Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 227(9)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38682690

ABSTRACT

Insect performance is linked to environmental temperature, and surviving through winter represents a key challenge for temperate, alpine and polar species. To overwinter, insects have adapted a range of strategies to become truly cold hardy. However, although the mechanisms underlying the ability to avoid or tolerate freezing have been well studied, little attention has been given to the challenge of maintaining ion homeostasis at frigid temperatures in these species, despite this limiting cold tolerance for insects susceptible to mild chilling. Here, we investigated how prolonged exposure to temperatures just above the supercooling point affects ion balance in freeze-avoidant mountain pine beetle (Dendroctonus ponderosae) larvae in autumn, mid-winter and spring, and related it to organismal recovery times and survival. Hemolymph ion balance was gradually disrupted during the first day of exposure, characterized by hyperkalemia and hyponatremia, after which a plateau was reached and maintained for the rest of the 7-day experiment. The degree of ionoregulatory collapse correlated strongly with recovery times, which followed a similar asymptotical progression. Mortality increased slightly during extensive cold exposures, where hemolymph K+ concentration was highest, and a sigmoidal relationship was found between survival and hyperkalemia. Thus, the cold tolerance of the freeze-avoiding larvae of D. ponderosae appears limited by the ability to prevent ionoregulatory collapse in a manner similar to that of chill-susceptible insects, albeit at much lower temperatures. Based on these results, we propose that a prerequisite for the evolution of insect freeze avoidance may be a convergent or ancestral ability to maintain ion homeostasis during extreme cold stress.


Subject(s)
Cold Temperature , Coleoptera , Freezing , Hemolymph , Larva , Animals , Hemolymph/chemistry , Coleoptera/physiology , Larva/physiology , Larva/growth & development , Acclimatization , Seasons , Potassium/metabolism
2.
J Therm Biol ; 104: 103196, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35180973

ABSTRACT

Bumble bees thrive in cold climates including high latitude and high altitude regions around the world, yet cold tolerance strategies are largely unknown for most species. To determine bumble bee cold tolerance strategy, we exposed bumble bees to a range of low temperatures and measured survival 72 h post-exposure. All bees that froze died within 72 h while only one bee died without freezing, suggesting that bumble bees are generally freeze-avoiding insects and may be slightly chill susceptible. We then assessed whether temperatures that cause internal ice formation (supercooling points, SCP) varied among bumble bee castes (drones, workers, and queens), or across queen life stages, collection elevation, species, or season. Males froze at significantly lower temperatures than workers or queens. Queens in pre-overwintering or overwintering states froze at significantly lower temperatures than queens stimulated to initiate ovary development by CO2 narcosis (i.e., "spring" queens). We also tested whether the presence of water (i.e., wet or dry) or ramping rate affected SCP. As expected, queens inoculated with water froze at significantly higher temperatures than dry queens. SCP tended to be lower, but not significantly so, at faster ramping rates (0.5 °C/min vs 0.25 °C/min). We also found no differences in SCP between queen bumble bees collected in spring and fall, between queens collected at two sites differing in elevation by 1100 m, or between three field-caught bumble bee species. Bumble bees appear to have relatively high, invariable SCPs, likely making them highly susceptible to freezing across all seasons. As bumble bees are not freeze-tolerant and appear to lack the ability to prevent freezing at temperatures much below 0 °C, they may rely on season- and caste-specific micro-habitat selection to thrive in cold climates.


Subject(s)
Bees , Animals , Female , Male , Bees/growth & development , Bees/physiology , Ecosystem , Freezing , Seasons , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...