derived from filter absorption photometers (FAPs) measurements depends on the appropriate quantification of the mass absorption cross-section (MAC) for converting the absorption coefficient (babs) to eBC. This study investigates the spatial-temporal variability of the MAC obtained from simultaneous elemental carbon (EC) and babs measurements performed at 22 sites. We compared different methodologies for retrieving eBC integrating different options for calculating MAC including: locally derived, median value calculated from 22 sites, and site-specific rolling MAC. The eBC concentrations that underwent correction using these methods were identified as LeBC (local MAC), MeBC (median MAC), and ReBC (Rolling MAC) respectively. Pronounced differences (up to more than 50 %) were observed between eBC as directly provided by FAPs (NeBC; Nominal instrumental MAC) and ReBC due to the differences observed between the experimental and nominal MAC values. The median MAC was 7.8 ± 3.4 m2 g-1 from 12 aethalometers at 880 nm, and 10.6 ± 4.7 m2 g-1 from 10 MAAPs at 637 nm. The experimental MAC showed significant site and seasonal dependencies, with heterogeneous patterns between summer and winter in different regions. In addition, long-term trend analysis revealed statistically significant (s.s.) decreasing trends in EC. Interestingly, we showed that the corresponding corrected eBC trends are not independent of the way eBC is calculated due to the variability of MAC. NeBC and EC decreasing trends were consistent at sites with no significant trend in experimental MAC. Conversely, where MAC showed s.s. trend, the NeBC and EC trends were not consistent while ReBC concentration followed the same pattern as EC. These results underscore the importance of accounting for MAC variations when deriving eBC measurements from FAPs and emphasize the necessity of incorporating EC observations to constrain the uncertainty associated with eBC.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Environmental Monitoring/methods , Aerosols/analysis , Seasons , Soot/analysis , Carbon/analysis , Particulate Matter/analysis
5.
Stem Cell Reports ; 19(4): 501-514, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38552635

ABSTRACT

Defective skeletal muscle regeneration is often accompanied by fibrosis. Fibroblast/adipose progenitors (FAPs) are important in these processes, however, the regulation of FAP fate decisions is unclear. Here, using inducible conditional knockout mice, we show that blocking mammalian Ste20-like kinases 1/2 (MST1/2) of FAPs prevented apoptosis and reduced interleukin-6 secretion in vivo and in vitro, which impaired myoblast proliferation and differentiation, as well as impaired muscle regeneration. Deletion of Mst1/2 increased co-localization of Yes-associated protein (YAP) with Smad2/3 in nuclei and promoted differentiation of FAPs toward myofibroblasts, resulting in excessive collagen deposition and skeletal muscle fibrosis. Meanwhile, inhibition of MST1/2 increased YAP/Transcriptional co-activator with PDZ-binding motif activation, which promoted activation of the WNT/ß-catenin pathway and impaired the differentiation of FAPs toward adipocytes. These results reveal a new mechanism for MST1/2 action in disrupted skeletal muscle regeneration and fibrosis via regulation of FAP apoptosis and differentiation. MST1/2 is a potential therapeutic target for the treatment of some myopathies.


Subject(s)
Adipocytes , Adipogenesis , Mice , Animals , Adipocytes/metabolism , Fibrosis , Muscle, Skeletal/metabolism , Cell Differentiation , Mammals
6.
Nutrients ; 16(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38337634

ABSTRACT

Different nutraceuticals are often considered by parents of infants and children with abdominal pain and disorders of the gut-brain interaction. Herb extracts and natural compounds have long been used in traditional medicine, but clinical pediatric trials are very limited. This narrative review based on relevant studies identified through a search of the literature in Pubmed and Medline updated to October 2023 focused on the effect of nutraceuticals in infantile colic, functional abdominal pain, and irritable bowel syndrome in children and adolescents. Significant reductions in colic episodes and crying time were reported in two studies on fennel (seeds oil or tea), in three studies on different multiple herbal extracts (all including fennel), in one study on Mentha piperita, and in at least two double-blind randomized controlled studies on Lactobacillus reuteri DSM 17938 and Bifidobacterium lactis BB-12 (108 CFU/day for at least 21 days) in breast-fed infants. Compared to a placebo, in children with functional abdominal pain or irritable bowel syndrome, a significant reduction in pain was reported in two studies supplementing peppermint oil capsules or psyllium fibers, and in one study on corn fiber cookies, partial hydrolyzed guar gum, a specific multiple herbal extract (STW-5), or vitamin D supplementation. To date, there is moderate-certainty evidence with a weak grade of recommendation on Lactobacillus reuteri DSM 17938 (108 CFU/day) in reducing pain intensity in children with functional abdominal pain and for Lactobacillus rhamnosus GG (1-3 × 109 CFU twice daily) in reducing pain frequency and intensity in children with IBS. Further large and well-designed pediatric studies are needed to prove the efficacy and safety of different herbal extracts and prolonged use of studied products in infants and children with pain disorders of the gut-brain interaction.


Subject(s)
Bifidobacterium animalis , Colic , Irritable Bowel Syndrome , Limosilactobacillus reuteri , Probiotics , Infant , Adolescent , Humans , Child , Probiotics/therapeutic use , Abdominal Pain , Colic/therapy , Colic/microbiology , Dietary Supplements , Brain , Treatment Outcome , Randomized Controlled Trials as Topic
7.
Int J Mol Sci ; 25(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38339124

ABSTRACT

Peripheral nerve injury denervates muscle, resulting in muscle paralysis and atrophy. This is reversible if timely muscle reinnervation occurs. With delayed reinnervation, the muscle's reparative ability declines, and muscle-resident fibro-adipogenic progenitor cells (FAPs) proliferate and differentiate, inducing fibro-fatty muscle degradation and thereby physical disability. The mechanisms by which the peripheral nerve regulates FAPs expansion and differentiation are incompletely understood. Using the rat tibial neve transection model, we demonstrated an increased FAPs content and a changing FAPs phenotype, with an increased capacity for adipocyte and fibroblast differentiation, in gastrocnemius muscle post-denervation. The FAPs response was inhibited by immediate tibial nerve repair with muscle reinnervation via neuromuscular junctions (NMJs) and sensory organs (e.g., muscle spindles) or the sensory protection of muscle (where a pure sensory nerve is sutured to the distal tibial nerve stump) with reinnervation by muscle spindles alone. We found that both procedures reduced denervation-mediated increases in glial-cell-line-derived neurotrophic factor (GDNF) in muscle and that GDNF promoted FAPs adipogenic and fibrogenic differentiation in vitro. These results suggest that the peripheral nerve controls FAPs recruitment and differentiation via the modulation of muscle GDNF expression through NMJs and muscle spindles. GDNF can serve as a therapeutic target in the management of denervation-induced muscle injury.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor , Muscle, Skeletal , Rats , Animals , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Muscle, Skeletal/metabolism , Cell Differentiation , Tibial Nerve/injuries , Adipogenesis , Denervation
8.
Biomolecules ; 14(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38397414

ABSTRACT

Heterotopic ossification (HO) is most dramatically manifested in the rare and severely debilitating disease, fibrodysplasia ossificans progressiva (FOP), in which heterotopic bone progressively accumulates in skeletal muscles and associated soft tissues. The great majority of FOP cases are caused by a single amino acid substitution in the type 1 bone morphogenetic protein (BMP) receptor ACVR1, a mutation that imparts responsiveness to activin A. Although it is well-established that biological sex is a critical variable in a range of physiological and disease processes, the impact of sex on HO in animal models of FOP has not been explored. We show that female FOP mice exhibit both significantly greater and more variable HO responses after muscle injury. Additionally, the incidence of spontaneous HO was significantly greater in female mice. This sex dimorphism is not dependent on gonadally derived sex hormones, and reciprocal cell transplantations indicate that apparent differences in osteogenic activity are intrinsic to the sex of the transplanted cells. By circumventing the absolute requirement for activin A using an agonist of mutant ACVR1, we show that the female-specific response to muscle injury or BMP2 implantation is dependent on activin A. These data identify sex as a critical variable in basic and pre-clinical studies of FOP.


Subject(s)
Myositis Ossificans , Ossification, Heterotopic , Female , Mice , Animals , Male , Myositis Ossificans/genetics , Myositis Ossificans/metabolism , Ossification, Heterotopic/genetics , Ossification, Heterotopic/metabolism , Osteogenesis , Mutation , Bone and Bones/metabolism
9.
Hum Mol Genet ; 33(2): 182-197, 2024 Jan 07.
Article in English | MEDLINE | ID: mdl-37856562

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable myopathy. FSHD is highly heterogeneous, with patients following a variety of clinical trajectories, complicating clinical trials. Skeletal muscle in FSHD undergoes fibrosis and fatty replacement that can be accelerated by inflammation, adding to heterogeneity. Well controlled molecular studies are thus essential to both categorize FSHD patients into distinct subtypes and understand pathomechanisms. Here, we further analyzed RNA-sequencing data from 24 FSHD patients, each of whom donated a biopsy from both a non-inflamed (TIRM-) and inflamed (TIRM+) muscle, and 15 FSHD patients who donated peripheral blood mononucleated cells (PBMCs), alongside non-affected control individuals. Differential gene expression analysis identified suppression of mitochondrial biogenesis and up-regulation of fibroadipogenic progenitor (FAP) gene expression in FSHD muscle, which was particularly marked on inflamed samples. PBMCs demonstrated suppression of antigen presentation in FSHD. Gene expression deconvolution revealed FAP expansion as a consistent feature of FSHD muscle, via meta-analysis of 7 independent transcriptomic datasets. Clustering of muscle biopsies separated patients in an unbiased manner into clinically mild and severe subtypes, independently of known disease modifiers (age, sex, D4Z4 repeat length). Lastly, the first genome-wide analysis of alternative splicing in FSHD muscle revealed perturbation of autophagy, BMP2 and HMGB1 signalling. Overall, our findings reveal molecular subtypes of FSHD with clinical relevance and identify novel pathomechanisms for this highly heterogeneous condition.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Humans , Alternative Splicing/genetics , Inflammation/pathology , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/pathology , Stem Cells/metabolism
10.
Aging Cell ; 23(3): e14069, 2024 03.
Article in English | MEDLINE | ID: mdl-38115574

ABSTRACT

Senescent cells compromise tissue structure and function in older organisms. We recently identified senescent fibroadipogenic progenitors (FAPs) with activated chemokine signaling pathways in the skeletal muscle of old mice, and hypothesized these cells may contribute to the age-associated accumulation of immune cells in skeletal muscle. In this study, through cell-cell communication analysis of skeletal muscle single-cell RNA-sequencing data, we identified unique interactions between senescent FAPs and macrophages, including those mediated by Ccl2 and Spp1. Using mouse primary FAPs in vitro, we verified increased expression of Ccl2 and Spp1 and secretion of their respective proteins in the context of both irradiation- and etoposide-induced senescence. Compared to non-senescent FAPs, the medium of senescent FAPs markedly increased the recruitment of macrophages in an in vitro migration assay, an effect that was mitigated by preincubation with antibodies to either CCL2 or osteopontin (encoded by Spp1). Further studies demonstrated that the secretome of senescent FAPs promotes polarization of macrophages toward an M2 subtype. These data suggest the unique secretome of senescent FAPs may compromise skeletal muscle homeostasis by recruiting and directing the behavior of macrophages.


Subject(s)
Macrophages , Muscle, Skeletal , Mice , Animals , Muscle, Skeletal/metabolism , Cell Differentiation/physiology
11.
Acta Neuropathol Commun ; 11(1): 167, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37858263

ABSTRACT

Duchenne muscular dystrophy (DMD) is a devastating X-linked muscular disease, caused by mutations in the DMD gene encoding Dystrophin and affecting 1:5000 boys worldwide. Lack of Dystrophin leads to progressive muscle wasting and degeneration resulting in cardiorespiratory failure. Despite the absence of a definitive cure, innovative therapeutic avenues are emerging. Myopathologic studies are important to further understand the biological mechanisms of the disease and to identify histopathologic benchmarks for clinical evaluations. We conducted a myopathologic analysis on twenty-four muscle biopsies from DMD patients, with particular emphasis on regeneration, fibro-adipogenic progenitors and muscle stem cells behavior. We describe an increase in content of fibro-adipogenic progenitors, central orchestrators of fibrotic progression and lipid deposition, concurrently with a decline in muscle regenerative capacity. This regenerative impairment strongly correlates with compromised activation and expansion of muscle stem cells. Furthermore, our study uncovers an early acquisition of a senescence phenotype by DMD-afflicted muscle stem cells. Here we describe the myopathologic trajectory intrinsic to DMD and establish muscle stem cell senescence as a pivotal readout for future therapeutic interventions.


Subject(s)
Muscular Dystrophy, Duchenne , Satellite Cells, Skeletal Muscle , Humans , Male , Dystrophin/genetics , Fibrosis , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology , Regeneration/genetics , Cellular Senescence/genetics
12.
Am J Physiol Cell Physiol ; 325(4): C895-C906, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37602412

ABSTRACT

Fibro-adipogenic progenitors (FAPs) are key regulators of skeletal muscle regeneration and homeostasis. However, dysregulation of these cells leads to fibro-fatty infiltration across various muscle diseases. FAPs are the key source of extracellular matrix (ECM) deposition in muscle, and disruption to this process leads to a pathological accumulation of ECM, known as fibrosis. The replacement of contractile tissue with fibrotic ECM functionally impairs the muscle and increases muscle stiffness. FAPs and fibrotic muscle form a progressively degenerative feedback loop where, as a muscle becomes fibrotic, it induces a fibrotic FAP phenotype leading to further development of fibrosis. In this review, we summarize FAPs' role in fibrosis in terms of their activation, heterogeneity, contributions to fibrotic degeneration, and role across musculoskeletal diseases. We also discuss current research on potential therapeutic avenues to attenuate fibrosis by targeting FAPs.


Subject(s)
Adipocytes , Adipogenesis , Humans , Adipocytes/pathology , Stem Cells , Fibrosis , Muscle, Skeletal/pathology , Cell Differentiation/physiology
13.
Front Cell Dev Biol ; 11: 1017660, 2023.
Article in English | MEDLINE | ID: mdl-36910157

ABSTRACT

Lysophosphatidic acid is a growth factor-like bioactive phospholipid recognising LPA receptors and mediating signalling pathways that regulate embryonic development, wound healing, carcinogenesis, and fibrosis, via effects on cell migration, proliferation and differentiation. Extracellular LPA is generated from lysophospholipids by the secreted hydrolase-ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2; also, AUTOTAXIN/ATX) and metabolised by different membrane-bound phospholipid phosphatases (PLPPs). Here, we use public bulk and single-cell RNA sequencing datasets to explore the expression of Lpar 1-6, Enpp2, and Plpp genes under skeletal muscle homeostasis and regeneration conditions. We show that the skeletal muscle system dynamically expresses the Enpp2-Lpar-Plpp gene axis, with Lpar1 being the highest expressed member among LPARs. Lpar1 was expressed by mesenchymal fibro-adipogenic progenitors and tenocytes, whereas FAPs mainly expressed Enpp2. Clustering of FAPs identified populations representing distinct cell states with robust Lpar1 and Enpp2 transcriptome signatures in homeostatic cells expressing higher levels of markers Dpp4 and Hsd11b1. However, tissue injury induced transient repression of Lpar genes and Enpp2. The role of LPA in modulating the fate and differentiation of tissue-resident FAPs has not yet been explored. Ex vivo, LPAR1/3 and ENPP2 inhibition significantly decreased the cell-cycle activity of FAPs and impaired fibro-adipogenic differentiation, implicating LPA signalling in the modulation of the proliferative and differentiative fate of FAPs. Together, our results demonstrate the importance of the ENPP2-LPAR-PLPP axis in different muscle cell types and FAP lineage populations in homeostasis and injury, paving the way for further research on the role of this signalling pathway in skeletal muscle homeostasis and regeneration, and that of other organs and tissues, in vivo.

14.
Int J Mol Sci ; 24(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36982659

ABSTRACT

Loss of motoneuron innervation (denervation) is a hallmark of neurodegeneration and aging of the skeletal muscle. Denervation induces fibrosis, a response attributed to the activation and expansion of resident fibro/adipogenic progenitors (FAPs), i.e., multipotent stromal cells with myofibroblast potential. Using in vivo and in silico approaches, we revealed FAPs as a novel cell population that activates the transcriptional coregulators YAP/TAZ in response to skeletal muscle denervation. Here, we found that denervation induces the expression and transcriptional activity of YAP/TAZ in whole muscle lysates. Using the PdgfraH2B:EGFP/+ transgenic reporter mice to trace FAPs, we demonstrated that denervation leads to increased YAP expression that accumulates within FAPs nuclei. Consistently, re-analysis of published single-nucleus RNA sequencing (snRNA-seq) data indicates that FAPs from denervated muscles have a higher YAP/TAZ signature level than control FAPs. Thus, our work provides the foundations to address the functional role of YAP/TAZ in FAPs in a neurogenic pathological context, which could be applied to develop novel therapeutic approaches for the treatment of muscle disorders triggered by motoneuron degeneration.


Subject(s)
Adipogenesis , Muscle, Skeletal , Animals , Mice , Adipogenesis/genetics , Cell Differentiation/physiology , Denervation , Mice, Transgenic , Muscle, Skeletal/metabolism
15.
J Cachexia Sarcopenia Muscle ; 14(1): 479-492, 2023 02.
Article in English | MEDLINE | ID: mdl-36513394

ABSTRACT

BACKGROUND: Following muscle injury, fibro-adipogenic progenitors (FAPs) are rapidly activated and undergo apoptosis at the resolution stage, which is required for proper muscle regeneration. When excessive FAPs remain, it contributes to fibrotic and fatty infiltration, impairing muscle recovery. Mechanisms controlling FAP apoptosis remain poorly defined. We hypothesized that AMP-activated protein kinase (AMPK) in FAPs mediates their apoptosis during the muscle regeneration. METHODS: To test, AMPKα1fl/fl PDGFRαCre mice were used to knock out AMPKα1 in FAPs. Following AMPKα1 knockout, the mice were injected with phosphate-buffered saline or glycerol to induce muscle injury. Tibialis anterior muscle and FAPs were collected at 3, 7 and 14 days post-injury (dpi) for further analysis. RESULTS: We found that AMPKα1 deletion in FAPs enhanced p65 translocation to the nuclei by 110% (n = 3; P < 0.01). AMPKα1 knockout group had a higher gene expression of MMP-9 (matrix metalloproteinase-9) by 470% (n = 3; P < 0.05) and protein level by 39% (n = 3; P < 0.05). Loss of AMPKα1 up-regulated the active TGF-ß1 (transforming growth factor-ß1) levels by 21% (n = 3; P < 0.05). TGF-ß promoted apoptotic resistance, because AMPKα1-deficient group had 36% lower cleaved Caspase 3 (cCAS3) content (n = 3; P < 0.05). Fibrotic differentiation of FAPs was promoted, with increased collagen protein level by 54% (n = 3; P < 0.05). Moreover, obesity decreased phosphorylation of AMPK by 54% (n = 3; P < 0.05), which decreased cCAS3 in FAPs by 44% (n = 3; P < 0.05) and elevated collagen accumulation (52%; n = 3; P < 0.05) during muscle regeneration. CONCLUSIONS: These data suggest that AMPK is a key mediator of FAPs apoptosis, and its inhibition due to obesity results in fibrosis of regenerated muscle.


Subject(s)
AMP-Activated Protein Kinases , Muscular Diseases , Animals , Mice , AMP-Activated Protein Kinases/metabolism , Muscle, Skeletal/pathology , Muscular Diseases/metabolism , Fibrosis , Collagen/metabolism , Regeneration
16.
Front Cell Dev Biol ; 10: 952041, 2022.
Article in English | MEDLINE | ID: mdl-36200044

ABSTRACT

Skeletal muscle is a highly plastic tissue composed of a number of heterogeneous cell populations that, by interacting and communicating with each other, participate to the muscle homeostasis, and orchestrate regeneration and repair in healthy and diseased conditions. Although muscle regeneration relies on the activity of muscle stem cells (MuSCs), many other cellular players such as inflammatory, vascular and tissue-resident mesenchymal cells participate and communicate with MuSCs to sustain the regenerative process. Among them, Fibro-Adipogenic Progenitors (FAPs), a muscle interstitial stromal population, are crucial actors during muscle homeostasis and regeneration, interacting with MuSCs and other cellular players and dynamically producing and remodelling the extra-cellular matrix. Recent emerging single-cell omics technologies have resulted in the dissection of the heterogeneity of each cell populations within skeletal muscle. In this perspective we have reviewed the recent single-cell omics studies with a specific focus on FAPs in mouse and human muscle. More precisely, using the OutCyte prediction tool, we analysed the "virtual" secretome of FAPs, in resting and regenerating conditions, to highlight the potential of RNAseq data for the study of cellular communication.

17.
Am J Physiol Cell Physiol ; 323(4): C1325-C1332, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36094434

ABSTRACT

Chemotherapy is a common therapy to treat patients with breast cancer but also leads to skeletal muscle deconditioning. Skeletal muscle deconditioning is multifactorial and intermuscular adipose tissue (IMAT) accumulation is closely linked to muscle dysfunction. To date, there is no clinical study available investigating IMAT development through a longitudinal protocol and the underlying mechanisms remain unknown. Our study was dedicated to investigating IMAT content in patients with early breast cancer who were treated with chemotherapy and exploring the subsequent cellular mechanisms involved in its development. We included 13 women undergoing chemotherapy. Muscle biopsies and ultrasonography assessment were performed before and after chemotherapy completion. Histological and Western blotting analyses were conducted. We found a substantial increase in protein levels of three mature adipocyte markers (perilipin, +901%; adiponectin, +135%; FABP4, +321%; P < 0.05). These results were supported by an increase in oil red O-positive staining (+358%; P < 0.05). A substantial increase in PDGFRα protein levels was observed (+476%; P < 0.05) highlighting an increase in fibro-adipogenic progenitors (FAPs) content. The cross-sectional area of the vastus lateralis muscle fibers substantially decreased (-21%; P < 0.01), and muscle architecture was altered, as shown by a decrease in fascicle length (-15%; P < 0.05) and a decreasing trend in muscle thickness (-8%; P = 0.08). We demonstrated both IMAT development and muscle atrophy in patients with breast cancer who were treated with chemotherapy. FAPs, critical stem cells inducing both IMAT development and skeletal muscle atrophy, also increased, suggesting that FAPs likely play a critical role in the skeletal muscle deconditioning observed in patients with breast cancer who were treated with chemotherapy.


Subject(s)
Breast Neoplasms , Adiponectin/metabolism , Adipose Tissue/metabolism , Breast Neoplasms/pathology , Female , Humans , Muscle, Skeletal/metabolism , Muscular Atrophy/chemically induced , Muscular Atrophy/diagnostic imaging , Muscular Atrophy/metabolism , Perilipins/metabolism , Receptor, Platelet-Derived Growth Factor alpha/metabolism
18.
Matrix Biol ; 112: 90-115, 2022 09.
Article in English | MEDLINE | ID: mdl-35963565

ABSTRACT

Obesity triggers skeletal muscle physio-pathological alterations. However, the crosstalk between adipose tissue and myogenic cells remains poorly understood during obesity. We identified NID-1 among the adipose tissue secreted factors impairing myogenic potential of human myoblasts and murine muscle stem cells in vitro. Mice under High Fat Diet (HFD) displayed increased NID-1 expression in the skeletal muscle endomysium associated with intramuscular fat adipose tissue expansion and compromised muscle stem cell function. We show that NID-1 is highly secreted by skeletal muscle fibro-adipogenic/mesenchymal progenitors (FAPs) during obesity. We demonstrate that increased muscle NID-1 impairs muscle stem cells proliferation and primes the fibrogenic differentiation of FAPs, giving rise to an excessive deposition of extracellular matrix. Finally, we propose a model in which obesity leads to skeletal muscle extracellular matrix remodeling by FAPs, mediating the alteration of myogenic function by adipose tissue and highlighting the key role of NID-1 in the crosstalk between adipose tissue and skeletal muscle.


Subject(s)
Adipogenesis , Muscle Development , Animals , Cell Differentiation , Extracellular Matrix , Humans , Mice , Muscle, Skeletal/metabolism , Obesity/genetics , Obesity/metabolism
19.
Metabolites ; 12(7)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35888735

ABSTRACT

The muscle stem-cell niche comprises numerous cell types, which coordinate the regeneration process after injury. Thyroid hormones are one of the main factors that regulate genes linked to skeletal muscle. In this way, deiodinase types 2 and 3 are responsible for the fine-tuning regulation of the local T3 amount. Although their expression and activity have already been identified during muscle regeneration, it is of utmost importance to identify the cell type and temporal pattern of expression after injury to thoroughly comprehend their therapeutic potential. Here, we confirmed the expression of Dio2 and Dio3 in the whole tibialis anterior muscle. We identified, on a single-cell basis, that Dio2 is present in paired box 7 (PAX7)-positive cells starting from day 5 after injury. Dio2 is present in platelet derived growth factor subunit A (PDGFA)-expressing fibro-adipogenic progenitor cells between days 7 and 14 after injury. Dio3 is detected in myogenic differentiation (MYOD)-positive stem cells and in macrophages immediately post injury and thereafter. Interestingly, Dio2 and Dio3 RNA do not appear to be present in the same type of cell throughout the process. These results provide further insight into previously unseen aspects of the crosstalk and synchronized regulation of T3 in injured muscle mediated by deiodinases. The set of findings described here further define the role of deiodinases in muscle repair, shedding light on potential new forms of treatment for sarcopenia and other muscular diseases.

20.
Ageing Res Rev ; 80: 101682, 2022 09.
Article in English | MEDLINE | ID: mdl-35809776

ABSTRACT

Sarcopenia and myopathies cause progressive muscle weakness and degeneration, which are closely associated with fat infiltration and fibrosis in muscle. Recently, experimental research has shed light on fibro-adipogenic progenitors (FAPs), also known as muscle-resident mesenchymal progenitors with multiple differentiation potential for adipogenesis, fibrosis, osteogenesis and chondrogenesis. They are considered key regulators of muscle homeostasis and integrity. They play supportive roles in muscle development and repair by orchestrating the regulatory interplay between muscle stem cells (MuSCs) and immune cells. Interestingly, FAPs also contribute to intramuscular fat infiltration, fibrosis and other pathologies when the functional integrity of the network is compromised. In this review, we summarize recent insights into the roles of FAPs in maintenance of skeletal muscle homeostasis, and discuss the underlying mechanisms regulating FAPs behavior and fate, highlighting their roles in participating in efficient muscle repair and fat infiltrated muscle degeneration as well as during muscle atrophy. We suggest that controlling and predicting FAPs differentiation may become a promising strategy to improve muscle function and prevent irreparable muscle damage.


Subject(s)
Adipogenesis , Muscle, Skeletal , Cell Differentiation/physiology , Fibrosis , Homeostasis , Humans , Muscle, Skeletal/pathology , Muscular Atrophy/pathology
SELECTION OF CITATIONS
SEARCH DETAIL