Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38931726

ABSTRACT

This article shows an all-dielectric metasurface consisting of "H"-shaped silicon disks with tilted splitting gaps, which can detect the temperature and refractive index (RI). By introducing asymmetry parameters that excite the quasi-BIC, there are three distinct Fano resonances with nearly 100% modulation depth, and the maximal quality factor (Q-factor) is over 104. The predominant roles of different electromagnetic excitations in three distinct modes are demonstrated through near-field analysis and multipole decomposition. A numerical analysis of resonance response based on different refractive indices reveals a RI sensitivity of 262 nm/RIU and figure of merit (FOM) of 2183 RIU-1. This sensor can detect temperature fluctuations with a temperature sensitivity of 59.5 pm/k. The proposed metasurface provides a novel method to induce powerful TD resonances and offers possibilities for the design of high-performance sensors.

2.
Nano Lett ; 24(19): 5879-5885, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38652056

ABSTRACT

Monolayer transition metal dichalcogenides (TMDs) are considered promising building blocks for next-generation photonic and optoelectronic devices, owing to their fascinating optical properties. However, their inherent weak light absorption and low quantum yield severely hinder their practical applications. Here, we report up to 18000-fold photoluminescence (PL) enhancement in a monolayer WSe2-coupled plasmonic nanocavity. A spectroscopy-assisted nanomanipulation technique enables the assembly of a nanocavity with customizable resonances to simultaneously enhance the excitation and emission processes. In particular, precise control over the magnetic cavity mode facilitates spectral and spatial overlap with the exciton, resulting in plasmon-exciton intermediate coupling that approaches the maximum emission rate in the hybrid system. Meanwhile, the cavity mode exhibits high radiation directivity, which overwhelmingly directs surface-normal PL emission and leads to a 17-fold increase in the collection efficiency. Our approach opens up a new avenue to enhance the PL intensity of monolayer TMDs, facilitating their implementation in highly efficient optoelectronic devices.

3.
Proc Natl Acad Sci U S A ; 121(2): e2307836121, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38170749

ABSTRACT

High-harmonic generation from a gas target exhibits sharp spectral features and rapid phase variation near the Cooper minimum. By applying spectral filtering, shaped isolated attosecond pulses can be generated where the pulse is split into two in the time domain. Using such shaped extreme-ultraviolet (XUV) pulses, we theoretically study attosecond transient absorption (ATA) spectra of helium [Formula: see text] autoionizing state which is resonantly coupled to the [Formula: see text] dark state by a time-delayed infrared laser. Our simulations show that the asymmetric [Formula: see text] Fano line shape can be readily tuned into symmetric Lorentzian within the time delay of a few tens of attoseconds. Such efficient control is due to the destructive interference in the generation of the [Formula: see text] state when it is excited by a strongly shaped XUV pulse. This is to be compared to prior experiments where tuning the line shape of a Fano resonance would take tens of femtoseconds. We also show that the predicted ATA spectral line shape can be observed experimentally after propagation in a gas medium. Our results suggest that strongly shaped attosecond XUV pulses offer the opportunity for controlling and probing fine features of narrow resonances on the few-ten attoseconds timescale.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123811, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38154303

ABSTRACT

In this work, a biosensor based on Fano resonance metasurface is proposed for the specific detection of CA242 which is a typical marker of pancreatic cancer. The biosensor consists of a chiral symmetric plasma double "N" structure, which utilises coherent coupling of bright and dark modes to generate Fano resonance, achieving suppression of radiation loss, concentrating and storing energy more efficiently in the structure, and contributing to increased sensitivity to changes in ambient refractive index, resulting in a sensitivity of the sensor of up to 842.8 nm /RIU. After a series of antibody functionalization modifications, the metasurface has become an immune biosensor that can specifically detect the tumor marker CA242 of pancreatic cancer. The detection of mixed and single antigen solutions with different concentrations has verified the high sensitivity, high specificity, and high linear relationship of the biosensor to CA242, and the detection limit is as low as 0.0692 ng/mL. It is superior to other common methods and breaks the traditional disadvantages of lower detection accuracy and greater damage in tumour detection methods. The detection of the wavelength shift of localized surface plasmon resonance in plasma metasurface has been successfully applied to the highly sensitive detection of tumor markers. This study demonstrates the sensitivity and maneuverability of the chiral symmetric double "N" plasmonic metasurface biosensor, suggesting the potential application of metamaterials in biosensing based on environmental refractive index changes.


Subject(s)
Biosensing Techniques , Pancreatic Neoplasms , Humans , Surface Plasmon Resonance/methods , Antibodies , Sensitivity and Specificity , Biomarkers, Tumor
5.
Materials (Basel) ; 16(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37959579

ABSTRACT

The enhancement of optical waves through perforated plates has received particular attention over the past two decades. This phenomenon can occur due to two distinct and independent mechanisms, namely, nanoscale enhanced optical transmission and micron-scale Fabry-Perot resonance. The aim of the present paper is to shed light on the coupling potential between two neighboring slots filled with two different materials with contrasting physical properties (air and silicon, for example). Using theoretical predictions and numerical simulations, we highlight the role of each constituent material; the low-index material (air) acts as a continuum, while the higher-index material (silicon) exhibits discrete states. This combination gives rise to the so-called Fano resonance, well known since the early 1960s. In particular, it has been demonstrated that optimized geometrical parameters can create sustainable and robust band gaps at will, which provides the scientific community with a further genuine alternative to control optical waves.

6.
Nanomaterials (Basel) ; 13(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37686948

ABSTRACT

A metasurface is a two-dimensional structure with a subwavelength thickness that can be used to control electromagnetic waves. The integration of optical fibers and metasurfaces has received much attention in recent years. This integrated device has high flexibility and versatility. We propose an optical device based on fiber-integrated metasurfaces in the mid-infrared, which uses a hollow core anti-resonant fiber (HC-ARF) to confine light transmission in an air core. The integrated bilayer metasurfaces at the fiber end face can achieve transmissive modulation of the optical field emitted from the HC-ARF, and the Fano resonance excited by the metasurface can also be used to achieve refractive index (RI) sensing with high sensitivity and high figure of merit (FOM) in the mid-infrared band. In addition, we introduce a polydimethylsiloxane (PDMS) layer between the two metasurfaces; thus, we can achieve tunable function through temperature. This provides an integrated fiber multifunctional optical device in the mid-infrared band, which is expected to play an important role in the fields of high-power mid-infrared lasers, mid-infrared laser biomedicine, and gas trace detection.

7.
Adv Sci (Weinh) ; 10(32): e2304310, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37691086

ABSTRACT

Fano resonance, known for its unique asymmetric line shape, has gained significant attention in photonics, particularly in sensing applications. However, it remains difficult to achieve controllable Fano parameters with a simple geometric structure. Here, a novel approach of using a thin-film optical Fano resonator with a porous layer to generate entire spectral shapes from quasi-Lorentzian to Lorentzian to Fano is proposed and experimentally demonstrated. The glancing angle deposition technique is utilized to create a polarization-dependent Fano resonator. By altering the linear polarization between s- and p-polarization, a switchable Fano device between quasi-Lorentz state and negative Fano state is demonstrated. This change in spectral shape is advantageous for detecting materials with a low-refractive index. A bio-particle sensing experiment is conducted that demonstrates an enhanced signal-to-noise ratio and prediction accuracy. Finally, the challenge of optimizing the film-based Fano resonator due to intricate interplay among numerous parameters, including layer thicknesses, porosity, and materials selection, is addressed. The inverse design tool is developed based on a multilayer perceptron model that allows fast computation for all ranges of Fano parameters. The method provides improved accuracy of the mean validation factor (MVF = 0.07, q-q') compared to the conventional exhaustive enumeration method (MVF = 0.37).

8.
Sensors (Basel) ; 23(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37514756

ABSTRACT

Localized surface plasmon resonance (LSPR)-based sensors exhibit enormous potential in the areas of medical diagnosis, food safety regulation and environmental monitoring. However, the broadband spectral lineshape of LSPR hampers the observation of wavelength shifts in sensing processes, thus preventing its widespread applications in sensors. Here, we describe an improved plasmonic sensor based on Fano resonances between LSPR and the Rayleigh anomaly (RA) in a metal-insulator-metal (MIM) meta-grating, which is composed of silver nanoshell array, an isolation grating mask and a continuous gold film. The MIM configuration offers more freedom to control the optical properties of LSPR, RA and the Fano resonance between them. Strong couplings between LSPR and RA formed a series of narrowband reflection peaks (with a linewidth of ~20 nm in full width at half maximum (FWHM) and a reflectivity nearing 100%) within an LSPR-based broadband extinction window in the experiment, making the meta-grating promising for applications of high-efficiency reflective filters. A Fano resonance that is well optimized between LSPR and RA by carefully adjusting the angles of incident light can switch such a nano-device to an improved biological/chemical sensor with a figure of merit (FOM) larger than 57 and capability of detecting the local refractive index changes caused by the bonding of target molecules on the surface of the nano-device. The figure of merit of the hybrid sensor in the detection of target molecules is 6 and 15 times higher than that of the simple RA- and LSPR-based sensors, respectively.

9.
Biosens Bioelectron ; 237: 115498, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37423065

ABSTRACT

Surface plasmon polaritons in graphene can enhance the performance of mid-infrared spectroscopy, which is key for the study of both the composition and the conformation of organic molecules via their vibrational resonances. In this paper, a plasmonic biosensor using a graphene-based van der Waals heterostructure on a piezoelectric substrate is theoretically demonstrated, where far-field light is coupled to surface plasmon-phonon polaritons (SPPPs) through a surface acoustic wave (SAW). The SAW creates an electrically-controlled virtual diffraction grating, suppressing the need for patterning the 2D materials, that limits the polariton lifetime, and enabling differential measurement schemes, which increase the signal-to-noise ratio and allow a quick commutation between reference and sample signals. A transfer matrix method has been used for simulating the SPPPs propagating in the system, which are electrically tuned to interact with the vibrational resonances of the analytes. Furthermore, the analysis of the sensor response with a coupled oscillators model has proven its capability of fingerprinting ultrathin biolayers, even when the interaction is too weak to induce a Fano interference pattern, with a sensitivity down to the monolayer limit, as tested with a protein bilayer or a peptide monolayer. The proposed device paves the way for the development of advanced SAW-assisted lab-on-chip systems combining the existing SAW-mediated physical sensing and microfluidic functionalities with the chemical fingerprinting capability of this novel SAW-driven plasmonic approach.


Subject(s)
Biosensing Techniques , Graphite , Sound , Electricity , Acoustics
10.
Small ; 19(40): e2302355, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37282744

ABSTRACT

By preparing colloidal crystals with random missing scatterers, crystals are created where disorder is embodied as vacancies in an otherwise perfect lattice. In this special system, there is a critical defect concentration where light propagation undergoes a transition from an all but perfect reflector (for the spectral range defined by the Bragg condition), to a metamaterial exhibiting an enhanced transmission phenomenon. It is shown that this behavior can be phenomenologically described in terms of Fano-like resonances. The results show that the Fano's parameter q experiences a sign change signaling the transition from a perfect crystal exhibiting a reflectance Bragg peak, through a state where background scattering is maximum and Bragg reflectance reaches a minimum to a point where the system reenters a low scattering state recovering ordinary Bragg diffraction. A simple dipolar model considering the correlation between scatterers and vacancies is proposed and the reported evolution of the Fano-like scattering is explained in terms of the emerging covariance between the optical paths and polarizabilities and the effect of field enhancement in photonic crystal (PhC) defects.

11.
Nano Lett ; 23(11): 5236-5241, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37200154

ABSTRACT

Thin film coatings with tunable colors have a broad range of applications, from solid-state reflective displays to steganography. Here, we propose a novel approach to chalcogenide phase change material (PCM)-incorporated steganographic nano-optical coatings (SNOC) as thin film color reflectors for optical steganography. The proposed SNOC design combines a broad-band and a narrow-band absorber made up of PCMs to achieve tunable optical Fano resonance in the visible wavelength, which is a scalable platform for accessing the full-color range. We demonstrate that the line width of the Fano resonance can be dynamically tuned by switching the structural phase of PCM from amorphous to crystalline, which is crucial for obtaining high-purity colors. For steganography applications, the cavity layer of SNOC is divided into an ultralow loss PCM and a high index dielectric material with identical optical thickness. We show that electrically tunable color pixels can be fabricated using the SNOC on a microheater device.

12.
Nano Lett ; 23(11): 4723-4731, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37256850

ABSTRACT

The pursuit for efficient nanoparticle trapping with low powers has led to optical tweezers technology moving from the conventional free-space configuration to advanced plasmonic systems. However, trapping nanoparticles smaller than 10 nm still remains a challenge even for plasmonic tweezers. Proper nanocavity design and excitation has given rise to the self-induced back-action (SIBA) effect offering enhanced trap stiffness with decreased laser power. In this work, we investigate the SIBA effect in metamaterial tweezers and its synergy with the exhibited Fano resonance. We demonstrate stable trapping of 20 nm gold particles with trap stiffnesses as high as 4.18 ± 0.2 (fN/nm)/(mW/µm2) and very low excitation intensity. Simulations reveal the existence of two different groups of hotspots on the plasmonic array. The two hotspots exhibit tunable trap stiffnesses, a unique feature that can allow for sorting of particles and biological molecules based on their characteristics.

13.
Adv Mater ; 35(33): e2301323, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37165983

ABSTRACT

A top-down lithographic patterning and deposition process is reported for producing nanoparticles (NPs) with well-defined sizes, shapes, and compositions that are often not accessible by wet-chemical synthetic methods. These NPs are ligated and harvested from the substrate surface to prepare colloidal NP dispersions. Using a template-assisted assembly technique, fabricated NPs are driven by capillary forces to assemble into size- and shape-engineered templates and organize into open or close-packed multi-NP structures or NP metamolecules. The sizes and shapes of the NPs and of the templates control the NP number, coordination, interparticle gap size, disorder, and location of defects such as voids in the NP metamolecules. The plasmonic resonances of polygonal-shaped Au NPs are exploited to correlate the structure and optical properties of assembled NP metamolecules. Comparing open and close-packed architectures highlights that introduction of a center NP to form close-packed assemblies supports collective interactions, altering magnetic optical modes and multipolar interactions in Fano resonances. Decreasing the distance between NPs strengthens the plasmonic coupling, and the structural symmetries of the NP metamolecules determine the orientation-dependent scattering response.

14.
Photoacoustics ; 30: 100478, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37025113

ABSTRACT

Observation of Fano resonances in various physical phenomena is usually ascribed to the coupling of discrete states with background continuum, as it has already been reported for various physical phenomena. Here, we report on Fano lineshapes of nonthermal GHz phonons generated and observed with pumped Brillouin light scattering in gold-silicon thin membranes, overlapping the broad zero-shift background of yet questionable origin. The system's broken mid-plane symmetry enabled the generation of coherent quasi-symmetric and quasi-antisymmetric Lamb acoustic waves/phonons, leading to the four orders-of-magnitude enhancement of Brillouin light scattering. Notably, the membrane asymmetry resulted also in the mode-dependent Stokes and anti-Stokes Fano lineshapes asymmetry.

15.
Heliyon ; 9(4): e15094, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37089329

ABSTRACT

Fano resonance (FR) is extremely sensitive to extremely small changes in the surrounding environment. We first propose an optical nano-refractive index sensor based on Fano resonance, which is applied to the identification of water-soluble vitamins B1, B5 and B6 and the measurement of the concentration of vitamin B1. The sensor can be used to rapidly identify pure vitamins B1, B5, and B6 at a concentration of 1 g/50 mL at 25 °C based on the relationship between the wavelength shift in the FR line spectrum and the refractive index. This work shows that the sensitivity of the sensor can reach 1327.5 nm/RIU, the sensor can be used to rapidly identify vitamins B1, B5, and B6 through changes in refractive index under certain conditions. Moreover, rapid calculation of vitamin B1 solution concentration is achieved based on the relationship between different concentrations of vitamin B1 solution and their corresponding refractive indexes and wavelength shifts in their FR line spectrums, which is an important step for the application of the designed MIM waveguide structures to the fields of biology, chemistry, and medicine.

16.
Nanomaterials (Basel) ; 13(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36770337

ABSTRACT

The exploration of the propensity of engineered materials to bring forward innovations predicated on their periodic nanostructured tailoring rather than the features of their individual compounds is a continuous pursuit that has propelled optical sensors to the forefront of ultra-sensitive bio-identification. Herein, a numerical analysis based on the Finite Element Method (FEM) was used to investigate and optimize the optical properties of a unidirectional asymmetric dimer photonic crystal (PhC). The proposed device has many advantages from a nanofabrication standpoint compared to conventional PhCs sensors, where integrating defects within the periodic array is imperative. The eigenvalue and transmission analysis performed indicate the presence of a protected, confined mode within the structure, resulting in a Fano-like response in the prohibited states. The optical sensor demonstrated a promising prospect for monitoring the DNA hybridization process, with a quality factor (QF) of roughly 1.53×105 and a detection limit (DL) of 4.4×10-5 RIU. Moreover, this approach is easily scalable in size while keeping the same attributes, which may potentially enable gaze monitoring.

17.
Nanomaterials (Basel) ; 13(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36770453

ABSTRACT

We propose a heat-reconfigurable metasurface composed of the silicon-based gold grating. The asymmetric Fano-like line shape is formed due to the mutual coupling of the local surface plasmon (LSP) in the gap between the two layers of Au gratings and the surface propagating plasmon (SPP) on the surface of the Au gratings. Then, we effectively regulate the Fano resonance by applying a bias voltage to laser-induced graphene (LIG), to generate Joule heat, so that the resonant dip of one mode of the Fano resonance can shift up to 28.5 nm. In contrast, the resonant dip of the other mode barely changes. This effectively regulates the coupling between two resonant modes in Fano resonance. Our study presents a simple and efficient method for regulating Fano-like interference in the near-infrared band.

18.
Nanomaterials (Basel) ; 13(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36770466

ABSTRACT

Quasi-bound states in the continuum (quasi-BIC) in all-dielectric metasurfaces provide a crucial platform for sensing due to its ability to enhance strong matter interactions between light-waves and analytes. In this study, a novel high-sensitivity all-dielectric sensor composed of a periodic array of silicon (Si) plates with square nanoholes in the continuous near-infrared band is theoretically proposed. By adjusting the position of the square nanohole, the symmetry-protected BIC and Friedrich-Wintgen BIC (FW-BIC) can be excited. The torodial dipole (TD) and electric quadruple (EQ) are demonstrated to play a dominating role in the resonant modes by near-field analysis and multipole decomposition. The results show that the sensitivity, the Q-factor, and the corresponding figure of merit (FOM) can simultaneously reach 399 nm/RIU (RIU is refractive index unit), 4959, and 1281, respectively. Compared with other complex nanostructures, the proposed metasurface is more feasible and practical, which may open up an avenue for the development of ultrasensitive sensors.

19.
Adv Sci (Weinh) ; 10(2): e2204494, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36385743

ABSTRACT

Miniaturized ultrafast switchable optical components with high efficiency and broadband response are in high demand to the development of optical imaging, sensing, and high-speed communication. Sharp Fano-type resonance switched by active materials is one of the key concepts that underpins the control of light in metaoptics with high sensitivity. However, actuating such metasurfaces exhibits a long-standing trade-off between modulation depth and operational bandwidth. Here, the limitations are circumvented by theoretical analysis, numerical simulation, and experimental realization of an achromatic Fano metasurface so that a high contrast of tunability with ultrafast switching rate over a broad range of frequency is achieved. By developing the physics of inter-mode coupling, the Fano metasurface is designed according to a complete phase diagram derived from coupled mode theory. Unlike conventional Fano metasurfaces, the cross-polarized inter-metaatoms coupling is discovered as a superior ability of high-efficiency broadband achromatic polarization conversion. To prove the ultrasensitive nature, a metadevice is constructed by incorporating a thin amorphous Ge layer with a weak photoconductivity perturbation. Transmission modulation over broadband frequency range from 0.6 to 1.1 THz is thus successfully realized, featuring its merits of modulation depth over 90% and On-Off-On switching cycle less than 10 ps.

20.
Nanomaterials (Basel) ; 12(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36500849

ABSTRACT

Fano resonances that feature strong field enhancement in the narrowband range have motivated extensive studies of light-matter interactions in plasmonic nanomaterials. Optical metasurfaces that are subject to different mirror symmetries have been dedicated to achieving nanoscale light manipulation via plasmonic Fano resonances, thus enabling advantages for high-sensitivity optical sensing and optical switches. Here, we investigate the plasmonic sensing and switches enriched by tailorable multiple Fano resonances that undergo in-plane mirror symmetry or asymmetry in a hybrid rotational misalignment metasurface, which consists of periodic metallic arrays with concentric C-shaped- and circular-ring-aperture unit cells. We found that the plasmonic double Fano resonances can be realized by undergoing mirror symmetry along the X-axis. The plasmonic multiple Fano resonances can be tailored by adjusting the level of the mirror asymmetry along the Z-axis. Moreover, the Fano-resonance-based plasmonic sensing that suffer from mirror symmetry or asymmetry can be implemented by changing the related structural parameters of the unit cells. The passive dual-wavelength plasmonic switches of specific polarization can be achieved within mirror symmetry and asymmetry. These results could entail benefits for metasurface-based devices, which are also used in sensing, beam-splitter, and optical communication systems.

SELECTION OF CITATIONS
SEARCH DETAIL