Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ear Nose Throat J ; : 1455613221098787, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35487204

ABSTRACT

Laryngopharyngeal or cervical pain following ingestion of foreign bodies is one of the most frequently encountered emergencies in otolaryngologic practice. Although most of these foreign bodies can be easily removed under laryngoscopic examination without any complications, surgical removal may be required when foreign bodies migrate extraluminally. This report describes two rare cases of ingested fishbones that had migrated, one each to the thyroid gland and submandibular gland. Extraluminal migration fishbones should always be considered in otolaryngologic clinics.

2.
Ear Nose Throat J ; : 1455613211036770, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34490795

ABSTRACT

OBJECTIVE: Accidental pharyngeal fishbone ingestion is a common complaint in ear, nose, and throat clinics. Approximately two-thirds of the accidentally ingested fishbones can be removed using tongue depressors and indirect laryngoscopy. However, the remaining third is challenging to identify and remove using these methods. These difficult fishbones require identification and removal via more advanced approaches. Video-guided laryngoscope is used to deal with difficult fishbones in our center. This study aimed to explore the risk factors for difficult fishbones. METHODS: A prospective study was performed at a teaching hospital on 2080 patients. Univariate and multivariate analyses were performed to identify the risk factors. RESULTS: The common fishbone locations were the tonsils (39.8%; defined as STEP-I), tongue base (37.1%), vallecula (13.3%; STEP-II), and hypopharynx (9.8%; STEP-III). With increasing STEP level, the ratio of difficult fishbones correspondingly increased (Z = 13.919, P < .001), and the proportions were 21.1%, 41.9%, and 70% in STEP-I, II, and III, respectively. In particular, fishbones in STEP-III (vs STEP-I) had a higher risk of difficult fishbones (odds ratio [OR]: 11.573, 95% CI: 7.987-16.769). Complaints of neck pain (yes vs no), foreign body sensation (yes vs no), and shorter length of fishbones always had a lower risk of difficult fishbones (OR: 0.455, 95% CI: 0.367-0.564; OR: 0.284, 95% CI: 0.191-0.422; OR: 0.727, 95% CI: 0.622-0.85). Missing teeth (yes vs no), swallowing behavior after fishbone ingestion (yes vs no), and male patients (vs female) had a higher risk of difficult fishbones (OR: 1.9, 95% CI: 1.47-2.456; OR: 1.631, 95% CI: 1.293-2.059; OR: 1.278, 95% CI: 1.047-1.56). CONCLUSIONS: Neck pain, foreign body sensation, fishbone length, patient age and sex, tooth status, and swallowing behavior after fishbone ingestion are independent risk factors for difficult fishbones.

3.
J Adv Res ; 14: 1-9, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30377542

ABSTRACT

Natural fish bones, that are known to have unique adsorption capacity, have been used in the present work for removal of heavy metals, copper, and cobalt, from wastewater. It has been found that sorption process depends on the initial metal concentration and on the contact time. Laser-induced breakdown spectroscopy (LIBS) as a spectrochemical analytical technique was used for qualitative and quantitative analysis of the water samples. X-ray Fluorescence (XRF), as another spectrochemical analytical method, was exploited to characterize the remediation of wastewater. The optimum contact time values for the removal of Cu (II) and Co (II) were 270 and 300 min, respectively. Furthermore, the percentages of adsorbed Cu (II) and Co (II) were high for low initial concentrations and decreased with increasing the heavy metal initial concentrations. The Langmuir and Freundlich isotherm models were used to analyze the equilibrium adsorption data and Freundlich isotherm was found to represent the experimental results well with a correlation factor close to one. However, the pseudo-second-order kinetic model provided the best fit to the experimental data for the adsorption of heavy metals using fish bones compared to the pseudo-first-order model. The obtained results demonstrate the potential of using both LIBS and XRF in the analysis of contaminant wastewater effectively.

SELECTION OF CITATIONS
SEARCH DETAIL